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1 Introduction

In this paper we follow a model of Del Piero and Owen [23] providing a continuum mechanics basis for
the application of techniques in the calculus of variations to non-classical deformations of continua. These
structured deformations are suitable for describing deformations of materials whose kinematics warrants
analysis at both the macroscopic and microscopic levels.

The motivation for this work lies on the study of equilibrium configurations of crystals with defects. In
a defective crystal, the macroscopic deformation together with the referential (Bravais) lattice configuration
do not suffice to describe fully the configuration of a deformed body; phenomena such as slips, vacancies,
and dislocations may be present in the deformed (Bravais) lattice basis, thus preventing the use of the
Cauchy-Born hypothesis, as described below.

In a perfect crystal, it is postulated that the crystal lattice consists of identical atoms located at all
positions vectors

T = mya; + mapaz + msag,

where a; € R® and m; € Z. The a; are called lattice vectors and the matrix L, whose columns consist of the
a;, is referred to as the lattice matriz or lattice basis. At each point z in the crystal there exists a tensor
L(x) representing average values over microscopic regions of lattice vectors which define locally the position
of the atoms. The Cauchy-Born hypothesis (see Ericksen [24]) establishes the behavior of the lattice basis
field under an elastic deformation, and it asserts that an orientation preserving map u: Q — Q* leads to a
new lattice basis L* given by

L*(u(z)) = Vu(z)L(x) T €9, (1.1)

where Q C R3 represents the referential position of the crystal, and Q* = u(f) is the deformed configuration.




Suppose that we start with a perfect, cubic crystal whose lattice basis field is identically the identity
matrix I. It often happens that, after undergoing some deformation, a new lattice basis is observed which
does not coincide with Vu (see for example Hill [35]). This discrepancy is viewed as the creation of defects.
In [17], [18], and [19], Davini and Parry proposed a continuum model for defectlveness and introduced the
notion of defect preserving configurations. They studied pairs

(u(@), L(2)) ,

where L(z) stands for the matrix of lattice vectors at u(z). A complete list of measures of defectiveness,
including a generalization of the classical Burger’s vectors, were given in [19]. These measures consist of
line, surface, and bulk integrals of certain functionals depending on L(z) and on its spatial derivatives; as it
turns out, these functionals agree on configurations which are elastically related, in the sense of (1.1). These
measures of defectiveness partition the set of configurations, or equivalently, deformations, into equivalence
classes, and the equivalence class containing the perfect cubic crystal (€,I) is called the class of neutral
deformations. This class was found to be strictly larger than the class of elastic deformations {(u(?), Vu(z))}
of a perfect cubic crystal. Indeed, the lattice basis field of a neutral deformation may include a “plastic”
part, accounting for the discrepancy between L and Vu, in spite of the fact that the deformation is defect
preserving. Fonseca and Parry [34] pursued this idea and found that neutral deformations may be represented
as

(u(), Vu{Vv}1), (1.2)

~where u and v belong to some appropriate Sobolev spaces, and det Vv = 1 a.e. The function u is interpreted
as the macroscopic deformation and v as the plastic part of the deformation, or, simply, the siip. Within
this framework, the use of variational principles on neutral deformations was undertaken in [34], under the
assumption that, among all neutral deformations of a perfect cubic crystal (Q2,I), equilibria correspond to
minima of some appropriate energy. The energy functional studied in [34] was given by

E(u,v) :=/ﬂ W (Vu(z) {Vu(z)}?) dz, (1.3)

where the bulk energy density W was the Helmholz free energy satisfying appropriate symmetry properties, as
considered by Chipot and Kinderlehrer [15] in the study of nondefective elastic crystals. In [16], variational
problems consisting of minimizing E(u,v) over some appropriate subclass of neutral deformations were
referred to as variation of the domain since, formally, if v is invertible then (1.3) can be written as

/ W(Va(y)) dy,
v()

where w := u o v~!. Several mathematical and physical difficulties were encountered within this model.

The fact that Sobolev functions with nonzero Jacobians are not necessarily locally invertible prevented the
use of the direct method of the calculus of variations; in addition, bounds on L = Vu{Vv}~?! in no way
imply bounds on Vu and Vv. Moreover, lower semicontinuity with respect to an appropriate notion of weak
convergence was established only under certain restrictive growth conditions on W (see [30]). Using different
analytical methods, Dacorogna and Fonseca [16] addressed the case where W = | - |". Existence of minima
was obtained for r > N, and for r < N = 2 it was shown that

inf {E(u,v) : u € Wh®,v € Wh, u(z)|logn =z,det Vv =1 ae. } =0;

hence, the infimum is not attained in spite of the convexity of W. Note also that this model associates zero
energy to a rearrangement of a natural state of the crystal, which is a particular type of neutral deformation
where u is invertible, v = u, thus L = I, and the lattice vectors retain their orientation. We take these
results as an indication that the energy defined in (1 3) is "too low”, in that it neglects terms which may
account for the presence of microscopic slips. '



In physical terms, Fonseca and Parry [34] studied stress in equilibrium configurations in the case where
neutral deformations were admissible. Via the theory of Young measures, it was shown that certain symmetry
properties of W imply that the average stress associated with an infimizing sequence is a hydrostatic pressure;
hence, the crystal is weak at equilibrium, since it cannot sustain non zero averaged shear stresses. This result
had been previously obtained by Chipot and Kinderlehrer [15)] in the case where only elastic deformations
were allowed to compete (see, also, a similar result of Ericksen [25] for elastic crystals). When defective
configurations are admissible, the latter result is regarded as an indication that frictional effects due to slips
should be represented in the energy functional to be minimized (see Parry [37]). The question now is: how
should we introduce an energy penalization due to slips, or to more general defects? Intuitively, we expect
that the total energy should include a measure of the discrepancy

/ L(z) - Vu(z)| dz,
(9]

or, more generally, some functional of (L(z) — Vu(z)), depending on the interaction between W and some
surface energy associated with slips. Our goal in this paper is to obtain specific information on the total
effective energy which incorporates bulk and surface terms accounting for slips. We provide a description of
the energy functional that should be minimized, in the hope that this information will help determining the
(meta)stable states, or (local) minimizers (see Corollary 5.4, Proposition 5.6, and the subsequent discussion
after it for some partial results in this direction).

In recent years much attention has been given to variational methods addressing discontinuous classes of
functions with energies which include both bulk and interfacial terms. Consider the functional

E(u) :=/n W(Vu)d:c+/c ¥([u),v)dHN 2, (1.4)

rack site

where HV-! denotes the N — 1 dimensional Hausdorff measure, v stands for the unit normal to the crack
(jump discontinuity) site, and [u] is the size, or amplitude, of the jump discontinuity. Here there is a direct
penalization of jump discontinuities in u, and a to macroscopic slip is assigned a precise energy via the
density 1. Functionals having this form have been studied in relation to problems in fracture mechanics,
phase transitions, image segmentation and pattern recognition (see for example, [21],{29]). In this paper,
we discuss a mechanism for taking into account microscopic defects via limits of configurations with (small)
interfaces which diffuse in the limit, disappear at the macroscopic level, and contribute in some way to the
effective “bulk” energy. This approach lies on a model proposed by Del Piero and Owen (23], which we now
outline.

The theory of Del Piero and Owen deals with three types of deformations. For simplicity, we take the
reference configuration €2 to be a bounded, open subset of RV and rephrase slightly the definitions in [23].

o Simple deformations are pairs (K,g) where K C Q consists of a finite union of Lipschitz sets of
Hausdorff dimension N —1, and g|a\ x is a one to one differentiable function. We set Vg := (Vgla\k) -
XO\K-

e A triple (K, g,G) is a limit of simple deformations if K C Q, g € L*(9,RN),
G € L>™(Q,MN*¥), and there exists a sequence of simple deformations (K, f,) such that

00 0o ) .
K:=U N Kn Lm|g=foli=@gr) =0, lm |G—Vfalre@muxn)=0. (1.5)

e A triple (K, g,G) is a structured deformation if (K, g) is a simple deformation, G : Q\K — MV*N jg
continuous and there exists m > 0 such that for all z € Q\K, m < det G(z) < det Vg(z).

Here, and in what follows, M%*¥ stands for the vector space of d x N matrices. One of the central results
of the theory of Del Piero and Owen is that every structured deformation is a limit of simple deformations
(see [23], Theorem 5.8). We give two simple examples from [23] illustrating the convergence in (1.5). First,



we consider the so called broken ramp sequence. Let N =1, Q = (0,1), K = 0, g(z) = 2z, and G(z) = 1.
This structured deformation can be approximated by

k k k+1
== _— -< = Uyeeene -
fa(z) =z + - for a S < T k=0,..,n-1,

because f,(z) — 2z and Vf,(z) — 1 in L*>(0,1); hence, (0,2,1) is a limit of simple deformations. In terms
of the total distributional derivative, we have Df,, — Dg in the sense of distributions, and

n—ll
Dfn=1+§;6%,

where 6, is the Dirac mass at £ = a. Thus, the part of Df, corresponding to jumps will converge, in the
sense of distributions, to the difference between G and Vg which, in this case, is the constant function 1.
Note the relation between E:;ll 1§, and the Riemann sum for f(z) = 1.

The second example is particula'}ly illuminating in the context of the microscopic slip mentioned in
(1.2), and is referred to as the deck of cards. Let N = 3, @ = (0,1)%, K = 0, g(z) is the simple shear
g9(z) = 9(1,22,23) = (1 + z3,Z2,23), and G(z) = 1. An approximating sequence is given by

fo(z) == (3:1+ E,:rg,m) for E <z3< k—+—1-, k=0,...,n—1.
n n n

Within the framework adopted in [17], [18], [19], and [34], (g,I) represents a particular type of rearrange-
ment of the crystal, namely a slip, and it is a neutral deformation in the sense of (1.2), with u = g and
v = g. The notion of microscopic slip has the interpretation of a limit of decreasing displacements along
glide planes which are diffusing throughout the body.

As the last example suggests, one may consider g as the macroscopic deformation of a defective crystal
with cubic symmetry, K as the macroscopic crack site, and G(z) as the referential description of the averaged
lattice basis field in the deformed configuration. The constructions of Del Piero and Owen support the
interpretation of Ge; ({ey, ...,en} denotes the standard orthonormal basis in R") as being a limit of averages
of discrete lattice bases. To see this, approach a purely microscopic structured deformation (@,id,G) (id
stands for the identity deformation) by simple deformations (K&, fn) such that {f,} are piecewise affine, and
so Vf, e, is interpreted as a set of discrete lattice bases for all atomic sites in the deformed state determined
by (Kn, fn)- Then, for every z € 2,

Iz, Vin() @idy
L TLN (B D)) o@)ew

(1.6)

where B(z,a) denotes the ball with centre z and radius a, and LV is the N—dimensional Lebesgue measure.
See Section 7c of [23] for details. In the phenomenalogical theories of plasticity (see [35],Si), G corresponds
to the elastic component F*© of the total deformation gradient Vg, i.e., G represents the deformation of the
lattice basis. The well-known elastic-plastic decomposition takes the form

F=Vg=G(G'Vg) = F F?,

where F? is the plastic component of the macroscopic gradient F'.

In this paper we will consider a framework for structured deformations which will encompass the use of
modern techniques in nonlinear analysis and the calculus of variations. In particular, the principal fields will
be allowed to oscillate, which is in contrast with the notions of convergence considered in (1.5). We will work
in the space of functions of special bounded variation, SBV, introduced by De Giorgi and Ambrosio in [20],
and consisting of integrable functions u whose distributional derivatives are Radon measures p = ug + y,,
where p, is absolutely continuous with respect to £V and u, is absolutely continuous with respect to
N-1 dimensional Hausdorff measure HV~! restricted to the set where the function u experiences jump



discontinuities. We denote p, by Vu LN, Vu being the Radon-Nikodym derivative of Du with respect to
LN. A structured deformation will be represented by a pair (g, G), where the macroscopic deformation g is
in SBV(9,R?) and G is an integrable tensor field in . A theorem of Alberti [1] allows us to recover the
approximation theorem of Del Piero and Owen (Theorem 5.8 of [23]). That is (see Theorem 2.12), given any
structured deformation (g, G) there exist deformations u, in SBV (2, R¢) such that

Up, — g in L! and Vu, =G in M(Q), (1.7)

where M(2) denotes the space of Radon measures on Q. Given the lack of information on the convergence
of the jump set of un, this is a weaker statement than the theorem of Del Piero and Owen (see (1.5) and
Theorem 5.8 in [23]). Assume, for simplicity, that g € W11, i.e, there are no macroscopic cracks. Du,
consists of a part absolutely continuous with respect to Lebesgue measure, Vu, LV, and a singular part,
J(uy,), which is supported on the jump set of u,, denoted by S(u,). From (1.7) we have that Du, — Dg
in the sense of distributions; hence, J(u,) — Vg — G in the sense of distributions, and so the difference
between macro and microscopic bulk is achieved by a limit of singular measures. However, under certain
additional conditions, a compactness theorem of Ambrosio [2] for SBV guarantees that Vg = G a.e. in €,
unless HVN-1(S(u,)) — oo, i.e., there is a diffusion of cracks whose amplitude is tending to zero (see Remark
2.13 for details, also see Theorem 5.10 of [23]). This fact prevents 1 from being bounded away from zero, if
we are to consider Vg # G on a set of positive measure, together with the convergence (1.7).

Given u € SBV, we associate an energy functional of the form E(u) introduced in (1.4). We define the
energy of a structured deformation (g, G) as the most economical way to build up the deformation using the
approximations in SBV, i.e.,

I(g,G) := {?f} {lan_l‘io%fE(un) : uyp, — (g,G)in the sense of (1.7)} . (1.8)

Clearly, this class of admissible sequences includes the limits of simple deformations in the sense of (1.5)
provided g and G are sufficiently smooth (see [23], Theorem 5.8).

The energy (1.8) is in relaxed form due to its own definition, and the first question we ask concerns the
description of the resulting interaction between the initial interfacial and bulk densities, 1 and W, appearing
in E. For example, if the macroscopic deformation g is smooth and Vg # G, as mentioned above this
discrepancy is realized by the diffusion of jumps in the approximating sequences. Thus, the resulting energy
should involve a new bulk density depending on Vg and G, via some combination of the initial densities
W and ¢. Characterizing this new function amounts to finding an integral representation for I. Integral
representations for similar relaxed energy functionals have been the focus of extensive research in the calculus
of variations over the past decade, for example see [5], (7], [9], [12], [14], [32], [33]. In these cases, relaxation
of E is taken with respect to the L! (BV weak) topology, whereas in our present situation we relax with
respect to a more restrictive topology where gradients are constrained.

In the context of defective crystals, we interpret (1.7) and (1.8) as a means to realize the deformed
crystal by piecing together elastic crystals at a finer and finer scale; that is, the creation of the non-trivial
microstructure is achieved naturally by rearrangements within the crystal at a very fine scale. We expect
that there will be an interfacial energy associated with this process, in addition to the bulk (Helmholz free)
energy, and we prescribe that the overall energy of the deformation should be lowest among all such possible
rearrangements which give rise to the same macroscopic and microscopic configuration. In this paper, we
characterize this total energy. In doing so, we are not taking the particular view that the integral in (1.4)
which contains 1 corresponds to energy which is dissipated during the structured deformation, nor are we
ruling out such an interpretation. The functional (1.8) is the energy associated with deforming the crystal,
and it may be that energy corresponding to small interfaces is stored in the deformed configuration. For
now, we leave open these possibilities.

It is well known that the bulk energy W (the Helmholtz free energy) associated with a crystal may have
potential wells (at matrices where W vanishes) centered at matrices of a material symmetry (point) group
(see [15], [24], [28]). Thus, it is desirable not to impose a coercivity condition on W but only a growth



condition, 0 < W(A) < C(1+|A|P) for some p > 1, constant C, and for all A € M?*". For p > 1, we require
admissible sequences to satisfy Vu,, — G in L?. This, of course, follows from (1.7) if W is p—coercive, i.e.,
if there exists a constant c such that c|A|P < W(A) for all A € M?*¥ | and if lim,, E(u,) < co. On the other
hand, if p = 1, and even under the coercivity hypothesis, the sequence {Vu,} may develop concentrations.
To accomodate this fact, we will assume that Vu, — m, where m € M(f) and f—c';"v = G. Based on the
above considerations, for W : M®*N — [0,00) and 3 : R? x S¥~! — [0,00) continuous functions, where
SN-1.= {z € RN : |z] = 1}, we consider the following energies:

n—oo

Io(9,G,9) := {inf} { lim inf [ / W(Vu,)dz + / w([un],uu,‘)dHN'l] : up, € SBV(Q,RY),
Un 0 S(un)®
. 1 d * dm G
u, — gin L*(Q,R?), Vun-am,meM(Q)andm= ,
and for p > 1,

w([un],uu")dHN’l] :up, € SBV(Q,R?),
(42)NQ

I(9,G,9) := inf {liminf /W(Vu,,)dx+/
{ua} | n—o0 | Jg S
u, — gin L}(,RY), Vu, = G, sup [Vun|Lr (@ mexny < oo}.

The main results of this paper are the following (see Theorems 2.16 and 2.17). Assuming that the initial
bulk density is Lipschitz, with p = 1, if ¢ has linear growth, is subadditive, and is homogeneous of degree 1,
then the following integral representations for I; and Iy hold:

L(6,G,Q) = /Q Hy(Vg(z),G(z))dr + /S (gl vy dHV

(g)n

and
I(.G.9) = /Q Hy(Vo(2), G(2)) dz + ua(9), (1.9)

for some Radon measure u, absolutely continuous with respect to HV~!|S(g). The new bulk and crack
density are defined below. If p > 1, then, under some additional hypotheses, the following representation for
I, holds:

L,(6,G,Q) = /n H,(Vg(2),G(z)) dz + /S RO (1.10)

where, for A, B € M#*N X e R4, ve SN-1,

Hy(A, B) := inf { [9 W(Vu)dz + /s ¥([u],v)dHN ! :u € SBV(Q,R?),u|sq = Az,

(w)n

quIeU(Q),/undz=B},

ha(\v) = inf { oWzt [ p(ul,m)dHY e SBV(Qu R, vlog, = . [ Vuds = o},
u Q. S(u)NQ Q.

and
h() := inf { / ¥([u), v)dHN ! : u € SBV(Q,RP),ulag = us ey, Vu(z) = OL‘.Na.e.}.
u Suw)NQ

Here v denotes the normal to the jump set S(u), en is the standard basis vector (0, ...0,1) € RV, Q denotes
the open unit cube (—%,‘% N and Q,, uy, are defined in (2.1) and (2.2). The recession function of W (see

6



(2.11)), W, captures the linear behavior of W at infinity. The new bulk density H) is, essentially, the same
for all p > 1, and it exhibits the interaction between the initial bulk density W and the initial interfacial
density (A, v). This is hardly surprising in view of the fact that at points away from the macro-fractures
S(g), the jumps in the u, are diffusing as their amplitudes tend to zero (see Remark 2.13). If admissible
sequences are taken so that {|Vuy,|} is bounded in L, p > 1, then the new crack (interfacial) density h is
independent of W. Loosely speaking, in these cases it is cheaper to approximate jumps with jumps rather
than with sharp gradients. If p = 1 and if we only require L! bounds on {|Vu,|}, then there is a contribution
of W, via W, in the new crack density h;.

Just as it was important not to assume coercivity on W, coercivity and homogeneity of 1 may rule out
certain important physical settings. If we include the extra condition on admissible sequences that they must
remain bounded in the BV norm, then we do not have to assume coercivity, while, if p > 1, we may also
relax the homogeneity assumption. In this case, in the new bulk H the density ¥ is replaced by 1, where

Yo(A, V) := limsup M
t—0+ t
It is the linear behavior in fixed directions at (amplitude equal to) zero of the initial interfacial energy density
1 which contributes to the new bulk density.

As it turns out, using our results we may recover some of the recently obtained integral representations
for relaxed energies (in the L! topology) of functionals consisting of bulk and interfacial terms. In particular,
by taking the infimum over all G € L}(Q2,M¢*") on both sides of (1.9) and (1.10), we obtain some of the
representations of [7] and [12]. Also, in the context of crystalline solids, for a given macroscopic deformation
g € WH1(Q,R9) the energy associated with the optimal microstructure is given by the relaxation of E(g)
in the L! (BV weak) topology. Moreover, if we assume coercivity on W, the direct methods of the calculus
of variations can be implemented to show that the infimum over all microstructures is achieved (for details,
see Section 5).

Lastly, we remark that in the SBV setting, we have the following analogue of (1.6). If Vu,, — G in L?,
then there exists a sequence m(n) such that for a.e. z

lim fB(z,n—l) Vumn)(y) e dy
n—oo LN (B (z,n"1))

and so, as before, we interpret the lattice basis G(z) as a limit of averages of lattice bases resulting from
elastic deformations.

This paper is organized as follows: in Section 2 we briefly review properties of functions of bounded
variation, we introduce the notion of structured deformations (see Definition 2.11), we state the main rep-
resentation theorems, Theorems 2.16 and 2.17, and we prove that I,(g,G,-) is a finite Radon measure (see
Proposition 2.22). Section 3 is dedicated to the characterization of the effective bulk energy Hp, i.e., the
Radon-Nikodym derivative of I,(g, G, -) with respect to LN, while in Section 4 we identify the N — 1 dimen-
sional part of that measure, precisely, we obtain a characterization of the new surface energy density, h,.
Finally, in Section 5 we study some properties of H, and hp, and we relate our relaxation result to others
previously obtained (see Corollary 5.4 and Proposition 5.6).

= G(z) e,

2 The Spaces BV, SBV, and SD. Statement of the Main Results

Let N and d denote positive integers. Let © be an open, bounded subset of RN, § its closure, and let
Q denote the open unit cube (—3,3)" and Q(a,r) the open cube centered at a with side length r, i.e.,
Q(a,r) = a + rQ. We identify the space of d x N matrices, M®*¥, with R4V, |z| denotes the standard
Euclidean norm of z, and |f|.» is the L? norm of a function f. For integrable functions u,,u : @ — R¢,

un, — u stands for weak star convergence in the sense of measures, i.e, for any ¢ € Co(Q)

/¢(:z)u,,(:z:)dz—-¢/¢(:c)u(z)dz.
o) o)



Let M(Q) stand for the space of Radon measures on 2. We allow for the fact that u € M(2) maybe matrix
valued, and denote by ||u|| its total variation measure. Throughout this paper, C (C’) is a generic constant
which may vary from line to line. Let » € S¥~1, and let Q, be an open unit cube centered at the origin
with two of its faces normal to v, i.e.,

Q.,:={zeRN jx - u.|<1 |z - u|<11=1,...,N—1} (2.1)
for some orthonormal basis of RN, {v1,vs,...,un-1,v}. We write Q,(a,7) := a+7Q,, a € RV, > 0. Given
A e R, let uy,, be the Rd-va.lued function deﬁned in @, by

0 if —% <z-v<0
uy () = (2.2)
Aif 0<z-v<i.

We state some basic definitions and properties of functions of bounded variation, BV, and of functions
of special bounded variation, SBV, which will be needed in the sequel. For more details, see Ambrosio (2],
Evans and Gariepy [26], Federer [27].

Definition 2.1 A function u € L'(Q;R?) is said to be of bounded variation, u € BV(Q;R?), if for all
i€{l1,...,d}, j€{1,...,N}, there ezists a finite Radon measure u;; such that

oY
/ wle) g ) de = = | #te)dus

for every ¥ € C§(). The distributional derivative Du is the matriz-valued measure with components ;.
We denote by || Dul|| the total variation of the gradient measure, i.e., ||Du||(R) := E?=1 || Du;]| () where

10ul(@) = sup { [ wdivids : v € GHORY), Wl <1}
Y Q

The space BV is a Banach space equipped with the norm
lul v (a,re) = |ulL1(q,rey + || Dul|(£2),
and it is well known that C§°(%;R?) is dense in BV in the following sense.
Proposition 2.2 Let u € BV(?). There exist u, € C§°(?) such that

lim /Iun—uldx=0 and lim ||Dun||(Q) = || Dul|(Q).
n—00 n n—00

Definition 2.3 A set A C 2 is said to be of finite perimeter in §) if x4 € BV (), where x4 denotes the
characteristic function of A. The perimeter of A tn Q s defined by

Perq(A) := ||Dxal|(2) = sup {Adivdz(z)d:c t € CHURY), Yoo < 1}.



Given u € BV (S};R?), the approrimate upper and lower limit of each component u;, i € {1,..., d}, are
given by

u? () = inf {t eR: lim LY ({u>1}N Qz.e)) = 0}
and
uy () = sup {t eR: lim N ({u <1} NQ(z,)) = 0} .
The set )
S(u) = J {z € Q: 4] (z) <vf(z)}

=1

is called the singular set, or jump set of u, and the value i(z) := f_(_I_L';ELEZ is defined for every z € Q. It
is well known that S(u) is N — 1 rectifiable, i.e.,

S(u) = G K,UE,

n=1

where HV-1}(E) = 0 and K, is a compact subset of a C! hypersurface for each n. If u € BV(Q;RP), we
write
Du=vVul" 4+ D,u,

where Vu is the Radon-Nikodym derivative of Du with respect to £V, and D,u and £V are mutually -
singular.

Theorem 2.4 Ifu € BV(Q;R?) then
i) for LN ae. 2€Q

N-1

1 ~
e { /Q(”) [u(y) - u(z) - Vu(z) - (y - z)lw’%rdy} -0,

i) for HN-1 a.e. £ € S(u), there erists a unit vector v(z) € SN~1, normal to S(u) at z, and there exist
vectors u_(z),u4(x) € R?, such that

1

im — lu(y) - ut () ¥ Tdy =0,
e—0+ eN {VEQL(2) (,8):(y—2)-v(2) >0} * )

1
lim — lu(y) — u_(z)| ¥ Tdy = 0;

e=0+ €V J(1eQu ) (2:0):(y-2) w(z) <0}
iii) for HN-! a.e. 2o € Q\ S(u)

1

—_ u(z) — i(zp)|dz = 0.
Jim, o lule) ~ el

We remark that, in general, (u;)* # (u4);. In the following, we shall denote by [u)(z) the jump of u at
z, defined by

[U](2) = u4(2) — u-(z).
If u e BV(Q; R?), then the measure Du may be représented as

Du=Vu[.N+(u+—u_)®VHN"1[S(u)+C(u), (2.3)



where Vu is the density of the absolutely continuous part of Du with respect to £V, and C(u) is the so-called
Cantor part. The three measures in (2.3) are mutually singular: if HV¥-1(B) < 400 then ||C(u)||(B) = 0,
and there exists a Borel set E such that LV (E) = 0 and ||C(w)||(X) = ||C(w)||(X N E) for all Borel sets
Xca.

The following subspace of BV was introduced by De Giorgi and Ambrosio in [20].

Definition 2.5 A function u € BV(Q,R?) is said to be of special bounded variation if C(u) = 0. We write
u € SBV(;; R?).

Next we state a generalization of the Besicovitch Differentiation Theorem, due to Ambrosio and Dal
Maso ([5], Proposition 2.2).

Theorem 2.6 If A and y are Radon measures in 2, u > 0, then there exists a Borel set E C §) such that
u(E) =0 and for every x € suppu \ E

Do Az+eC)
" emo+ p(z + €C)

ezists and is finite whenever C is a bounded, convez, open set containing the origin.

The following SBV compactness theorem of Ambrosio (see [2]) will impose restrictions on the growth
conditions of bulk and interfacial energies that we will consider in the sequel (see Remark 2.13).

Theorem 2.7 Let & : [0,00) — R and © : (0,00] — R be conver and concave respectively, nondecreasing,
and satisfying
lim —Q(t) =00 lim _G(t) =

t=oo t ’ t—0+ t

Let {u,} be a sequence of functions in SBV (Q,R%) N L®(Q,R?) such that sup,, |un|e < 00 and

sup {/ Q(IVunl)dz+/ 9(I[un]I)dHN"} < co.
n Q S(un)
Then there exists a subsequence {u,,} and a function u € SBV(Q,R?) such that
un, — ustrongly in L' and Vu,, — Vu weakly in L.

The theorem below was obtained by Alberti [1].

Theorem 2.8 Let f € L'(,R¥*N). There ezists u € SBV(Q,R?) and a Borel function g : Q — RN
such that

Du= f.z" +g-HN-|S(u), and / lgl dHN=! < C| |11 paxn), (2.4)
S(u)nn

C depends only on N.

The next lemma is a simple corollary of the co-area formula (see Evans and Ganepy [26]), and a similar
result may be found in [12], Proposition 3.1, Step 1.
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Lemma 2.9 Let v € BV(Q,R?). There ezist u, piecewise constant, u, € SBV, such that up, — u in
LY(,R%) and

11 Dull()

lim_ | Dug|(52)

lim |[un)(2)| dHN = (2).
")

n—oo S(u

Proof. By Proposition 2.2 we may assume, without loss of generality, that u is a C§° scalar-valued
function. Further, suppose that u is nonnegative; the general case follows by considering the positive and
negative parts of u. Let E; := {z € Q : u(z) > t} and define

oo n-1

un(@) = Y Y 7 X @)

i=0 j=1
The above sum is finite, and it is easy to check that u,, — u in L!(Q). Also,

o n-1

IDull@ < 3 Y 2Dz, 1),

i=0 j=1

where the right hand side of the above formula is simply a Riemann sum for f0°° ||DxE,||(2)dt, which, by
the co-area formula, equals ||Du||(2). Thus, by the lower semicontinuity of the total variation and the fact
that u € C°(R™), we have

IDu]|() < liminf||Du,[|(€2)
|| Dul|($2).

IA

]

Lemma 2.10 Let u € BV(Q,R?) satisfy ulaq = uo for some ug € C(Q,R?%). Then, for every € > 0 there
erists 0 < r. <1 such thatr, = 1~ ase — 0, and

/ lu(z) — uo(z)| dHV1(z) < e.
8Q(0,re)

Proof. Without loss of generality, assume d = 1. Let tr u denote the trace operator. If u € BV(Q) then
we have (see Ziemer [39] Theorem 5.10.7)

/ ltl’ u[ dHN-l < C|U|BV(Q)
Q

¢/ 1pui@)+ [ ulds] (25)
for some constant C. Fix € > 0. Since ||Du|| is a Radon measure, we may choose é such that C > § > 0 and

ClIDul (Q\Q(0,1 - 28)) < 3. (26)
Let 5 € C®(Q) be such that 0 < 5 < 1, @s(z) = 0if z € Q(0,1 — &), ps(z) = 1 if z € Q, and

[VslLe = O (671). Given X € (0,1) define ux(z) := u(Az) for z € Q. Clearly, for a.e. z € Q, u(Az) — u(z)

11



as A — 17. This, combined with the fact that |u)|pgv is uniformly bounded, implies that uy — u in L!.
Now, choose A = A(6,¢) € (0,1) such that

2> max{l—l-—_—iéﬂ'ﬁ'} ,/ao luo(Az) — uo(z)| dHN-1 < %,%/Q [u3) - u(a)lde < =@

We have

/ [tru(z) — uo(z)|dHN-! = AN-? / [tru(Az) — uo(Az)| dHN !
a8Q(0,)) aQ

IA

A1 [t (ps(u(ha) = uofa))) |4HY
aQ
A% [ Jug(a) — uo(a) B,
Q
By (2.5) and (2.7)2 we have

Lo @) - w@IdE < ¢ {iDlestn - u)li@+ [ lua) - u@lde ) + £
8Q(0,)) Q

IA

C{”DUAH (Q\Q(0,1-6)) + || Dull (Q\Q(0,1 - 8)) +

€

+3 reb<lei<1) |lu(Az) — u(z)| da:} + 3 (2.8)

and by (2.7);
IDusll (@\Q(0,1 = 8)) = A~N||Dul| (Q(0, M\Q(0, X(1 - 8)))

< 2||Duf(Q\Q(0,1 - 26)).

Hence (2.6), (2.7)3 and (2.8) yield
/ lu(z) — uo(z)|dHN ! < &.
8Q(0,1)
0O

Now we introduce the space of structured deformations within the SBV framework.

Definition 2.11 The space of structured deformations, SD(SY), consists of pairs (g, G) where
g€ SBV(Q;R?Y and G e LY(Q;M**VN).

We use the result of Alberti (Theorem 2.8) to recover the approximation theorem of Del Piero and Owen
(Theorem 5.8 of [23] ).

Theorem 2.12 Let (g,G) € SD(). Then there exist u, € SBV(Q,R?) such that

u, — g in LY(Q,RY) and Vu, = G in M(Q). (2.9)
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Proof. We construct a sequence {u,} such that for every n, Vu, = G LY a.e. By Theorem 2.8, there
exists h € SBV(Q, R?) such that
Vh=G LV ae.

Let {i,} be a piecewise constant, L! - approximation of g — h on a rectangular grid, so that
@i, — g—hin L}(,R%) and Vi, =0,LNae.

Set u, := @i, + h. Clearly u, € SBV(Q,R%), u, — g in L'(©,R?), and for all n, Vu, = VA =G LN ae.
O

Remark 2.13 Note that we must have D,u,, = (Vg — G)L" + D,g in the sense of distributions and so, if
Vg # G we are forced, regardless of whether or not g € W1, to consider in (2.9) functions u, € SBV\W11.
Moreover, suppose that |Vu,,| are uniformly bounded in LP,p > 1. This is the case when {u,} is an admissible
sequence for the energy I, with p > 1 (see (2.10)). Then Theorem 2.7 implies that in any open subset E of
Q such that Vg(z) # G(z) for a.e. z € E,

HN-1(S(u,) NE) — o0 as n — oo.
The jump discontinuities of u,, diffuse throughout the part of the body where Vg(z) # G(z) which, following
Del Piero and Owen [23), is called the micro-fractured zone. Moreover, Theorem 2.7 and Lemma 2.20 prevent
us to consider surface energy densities with sublinear growth in the case where W has superlinear growth.

Due to these considerations, in this paper we restrict our attention to interfacial energy densities 1 with
linear growth at infinity.

Definition 2.14 Let W : M9*N — [0,00) and ¥ : R% x SN=! — [0,00) be continuous functions. Given
(9,G) € SD(Q), we define the following energies:

Io(9,G,9) := inf { liminf / W(Vu,)dz + / V([un), Y, ) dHN 1| : u, € SBV(Q,RY),
{un} | n—e /g s

(un)NN

U, — ginLl(Q,]Rd), Vu, >m, mée M(Q), :L—mN = G},

Forp>1, set
I,(9,G,9) := inf { lim inf [/ W(Vu,) dz-l-/ ¢([un],uu")dHN’l] :u, € SBV(Q,R?),
{un} | n—o | Jq S(un)NN
u, — ¢in LY(Q,RY), Vu, = G, sup |Vug|Lr(omax vy < oo}, (2.10)
n

and if p > 1, g € SBV(Q,R%) N L®(,RY), we define

I*(9,G,Q) := inf { lim inf /W(Vu,.)dz+/ Y([un), vu,) dHV 1| : u, € SBV(Q,RY),
{un} | n—oo |Jg S(ua)NQ
U, — gin L1(Q,RY), sup || (a,re) < 00, Vu, = G,
n

sup [Vun|rs (o Mexn) < oo}.
n
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Remark 2.15 The uniform L? bounds on admissible sequences {Vu,} will allow us to consider bulk den-
sities W which may not be coercive, and for p > 1 they are equivalent to requiring Vu, — u in L?,
while, in view of the Principle of Uniform Boundedness, these bounds are redundant in the case p = 1.
The uniform L% bounds for {u,} are useful for proving that the energy is a Radon measure (see Lemma
2.21 and Proposition 2.22). However, using a truncation argument in Lemma 2.20 for p > 1 and with
g € SBV(Q,R?) N L>(Q,R?), we have I (g,G,Q) = IZ(g,G, ), and so we may work simply with I,. Also
note that, by virtue of the particular construction of {u,} in Theorem 2.12, Iy, I, and I7° are well defined.
Finally, we may avoid a coercivity assumption on 3 (c¢f. (H2) ) by requiring admissible sequences to satisfy
sup,, || Du,]|(2) < oo (see Remark 3.3 for details).

Let p> 1, W : M4 — [0,+00) and 4 : R? x S¥~1 — [0, +00) be continuous functions satisfying the
following hypotheses:

e (H1), there exists a constant C such that
|W(A) - W(B)| < C|A - B|(1+|AP~" +|BPP7)
for any A, B € M4xN,
e (H2) there exist constants ¢;, C; > 0, such that for all (A,v) € R¢ x SN-1,

alA < $(Av) < Gi|Aj;

e (H3) ¥(-,v) is a positively homogeneous of degree 1 function;
o (HA4) v is subadditive, i.e., for all A\;,\; € R? and v € SV,

1/1(/\1 + ’\2,1/) S w(Alay) + ¢(/\2,V)'

We recall that the recession function of W is defined by

W (A) := limsup W(:A). (2.11)

t—+o00

If p =1 then we assume further that
e (H5) there exist constants ¢,L > 0, 0 < m < 1, such that

W) - WA 1

for every A € M?*¥ with |A| = 1, and for all ¢ > 0 such that t > L.

It can be shown that if W is Lipschitz then W is Lipschitz, and positively homogeneous of degree 1 (see
[33]).

We now state two of the main results of this paper.

Theorem 2.16 Let (g9,G) € SD and assume that W and v satisfy hypotheses (H1)1, (H2) - (H5). Then

L(6,G,Q) = /n H\(V9(2), G(2)) dz + /S  Tallslg)aH =,
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where, for A, B € M®*V,

Hy(A,B) = inf { /Q W (Vu)dz + /S now([u],u)dHN'l . u e SBV(Q,RY), ulso = Az, /Q Vudz = B},

(u)

and for \ e R¢, v e SN-1,
hi(\,v) := inf { / W (Vu)dz + / ¥([u),n)dHY"! : u € SBV(Q,,RY), (2.12)
u Qv S(u)

ulaQ, = Ur, / Vudz = 0}- (2.13)
Q.

In addition, we have
(9.6, = [ Hi(Vg(z),G(e)dx + (@) (219)
0

for some Radon measure pu, absolutely continuous with respect to HN=1|S(g).

Theorem 2.17 Let p > 1 and let (g,G) € SD with G € LP(2,M®*¥), and assume that W and ¢ satisfy
hypotheses (H1)p, (H2) - (H4). Then

I,(6,G,Q) = /n H,(Vg(z), G(z)) dz + /S ), (2.15)

(9

where, for A, B € M4*N|

H,(A, B) := inf { / W(Vu)dz + / ¥([u),v)dHN! 1 u € SBV(Q,R?), ulaq = Az,
v Jo SwWnQ

IVl € I7(Q), / Vudz = B}, (2.16)
Q
and for A € R,

h(}) := inf { /S ( )w([u],uu)dHN-l tu € SBV(Q,R?), ulag = upen, Vu(z) =0 cNa.e.}. (2.17)

Note that in the definition of A, Q may be replaced by any Q,, for v € SV-1, je., for p > 1 the
new relaxed crack density is isotropic. As was mentioned in the introduction, it is possible to relax the
assumptions of coercivity and homogeneity on 1, still obtaining the representation of Theorem 2.17. For
simplicity, we prove the theorem under the original hypotheses and refer the reader to Remark 3.3 for the
appropriate modifications.

We divide the proof of Theorems 2.16 and 2.17 into several parts. First, using properties of I we
show that Io(g,G,-) and I(g,G,-) are non negative Radon measures, absolutely continuous with respect
to LY + |D,g|. Then, using techniques such as the blow up method (e.g. , [7), [32], [33]), we proceed to
characterizing the densities

dI(g,G,") dI(g,G,")
a8 M FiF e I BN SG)

The next lemma provides an upper bound for the energies. Let I denote either I, (p > 1) or Io.
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Lemma 2.18 Let W : M?*N — [0, +00) be a continuous function, and let ¢ : R¢ x SN=1 — [0, +00) be
continuous with 0 < Y(A,v) < C|A| for some constant independent of A\,v. Then for every (g9,G) € SD(Q)
andp>1

I(9,G,9) < C { [ W(© s + Glusamenm, + ann(n)} ,
where C is a constant independent of §.

Proof. By Theorem 2.8 there exists h € SBV(Q,R?) such that VA = G LV a.e. and ||Dh||(Q) <
C1||G||L1. By Lemma 2.9 there exist {i,} piecewise constant such that

n—g—h and ||Dil|() — [|Dg - DhI|(®).

Define u,, := fip + h. Clearly Vu,(z) = G(z) for LN a.e. z and u, — g in L!. Thus

I(9,G,Q) < limninf{ /ﬂ W (Vun(z))dz + / )gb([u,,](:c),v,,,_(:r))dHN‘l(x)}

Un

IA

C liminf { /n W(G)dz + ||Du,,||(sz)}

IA

C liminf { /Q W(G) dz + || Ditn]| () + IGIL:}

- o{f W(G)dz +1Dg - DAI|(®) + G |

IA

¢ { [ W@tz + 6l + 1Dal@)}.

8]

Remark 2.19 Lemma 2.18 implies that for all (9,G) € SD(Q), I(9,G,2) < oo (and also Ip(g,G,Q) if
p = 1) provided that [, W(G)dz < oo.

Before we establish that I,(g,G,-) and Io(g,G,-) are traces of Radon measures, we prove that, for
g € L*(9,R?), the additional L* bounds on admissible sequences do not increase the energy I, p > 1.

Lemma 2.20 Let p > 1, g € SBV(Q,R?) N L®(Q,R?), and assume that (H1), and (H2) hold. If (9,G) €
SD(R) then
Ip(gv G, Q) = I§°(9, G, Q)

Proof. Clearly, it suffices to prove that I>°(g,G,Q) < Ip(9,G,). We apply a truncation argument in
the same spirit as in [7] (see Lemma 3.7) and [29] (see Proposition 2.8). Let ¢; € C$°(R¢,R%) be such that

z if|r|<et
¢,‘(I) = {

0 if |z| > e,

and |V¢;| = < 1. Since g € L®(f2, RY) there exists an i such that for i > ig, |g|ec < €' and ¢;(g) = g LN
a.e. Let i > ip and define wi,(z) := ¢i(un(z)), where u, — g in L', Vu, — G in L?, and

lim { fw@umdet [ glfuale) @) dH"-’} <I;(0.6,) +e
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for fixed € > 0. Clearly, |wi| = < €', S(w}) C S(uy,), and by the chain rule for C*° functions composed
with BV functions, it follows that Vw}, = V¢;(un) Vup LN a.e. Moreover, we have

lwh(z) — 9(z)|Lr = |6i(un(z)) — $i(9(2))|zr < |ua(z) — 9(2)|L1-
Next, we consider the convergence of Vw}, as n — oo. Note that |Vwi(2)|Lr < [Vun(z)|r < C, for C
independent of n. Let £ € Co(2), then

/§(x)wa,(z)dz = / {(z)Vun(x)d:c+/ 4 ‘ £(z)Vi(un)Vun(z) dr
(Y] {z:|unl<e’} {z:e'<|un|<ei+1}

=: / £(z)Vuy(z)dz + E,,
o)

where |En| < 2[|1= [i; .|y (e) [VUn(z)ldz. Since |g|L= < e and u, — g in L!, due to the equi-

integrability of the {Vu,} we have
|Enl =0 as n— oo,

and we conclude that

/ &(z)Vwi (z) dz — / £(z)G(z)dr asn — oo,
Q Q
i.e., Vw) = G as n — oo. Lastly, we compare the energies. Using (1), and (H2) we have
[wEuiydz + [ w(luile) ey (@) dH
Q S(wi)
= / W (Vun(z)) d:c+/ W (Véi(un)Vup(z)) dz
{z:lunl<ei} {z:ei<|unl<ei+l}
+ [ WO+ [ W(funl ), e (2) dHP
{z:|un|>ei+1} S(un)N{z:|lun|<e’}
+ [ B[t (@), vy (<) dHN 2
S(un)N{z:e<|un|<e’+l}
C
< [ W(Tun@Ndo+ [ punla) v (@) BN+ Lozl
Q S5(un) €
+C (14 |VuglP)dz +C |[un]| dHN -2,
{z:e'<|un|<ei+l} S(un)N{z:ei<|un|<ei+l}
where we have used the fact that LV ({z : |up| > €*1}) < e=6+D ju, |11, Next, for M > i,
M
_____1_.. i i . N-1
T | LWt [ o) g @) en

=10

< / W (Vuun(z)) dz + / W([un) @), Va, (z)) dH !
9] S(un)

c &1
—_— —_ P N-1
+M—io+1 {éio pre +A(1+|Vun| )d:c+/s(u")|[un]|dH } (2.18)

Clearly, the term inside the parentheses in the last line of (2.18) is bounded independent of n, and so we
may choose M sufficiently large such that the last line in (2.18) is less than €. Hence, there exists some

i € {i0,..., M} such that
/ W(Vui)dz + / (i )(2), vus (2)) AN 1
Q S(wi)

< / W (Vun(z)) dz + / D([un) (@), v, (2)) dHN-1 46,
v} S 1]

Un
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and we conclude that
IX(9,G,9) £ I(9,G, Q) + 2.

The result follows by letting € — 0*. O

Next, we obtain a subadditivity condition for I, and Ij.

Lemma 2.21 If (K1), and (H2) hold, p > 1, and A, B,C are open subsets of ) such that ACC BCCC,
then
Ip(g’ G’ C) 5 Ip(g’ G7 B) + IP(ga Gv C\Z)’

for all (9,G) € SD(Q) with g € L®(Q,R%). Ifp=1 then
Io(9,G,C) < Io(9,G, B) + Io(9,G,C\A) and Ii(g,G,C) < Ii(9,G, B) + I (g9,G,C\A)
for all (¢9,G) € SD(Q).
Proof. Fix € > 0 and and let I denote I, if p > 1, and either Iy or I if p = 1. Let u, € SBV(B,R9)
and v, € SBV(C\4,R?) be “almost minimizing” sequences for I, that is,

tim [ W(Vun@)do+ [ wlun)(e). v (@) AN S 10,6, B) +, (2.19)

Un

lim / W (Von(z)) dz + / W([vn](2), Ve (2)) dHN -1 < 1(g, G, C\A) +e¢, (2.20)
n JC\A S(vn)NC\A

un — g in L(B,RY), vp — g in L}(C\A,R?), {|Vun|rr(8)}, {|V¥nlLr(c\4)} aTe bounded, and

dmi
dcwN

In the case where I = I,, p > 1, we have m; = xpG and m2 = xc\4G. Moreover, by Lemma 2.20 if p > 1
we may assume that the sequences {u,},{vn} and {Vu,},{Vv,} are uniformly bounded in L*® and L?,
respectively.

Consider

Vu, — m;in M(B) Vv, — myin M(C\A) with =G, i=12.

A:={z € B : dist (z, A) < 6},

where, by virtue of the countable additivity property of the Radon measures, § is choosen such that
|lm:]|(8A) = 0. Define

n = Jun — Un';?:;B\A,R“) end  n = [[lu" B vnl;%s\“’kd)]] ’

where [[]] denotes the greatest integer function. For i =0, ..., kn — 1, define
- > - 1 .
1/}":={x€B\A:6—-l-+ : <dist(a:,A)<6——~+z+1},
Qn QpKkn Qn QOpkp

For each i we introduce cut off functions which are either 1 or 0 on the complement of V*, that is, we
consider ¢7 € C°(R™,[0,1]) such that |V¢}|L= < C(anks) and

1 ifdist (z,4) <6- & + -
¢i(z) ==

0 ifdist (z,A) >6— X + AL,

QnKn

For each i =0,...,K, — 1 define '
- Zp 1= ¢ un + (1 — ¢7)un,
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where we have extended u,, by 0 on the complement of B and v, by 0 on the complement of C \A. It is clear

that for each 1 .
|25 (z) — g(z)|L1(cre) = 0 asn — oo.

Using (H1), and (H2), we have
[ W@y + [ el @)dEy
C S(zi)nC

zp )N

/ W (Vun(z)) d + / ([un)(@), Vu (2)) dHN 1
B

S(un)NB

+ /C y W (Von(z)) dz + / \A1,/»([vn](ac),u.,,(:r))dl%f""1

S(va)NC

+C / (1 + |Vun(@)IP + [Von(2)IP) dz + C(anka)? / |tn(z) — va(z)[P de
v v

+C lfun]| dEN1 4+ C / lfva]| AN 1.
S(un)AV SNV

Thus, summing over i, and using (2.19), (2.20), we obtain

Kn~1

"2 / Wi@)de + [ (@) @)dHY " < 16,6,B) +1(0,6,0\) + 2¢
i=0 (zi)nC
+ {/ (14 |Vug[P)dz +/ (1+|Vo,|P)dz + C/ \[un)| dEEV 1
fn B S(un)NB
+ C Ston)nC\A |[va]| dHN ! 4+ C(anka)P|un - vﬂliv(a\j,w)} . (2.21)

If p > 1, the L™ bounds on {u,} and {v,} yield

1 -
n—(annn)” [un —vnll, < Cob kB up — vn|L1(B\ARY)
n

= C'un - Unlzl(g\jynd),

where a > 0 This, combined with the uniform bounds for {Vu,}, {Vv,}, (H2), and (2.19), (2.20), implies
that the last two lines of (2.21 ) tend to 0 as n — oo. Hence, we may choose i, € {0,...,%x, — 1} such that,
setting wy, := zi», we have w, — g in L!(C,R%) and

I(9,G,C) < hmsuv/ W(an(z))d$+/ ¥([wa)(2), v, (z)) dHN !

wn )N

IA

I(9,G,B) + I(g,G,C\A) + 2¢.
The result now follows by letting € — 0%, as long as we show that sup,, [Vws|.r(c,re) < 00 and that
Vwn = xzm1 + xe\sM2  in M(C),

since, by definition of A,

d (Xj m1+ Xo\4 mg) dm d
- 1 mo N
dLN xAdEN +XC\AdCN =G L"ae. z€C.
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To this end, we recall that
/ |Vw,|Pdz < / |Vu,|?dz +/ Vo, |P dz + (ann,,)”/ |un — v,|P dz,
c B C\A B\A

and so sup,, |Vwy|rr(c,rey < 00. As for the convergence, let £ € Co(C) and consider an increasing sequence

of open sets A, C A such that dist(Am, dA) = m~1. Let 6,, € Co(C, [0,1]) be a sequence of cut-off functions
such that 6,,(z) =1 if z € A, and O,(z) =0 if z ¢ Am41. Then

lim €Vw,, dr = / (Edir Vun + &(1 — @82 )Vup + E(un — v,) @ Vi) dz

n—00 n—00

lim lim { / €0mVundz + / E(¢% = Bm)Vundz + / €(1 = 6m)Vundz
B B C\A

m-—+00 Nn—00

+/ g(0,,,-¢:‘:)w,,dx} + lim E,,
C\A n—oo

where
|En.| = l./V" E(un—vn)®v¢:{‘dx
< |€lr<(ankn)|un — vn|L2 — 0.
Thus
lim EV'wndz = lim lim {/ EHmVu,.d:c+/ £(1-€m)and:c} + lim lim F,
n~+oo m—+00 N—+00 B C A m—00 N~—+00
= {/ &b dm1+/ €(1- m)dm2}+ lim lim F,,
m—’°° m— 00 Nn—00
= /{dml +/ €d7R2+ lim hm Fom,
j C m-—+00 Nn—
where

Fom = / E(@ir = 6p)Vuy dx + / £(bm — ¢t )V, dx
B C\A

Finally, we note that lim, lim,, Fy, ,, = 0. Indeed, recalling the definition of ¢f,, for each m we may choose
n >> m such that ¢ir(z) =1 if z € A, and so

Jim limsup [ |gi0 = 6nl[Vunldz < 2 lim_ [imall(A\An)
= 0.

A similar argument gives
lim lim 5(6 — ¢ir) Vv, dz = 0.

m=—+00 Nn—+00 C

D

Using Lemmas 2.18, 2.20, and 2.21, we show that if (9,G) € SD(R), G € LP(Q,M¢*N), g € L=(Q,R?)
if p > 1, then Ip(9,G,-), p 2 1, (also Io(g,G, ") if p = 1) is a Radon measure, and

I,(g,G,") (also Io(9,G,")if p=1) < LY + || Dygl|-
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Proposition 2.22 Assume that (H1), and (H2) hold and let g € L*(Q,R%) if p > 1. Then, forp > 1,
I,(g,G,") (also Io(g,G,-) if p=1) is the trace on {U C Q : U is open} of a finite Radon measure on B(R).

Proof. We proceed separately for I, and Jp. First we consider I, p > 1, and we use an argument
introduced in Fonseca and Maly (31]. .
Step 1. We assume coercivity, i.e., there exists a constant C > 0 such that W(A) > C|A|P forall A € MéxN,
In this case, by means of a diagonalization procedure we can find a minimizing sequence for I(g, G, ?), that
is, there exist u, € SBV(Q,R?) such that u, — g in L}, sup,, |[Vun|rr < 00, Vup, — G in L?, and

I,(9,G.9) = lim_ { J W umands+ [ punl(e), v @) dH”-l} :

After passing, if necessary, to a subsequence, we may find u € M(RQ) such that
W (Vun(z))dz + ¥([un)(z), vu, (z)) dHN 7} [S(un) = p, in M(Q),

and, in particular, _
1) = Ip(g, G, 92). (2.22)

Let V C Q be open. We must show that u(V) = Ip(g,G,V). We always have,

n—oo

I(9,G,V) < liminf | W(Vun(z))dz + / th([un](:z:),uu"(:c))dHN'l
v

< u@). (2.23)
Let € > 0 and take W CC V such that u(V\W) < e. By Lemma 2.21, (2.22), and (2.23),
w(V) W) +e
u(@) - p@\W) +¢
IP(g7 G, Q) - Ip(gv Gy Q\W) +é
I.(9,G,V) +e.

Un

IA

INIA

Letting € — 0%, we obtain
n(V) < Ip(g,G, V). (2.24)
On the other hand, Lemma 2.18 implies that
I;(9,G,-) < C(1 +|GIP) LV + || Dg||.

Denote by A the Radon measure on the right hand side. Let K CC V be a compact set such that A(V\K) < ¢,
and choose W open such that K cC W cC V. Using Lemma 2.21 and (2.23), we have

Ip(ga G: V) < Ip(ga G’ W) + Ip(gv G, V\K)
u(W) + A(V\K)
1(V) +e,

and, together with (2.24), the result follows by letting ¢ — 0%.

Step 2. We remove the coercivity assumption. Considering in Step 1 the bulk density W¢ := W(.) +¢| - |,
we obtain measure representations . for I5(g,G,?), where I3 is the energy in which W is replaced by We.
Let {u,} be an admissible sequence, i.e., u, — g in L!, Vu,, — G in L?. Then, by Step 1,

1e(Q) = I;(9,G, Q)

< liminf{ / W(Vup(z)) + [Vun|Pdz + f
n—00 0 S

< 00,

<
<

nfﬁ([un](z),yun(z))d,,zv-l}

Un
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and so, after extraction of a subsequence, there exists u € M(f) such that g, — u, and for every open set
vVceQ,
IP(g) Ga V) S I;(g’ Gv V)

= He (V)
< I‘:(V)§
hence,

I,(g,G, V) < u(¥). (2.25)
Conversely, given € > 0, there exists a sequence {v,} admissible for I, such that

I,(9,G,V)+e2 nli‘ngo {/V W(an(x))dz+js( v Y([vn)(z), Vo, (z)) dHN-1} ,

and so, for n sufficiently large,

pe(V) < umeinf{ [ wem@nde+ [ Vw<[vn1<x),u.,n<z>>dﬂ"-‘}

(va)N

IA

I(9,G,V)+e+ e/ |Vu,|P dz
v
I(9,G,V) + Ce.

IA

Letting ¢ — 0% we obtain
#(V) < liminf p(V) < I(9, G, V).

It remains to prove that u(V) > I,(g9,G,V). This follows by using the upper bound on I, (Lemma 2.18),
(2.25), and proceeding exactly as in the last part of Step 1.

Step 8. The method used in Steps 1 and 2 to prove that I, is a Radon measure may fail for Iy, as we are not
able to show that Iy(g, G, ) is realized by some admissible sequence {un}. Thus, we use the De Giorgi-Letta
criterion (see [22]) to establish that Iy(g, G,-) is a measure. The following four conditions are necessary and
sufficient for guaranteeing that Iy(g, G, -) is the trace of a Borel regular measure on the set of open subsets
of Q. Let B, C be open subsets of 2.

e (a) if B C C then Iy(g,G, B) < Iy(g,G,C);

e (b) If BNC =0 then Iy(g9,G,BUC) = Ip(g,G, B) + Ip(g,G,C);
e (c) In(9,G,BUC) < Io(9,G, B) + Ip(9, G, C);

e (d) Iy(9,G,B) = sup{Ip(9,G,C) : C CC B}.

Conditions (a) and (b) hold trivially. Condition (d) follows by using the upper bound measure X for Iy
(Lemma 2.18) and the subadditivity, (Lemma 2.21). This brief argument is given in the last part of Step
1. To prove (c), it suffices to follow Proposition 2.10 of [29], noting that we have already established the
subadditivity property, Lemma 2.21. O

3 The Bulk Density
We recall the definition of the density function Hp(A, B),p > 1, introduced in (2.16),

Hy(A, B) = inf { /Q W(Vu)dz + /S “ ¥([u),n) dHN ™! : u € SBV(Q,R?), ulsq = Az,

|Vu| € LP(Q), /Q Vudz = B},
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where A, B € M?*N_ We give the following limit characterization for Hp.
Proposition 3.1 Let p > 1 and assume that (H1),,(H2), and (H4) hold. Then

H,(A,B) = inf{liminf / W (Vu,)dz + / ¥([un), v, ) dHN | 1 u, € SBV(Q,R?),
{un} | n=e | Jo S(un)NQ

up, — Az in L, Vu, — B, sup |Vua|r» < oo}
n

=: H,(A,B).

Proof. Step 1. We prove that H,(A4, B) < Hy(A,B).
Fixu € SBV(Q,R?) such that ulaq = Az, |[Vu| € LP(Q), and [, Vudz = B. We write u(z) = Az+¢(z),

where ¢ € SBV(Q,R?), ¢lag =0 , and
/ Vé(z)dz =B - A.
Q

Extend ¢ periodically, with period one, to RY and define u,(z) := Az + 1¢(nz). Then

un(z) = Azin L', Vu, = B, and sup|Vug|rr < 00.
n

Thus, using (H2) we obtain

lim inf / W(Vuy,)dz + / ¥([un](z), v, ) dHN ()
Q S(un)NQ

IA

H,(A,B)

n-—0oo

n—00

lim inf { /Q W(A + V¢(nz)) dz + /E(_andz (%[dﬂ(nx), u¢) dHN—l(z)}

n—0o0

. 1 1 _
llmmf{-TlW/’lqw(A+V¢(y))dy+n—N[W)ant/z({e.z&](y),%)dHN 1(y)}

/ W(A+Vé(y))dy + / $((6)(w), ve) dHN1(3).
Q S(@)NQ

Taking the infimum over all such ¢ € SBV we obtain H,(A,B) < Hy(A,B).
Step 2. We claim that Hy(A, B) > Hy(A, B).

Let {u,} be an admissible sequence in SBV(Q,R?), i.e., u, — Az in L}, Vu, = B, and sup,, |Vu,|r» <
oo. Let Qy be the cube —% + -,1;,-% - %)N Using the argument given in Lemma 2.21, for each k we can find
Q). such that Qx CC Q) CC Q, and u¥ such that

uk(z) = Az for 2 € 8Q, uk(z) = un(z)for z € Qx,
and for each k

uk - Az, Vuk L xq B+ (XQ - xQ;) A asn—oo, |Vuk|Ls < C(|Vunlr +|A4]) +1.

Thus, we may take a diagonal subsequence v; := uﬁ(k) such that vk|lag = Az , vy — Az in L!, Vo, = B,
and

lim sup / W(Vui(z)) dz +/ Y([vk), v, ) dHN 2
Q S(ve)NQ

k—o00

R T N—-
=g { /QW<Vun(z»dx+ Ji g V() ) 4H } (3.1)

Un
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Without loss of generality we may assume, upon extracting a subsequence, that limsup, in (3.1) is lim.
Lastly, we modify v, to accommodate the condition on the average gradient, and we consider two cases.
Case 1 (p > 1): By Lemma 2.10, there exists ry — 1~ such that

/ [ve(z) — wo(@)| dHY () < 7, - (3.2)
8Q(0,r4)

where ug(z) := Az. Define
uo(z) if z € Q\Q(0, %)
wi(z) =
vk(z) + Crr  if z € Q(0,7%),
where Cj, is chosen such that fQ Vwi(zr) dz = B, that is,

1

Cr = TN GO

[B - / Ve dz — ALY (Q\Q(O, rk))] .
Q(0,r«)

Using the equi-integrability of the sequence Vv and the fact that Vv, — B, we have
Cr—0 as k— oo (3.3)
Clearly wi — ug in L?, and by (H1),, (H2), we have

/W(Vwk)dr + / ¢([wk](x),V¢k)dHN“l(x)S/ W (Vug)dz + C(IAP +1)LN (Q\Q(0, %))
Q S(wa)NQ Q

+ 10d{1+ [ 1vup-iao s [ [uipia) + Y@, ) H )

S(vi

+ C' /{;q(o ) [tr vk (z) + Crz — uo(z)|dHN ().
Tk

Using (3.2), (3.3), and the fact that {Vvx} and {Vw,} are uniformly bounded in LP(Q, RP), we obtain
lim {/ W (Vwg)dz +/ 1/’([wk](2),l/m)dHN—l(m)}
k—oo | JQ S(ws)

< lim / W (V) dz + / V([vk) (@), v, ) dHN "1 (z) } .
k=oo | JQ S(ve)

Case 2 (p = 1): By (3.1), (H2), using the fact that sup, |[Vui|11 < 00, and after extraction of a subsequence,
we may find a Radon measure 3 such that ||Dvi|| — 8. Thus, for all but a countable number of € > 0,

B(8Q(0,1—-¢)) =0, and||Dwl||(Q(0,1-¢)) — B(Q(0,1—¢)) ask — oo. (3.4)
Fix such an €, and define _

uo(z) ifz€Q\Q(0,1-¢)

W (T) :=

ve(z) + Crex  if z € Q(0,1-¢),

where Cj ¢ is chosen so that fQ Vuwg,e(z)dz = B, i.e.,

1
Ck,e :

U S N _
TLN(Q(0,1-¢)) [B /Q(OJ_E)VW ALYQ\Q(O,1-¢)].
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The weak star convergence (in the sense of measures) of Vv to B implies that

lim lim |Cie|l = (3:5)

e—0+ k—oo
hence,
lim lim |wk,e — uolL1(g) =0

e—0+ k—oo

Using (H1);, (H2), we obtain

[ w(Tuiz + / B([W,e)(2), Ve o) AHV (@)
Q S(wk,e)

< [Wn+odz+ [ (@) v @E" @)
Q S(vi)
+C(AI+DLN@QO1=e)+C' [ ftrui(a) + Cuer — As| dHN !
8Q(0,1-¢)
<

/ W(Vuk)dr + C|Cpe| + / Y([ve)(x), v, (2)) dHN-1(z)
Q S(vk)
+C(|Al +1) LY (Q\Q(0,1 - €)) + C|Ci,«|[HN"1(8Q(0,1 - ¢))

+C |tr vk (z) — Az|dHN L. (3.6)
Q(O,l-t)

Next, in the spirit of Lemma 2.10, we address the asymptotic behavior of the last term in (3.6). Let
¢s € C§°(Q) be a sequence of cut-off functions such that, 0 < ¢s <1,¢s=0if z € Q(0,1 —e —26), ¢s =1
if z € Q\Q(0,1 — £ — 6), and |V¢s|r= = O (3). By (2.5)

Lot -4zl = [ jngs(o) (on(a) — do) B
8Q(0,1—¢) 8Q(0,1—¢)

< [ dID(Gs (ou-An)+ / 166 - (vk — Az)|dz
Q(0,1—¢) Q(0,1—¢)
< / d(|Duel| + |AIL™) + / lvg — Az|dz.
Q(0,1-e-6)\Q(0,1-£-26)
Thus, from (3.4) we obtain
. . N-1 ¢ —e— —e—
El_l{& klin;o oo1e) |trug(z) — Az|dH 111};1+ 61_{.1;& khm {Hkall(Q(O,l e—6)\Q(0,1-e-26))
+]AILN (Q(0,1—¢ —86)\Q(0,1—€—26)) / Ivk—A:cldz}

IA

Jm tim {5(Q (0.1-6-3)\Q(0.1-¢-30)) +14IL(@(0,1-6-6)\Q(0,1-¢-25)) |
= lim £(6Q(0,1-¢))=0. (3.7)

Finally, setting € = 1/j, we take a diagonal sequence of wi ., w; := 5k(3) satisfying
A

w;(2)log = Az, /Q Vu,(z)dz = B,
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and, by (3.5), (3.6), and (3.7),

lim sup { W(Vw;)dz + / Y([w;)(z), vu,(z)) dH N'l(z)}
Q S(w;) .

J—o0

< limi
k

n
—00

f (/ W(Vvk)d:c+/ Y([v)(z), v, (2)) dHN ~Y(z) 3 .
Q S(vx)

The following characterization of the relaxed bulk density holds for I, p > 1, as well as for Io.

Theorem 3.2 Let p > 1 and W, satisfy (H1),, (H2) — (H4). Then for (9,G) € SD(R?), with g € L™ if
p> 1, we have
dIP(g9 G) )
dacnN
where Hy, is given by (2.16). If p =1 then for all (g,G) € SD(R) we have

(z) = Hp(Vy(z),G(z)) LN ae.z,

dIod(%NG, L (z) = Hi(Vg(z),G(z)) LN ae.z.

Proof. Step 1.[Lower Bound] Let A C Q be an open set and let I(g,G,-) denote either Ip(g,G,-) or
Ii(9,G,")ifp=1, and I(g,G, ) = I,(g,G,-) if p > 1. We will prove that

1(,G, 4) > /A H,(Vg(z),G(z)) dx. (3.8)

From (3.8) and from Proposition 2.22, it will follow that

dI(gv G1 )
dCN

Let £ > 0 and let u, be an admissible sequence for I such that

(z) > Hy(Vg(z),G(z)) LN ae.z.

e+1I(g,G,A) > nl_l_.n;o {/A W(Vu,(z))dz +/s Y([un) (), vy, () dHN“l(:c)} , (3.9)

(un)NA

where u, — g in L?, sup, [Vus|Lr < o0, and Vu, Zmin M(A), withm =G - LN +m,, m, L LN. By
Theorems 2.4 and 2.6, for LV a.e. zo € €2, we have

. 1

dim s [ o) - gte0) - Vo(ao) - (e — 2ol e =, (3.10)

Zo,€

1

— - Py =
Jm o [ 6@~ GloPd=0, (3.11)
and dm

gg%l"‘ ac—;(lo) =0. (312)

Choose such a point zo. Upon extraction of a subsequence, which we do not relabel, there exists a non
negative Radon measure u such that

W (Vuy,) dz + ¥([un), v, ) dHN 71 S(us) = p.
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‘We claim that proving 4
L7 (z0) 2 Hy(Va(20), G(zo)) (3.13)

implies the lower bound. Indeed, from (3.9) and (3.13), we have for all A’ cc A

e+1(9,G,4) 2> dp
AI

2 dCN(z)dz

/A H,(Vg(2),G(2) dz,

and (3.8) follows by letting A’ / A and € — 0*. It remains to prove (3.13). Using the countable additivity
property of u, choose radii € > 0, € — 0%, such that u(8Q(zo,€)) = 0. By Theorem 2.6 we have

v

du . . 1 / 1 Ne1
— = lim lim { — W(Vu,)dz + — Y([un)(z), ., )dH z
w(zo) “'°+"”°°{€N Q(zo.e) (Vin)do+ w S(un)NQ(z0.6) (funl(@). ) @
= lm lm { [ Funtao + e + 2 / . w({unl(zo+ey),uu")dH"-‘(y>}.
Define

Un(Zo + €y) — 9(Z0)
£

uo(y) :=Vg(zo)y and up(y):=

By (3.10) we have
lim Hm |up(y) — uo(y)lLr(@) = 0,

e—0+ n—oo

and, due to the homogeneity of 1,

—0t n—

e (eo) = lip lim { W e+ [ )¢([un,e1(y),u.,n,,(y)>dH"-‘@)}. (3.14)

Case 1 : We assume coercivity, i.e., there exists a constant C such that C|4| < W(A) for all A € M4xN,
Then (3.14) implies that

supsup |Vun ¢|1r (@) < 0.
[ 4 n
Let ¢ € Co(Q). By (3.11) and (3.12) we have

lim lim / [Vun(zo + ey) — G(z0)] #(y) dy

3

L, { / (G(=o + ey) — G(x0)) $(v) dy + 5 . e ? (I — z") dm.(x)}

T T — Zo
- Elll(r)]+ EN Q(zo0,¢) ¢ ( [ ) dllg(l’),
and
a1 y- my(Q(0,8))
‘l_l'%l+ e L(:o,e)¢( € ) ama(v)| < 19leo l =0+ LN(Q(“’Ove))

By virtue of the separability property of Co(Q), we may extract a diagonal subsequence vz € SBV(Q, RY)
such that

vk(y) = uo(y) inLY(Q,RY), Vu(y) = G(zo), sup Vi < oo,
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dLN( o) = {/ W(Vvk(r))dx+/s(v e w([vk](x),Vuk(z))dHN‘l(x)}- (3.15)

The inequality (3.13) follows from Proposition 3.1 and (3.15).
Case 2: Next, we remove the coercivity assumption. To this end, let W*( ) :=W(.)+e¢|-|? and let {u,} be
an admissible sequence for I satisfying (3.9). Let A C Q be open and let u. € M(A) be such that

We(Vur)dL + ¢((un), vu, ) dHY 72 S(un) = pe.
By Case 1 we have
ZEw (20) 2 HE(Vg(z0), G(20)) 2 Hp(V9 (o), G(ao),

where H is given by (2.16) with W* replacing W. This, combined with (3.9) and the uniform L? bound on
{un}, gives for all A’ CC A,

e+1(¢,G,4) > lim [ W(Vun)dz+ / (), vu,) AHV
n—oo J4 S(un)nA

v

/ w, (Vu,,)d:r+/ 1/)([un],uu")dHN'1 —e/ [Vu,(z)Pdz
"“°° S(un)NA A

2> due — eC
AI

> / H,(Vg(x), G(x)) dz — £C.
A’
Letting A’ / A and then € — 0%, we conclude that
I(9,G, A) > / H,(Vg(z), G(z)) dz.
A

Step 2: [Upper Bound] Fix € > 0 and consider an admissible sequence u, € SBV(Q,R?) for H,(A, B), i.e.,
un(z) - uo(:z:) = Vg(xO)x in le Vun = G(IO), sup,, [unILP < o0, and

S(un)NQ

e+ Hy(Vg(z0), G(z0)) 2 lim { [Q W (Vun) de + / w([unLuun)dH”-l}. (3.16)

Using the argument given in Proposition 3.1, Step 2, we may assume, without loss of generality, that
UnlaQ = ug. Thus, we may write u,(z) = uo(z) + {n(z) where
(nlog =0, (n—0in L', sup|V(s|r» <o, and V¢, = (G(zo) — Vg(zo)).
n
We extend (, periodically to all of RV, with period Q. By Theorem 2.8 there exist
he € SBV(Q(zo, ), R%) such that
Vhe(z) = G(z) — G(z0) + Vg(z0) — Vg(z) for LN ae. z€Q,
and

|| Dhe||(Q(z0, €)) < C(N)/ |G(z) — G(zo)| + |Vg(z0) — Vg(z)| dz =: a(e),

Io,C

where zg is chosen such that

o {/om,e) IG(z) = Glzo)l” + V(=) - Vg<zo)|"dz} — 0as & — 0*
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d
" d|lg]| HVS(s)

acn

(z0) = 0.
Hence,

ﬁti)—bo as € — 0. (3.17)
€
By Lemma 2.9, there exist h, ,, piecewise constant such that for each ¢,
hen — —he in LY(Q(z0,€),R?)  and || Dhen||(Q(20,€))||Dhel|(Q(z0, €)) (3.18)

as n — 00. Now define
—Zy

Wen(®) = 9(z) + € o (" ) + he + hen.

For each &€ > 0, we,n — g in L, sup,, |Vwe,nlLr(Q(z0,e)) < 00, and
n

T — X9

Vwe n(z) = Vg(zo) + Vin ( ) +G(z) — G(zo) — G(z)

in Q(zo,€) as n — 00. Thus {we 5} is an admissible sequence for I for each € > 0, and by (#4) we have

dI(g,G,) i I(g,G,Q(:z:o,e))
acv (%0) = [lim, eV
1 1
< limsupliminf { = W(Vwe ) dz + Y([we,n)(Z), Vus, . dHN-1(z
e—0+ N7 {EN Q(z0,€) (Vo) €N Js(we,m)NQ(z0.) (bwenl(2): ve.) ()

e—mp0+ n—o | €
1 : _
tew Y (E[Cn] (z z0) ,Vc..) dHN-1
€ (z0+£5(n))NQ(z0,€) €
- 1
tew ¥(lg)(x), vg(z)) dHN ! + =
5(9)NQ(z0,¢) p

+ o B((henl(z), vh...) dHN‘l}
€7 JS(he,n)NQ(20,6)

< lim sup lim inf { — / w (Vg(zo) +Vn (" — ’°) +G(z) - G(xo)) dz
Q(zo,¢) €

/ W(lhe)(z), vn,) dHN 1
S(he)NQ(z0,¢€)

< lim sup lim inf {/ W(Vg(zo) + Via(y)) dy
Q(0,1)

e—0+ NTX®

+ / (W (Vg(z0) + V¢n(y) + Glzo + v) — G(z0)) — W(Vg(z0) + Vén(y))] dy
Q(0,1)

5 o (eleo) (222) 1, ) an™-

€V Jizo+es(¢a))NQ(zore) €
1 _
+—5 ¥([9)(z),vg) dHN !
€7 J5(9)nQ(zo.€)
1 1
+ w(lhel(@), ) B+ 5 [ W(lhenl @), vh,..) dHY 1Y
€Y JS(he)NQ(zo0,¢) €7 JS(he,n)NQ(z0,6)

On the other hand, by (H3) we have

. NP | T—-z
lim sup lim inf — ¢(s§ ( O v )) dHN-1
e—o+ n—oo €N (z0+€5(¢n))NQ(z0,€) [ "] € N
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< lim inf V() (W), ve, (v)) dHN "1 (y),
n=00 JS(¢a)NQ(0,1)

and so, by (H1), and (3.18) we conclude that

a fig[’:N’ )(zo) < liminf W (Vun(y)) dy + limsupliminf [ |G(zo + ev) — G(o)|
n=0 JQ(0,1) e—0+ T JQ(o,1)
(14 1Vg(zo) + Vin(y) + G(zo + y) — G(z0)|P~! + |Vg(zo) + Vin (v)IP71) dy
+ liminf Y([un), Y, (z)) dHN 2
n—oo S(u,.)nQ(O,l)
+limsup — ¥(15)(@), vy(a))dHN " + Climsup IIDAI(@0,€)).

e—o+ EV S(g)no<=o,c)

Since {V(,} are uniformly bounded in L?, (3.16) - (3.17) and (H2) imply that

.G (24) < & + Hy(Vg(a0), Glz0)) + limsup

-~ z)|dHN-1.
9LV msup g s(gm(m)llgl( )|

The result follows by letting ¢ — 07. O

Remark 3.3 If p > 1, we may replace hypotheses (H2) and (H3) by
e (H2)* there exists a constant ¢ > 0 such that
0 < y(Av) <A
for all (A, v) € R? x SN-1;
e (H3)* there exist constants C,l,a > 0 such that

< Ct®

¢’o(>\, V) - w(tj, V)

for every (), v) € R% x SN-1 with |A\| = 1,0 < t < I, and where 1) is the positively homogeneous of

degree 1 function defined as

Yo(A, v) := limsup M

t—0+

We must redefine the energy I, as follows:

I,(9,G,9) := inf {lim’mf /W(Vun)d:c+/
{un} | 7= | /g

u, — gin LY(Q,R?), Vu, = G,

w([u,,],u,,,,)dHN-l] : up, € SBV(Q,RY),

(un)

sup (|Vun|Lr@mexny + |un|py(are)) < 00}-
n

The integral representation for I, provided in Theorem 2.17 holds true, except that the new bulk density
(Theorem 3.2) involves 9 in place of 9, that is,

Hy(A,B) := {/W(Vu)d:c+/ Yo([u],v) dHV"! : u € SBV(Q,R?),ulsq = Az,

|Vu| € LP(Q), LVud:c:B}.
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The proof of Theorem 3.2 is carried out with the obvious adaptions. As an example, (3.15) would read
dp : / 1 N-1
—_— = li w(V dr + — exvi)(z), vy, (z)) dH )5y,
v (zo) = Jim { [ WomE)de+ o [ Wil (o) @) dHN )}

with vy — wug in L!, Vv, — G(zo) in LP, and supy ||Duk||(Q) < oo. Using the truncation argument
introduced in the proof of Lemma 2.20, for all § > 0 we may find a new sequence wx = wi(6), with the same
convergence properties as vx and satisfying

sup |wk|Le < C(8), Sl;p{IVtUlev + || Dwk||(Q)} < oo,

d . 1 -
i (e0) 2 6+ Jlim { [ woumends+ = [ wllene) v (@) dH 1(x>}.

Since wy are uniformly bounded in L™, and by virtue of (H3)*, we have

du

ac™ =)

v

6 + lim {/ W(Vuw(z)) dz +/ wo([wk](f)v”‘”*(x))dHN_l(I)}
- 00 Q S(wg)nQ
> 6+ Hy(Vg(zo),G(z0)).
It suffices to let § — 0% to conclude that
d
2 (20) 2 By (Vo(a), Glro).

We remark that replacing (H2) — (H3) by (H2)* — (H3)* may accommodate for surface densities ¢ which
appear naturally in fracture mechanics, for example, functions 1(\, v) which are sublinear in A and approach
a constant as |A| — oo.

4 The Crack Density

We will need the following limit characterizations of the functions h; and h.
Proposition 4.1 Assuming (H1);, (H2), (H4), and (H5), we have

hi(\,v) = inf { lim inf [ / W™ (Vuy,) dz + /
ua} | n—oo | /g,

S(ua)NQ,

w([un],uun)dHN‘l} :up, € SBV(Q,,R?),

Up — Uy, in LI(Q,,(O,I),R"), Vu, =0 }

Proof. The proof of Proposition 4.1 is identical to that of Proposition 3.1. o

Proposition 4.2 Let p > 1. If (H1),, (H2), (H4), and (H5) hold then

h()) = inf {nmmf ¥((un) v, ) dHN "1 : uq € SBV(Q,,RY),v € SN2,
Un} n=% J5(un)NQ,
tn =ty in L}(Qu(0,1),RY), Vi — 0 in L? }
= hQ\).
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Proof. To prove that k < h, we consider u = Uy ey + ¢ With @lag =0,Ve =0 LV a.e. Extending ¢
periodically to all of RN with period Q, and setting u,, := Uy ey +n71¢(nz), it is easy to see that up, — uy ¢,
in L', Vu, =0 LN a.e., and

/ ((un), ) AEN T — / $(ful, va) dHVF  asn — oo.
S(ua)NQ S(u)nQ

Conversely, let v € SV¥-! and let u, € SBV(Q,,R?) be such that u,, — uy, in L' and Vu, — 0 in L?
strong. By Theorem 2.8, for each n we choose f, € SBV(Q,(0,1),R?) such that Vf, = Vu, LN a.e. and
[IDfall(Qy) £ C|Vug|L1(q, . By Lemma 2.9, there exist g, m piecewise constant such that gn m - fr and

1Dgn,m||(@v) — IDfall(Qu)- Let
Wn,m = Up — fat+ gn,m-
Clearly, Vwy, ;n = 0 LV a.e. and lim, lim,, |wn,m — x| = 0. Moreover, using (H2) and the fact that

1D fall(Qu) + 1 Danmll(@y) < C /Q [Vun|dz — 0 s n— oo,
we have

lim lim V([ Wn,m), Vi ) AHN 1 < lim Y([tn], ., ) dHN L,

n—00 m—00 S(wn,m)nQu n—oo S(un)nQv

Hence, we may extract a diagonal sequence in m, n, say vg such that vy — u,, in L (Q,,,Rd), Vv =0a.e.,
and

lim / P([vk], vv, ) dHN ! < lim V([un), v, ) dHN L
k=00 Js(vi)nQ. "0 JS(un,)NQu

Next, we amend the sequence v; to equal uy, on 8Q,. To this end, by Fubini’s Theorem there exists
T — 17 such that, upon extracting a subsequence,

/ tr vk —up, |[dHN " = 0. (4.1)
3Q.(0,1-r) k

Define
v ifzre@,(0,1-ry)
Uk (z) ==
uy, if Q.(0,1)\Q.(0,1 - rk)-
Clearly Vi, =0 a.e., and by (4.1), (H2), we have
Y([6],v5,) dHN ! < lim ¥([un), v, ) dHN L. (4.2)

k—o0 Js(#:)nQ, n—= JS(u,)NnQ.

Let R be a rotation such that Rey = v, and set 6y := Ox(Rzx). It follows that {6;} is an admissible sequence
for h and

[ v am¥ = [ g BN,
S5(6:)NQ S(Ux)NQw
which, together with (4.2), concludes the proof. O

We will also need the following continuity property for h; and h.
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Proposition 4.3 Let W, v satisfy (H1), — (H5). Then there exists a constant C such that
[Ra(A,v) — (N, W) S CIA=N| ifp=1 and [|h(A)—h(\)<CA=X| ifp>1
Also, if p =1, then h; is upper semicontinuous with respect to v.
Proof. We start by proving that
hi(A\v) S hi(M, W)+ CIA =X (4.3)
Fix € > 0. Using Proposition 4.1, let {u,} be a sequence in SBV(Q,,, R?) such that u, — uy . in L}(Q,,R9),
Vu, = 0, and

e+ hi(N,v) > lim {/ W°°(V'u,,)dm+/:s w([un],uun)dHN—l}.
n—oo Q.

(un)NQ,
By Lemma 2.9 we may find a sequence of piecewise functions {v,} such that
Un =ty — U, [[Dn]|(Q)) = [[D(ury — un W )II(Qu) = A = X

Then
Wn i=Up +Un = Upy inLl(Q.,,]Rd), Vw, — 0,

and so, by Proposition 4.1,

hi(\v) < liminf P([wn), v, ) dHN ! + €

N0 JS(wa)NQy

lim inf / ¥([tn], vy, ) dHN Y +/ t/:([vn],u.,n)dHN‘l} +e
n—oo S(un)NQ. S(va)NQ.

< (N, v)+e+ A= N

IA

where we have used the subadditivity of 1. The inequality converse to (4.3) is proven in the same way. Also
this argument is valid for h as well.
Next, we show that, for fixed A,

1

v hj(\,v) is upper semicontinuous.

We follow the proof of Proposition 3.6, iv, in [7]. By (2.12) we have

hi(),v) = inf { / W>®(VuRT)dz +/ ¥([u],vu)dHN=1: R is a rotation, Rey = v,
u Q S(u)nQ

U

u € SBV(Q,R?), ulsg = e, / Vudz = o}.
Q

Let v, — v and choose a rotation R such that Rey = v. Fix € > 0 and let v, € SBV(Q,R%), u, = U e
fQ Vu.dz =0 and '

<e.

ha(Av) — / W(Vu, BT) dz + / D[], va,) dHN -1
Q S(ue)NQ
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Considering a sequence of rotations { R, } such that R, — R and R,e, = vy, We use the Lipschitz continuity
of W to conclude that

RO\ v) < liminf{/ Ww(VueRZ)dz+/
Q

noee S(ue)NQ

¥((ue]s v, ) dHN-l}

= / W*(Vu, RT)dz + / ¥([ue), vu,) dHN 1
Q S(ue)NQ
< h(\v)+e.

It suffices to let € — 0. O

Theorem 4.4 Let W,y satisfy (H1)1, (H2), (H4) and (H5). Then

dIl(gsGs')
d(llg)| HN-1|S

1 -
@) (z) = TaT@)] hi([g)(z), ve(z)) HN-!ae. z € S(g), (4.4)

where hy is given by (2.12).

Proof. Step 1. [Lower Bound] Fix € > 0 and assume that 7o € Q N S(g) satisfies the equalities in
Theorem 2.4 ii) with respect to g and, in addition,

o]l HN=1(5(9) N Qu(zo 1
iy lg] (56) 1 9 ) _\lo(zo)]l, and Jim /Q g lC@Idz=0 (4.5)

It is well known that (4.5) can be guaranteed for HV~! a.e. z (see Ziemer [Zi] ). Let A be an open subset
of Q and let {u,} be an admissible sequence for I; such that

e+ 1,(0,G,4) 2 lim [ W(Tun(a)) d+ [

S(un

A#}([Un](m),vun (z)) dHN "} (2), (4.6)

un — ¢ in L and Vu, — G. Up to extraction of a subsequence, which we do not relabel, there exists a non
negative Radon measure p such that

W(Vun) LY + §((un), i, ) dHN 71 [S(upn) = p.
By (4.6), the inequality

du 1
d(lg* — g~ | Hn-1]5(9)) |[g)(0)|

yields the lower bound, after letting € — 0*. Choosing a sequence € — 0% such that u(8B(zo,¢€)) = 0, we
have

(7o) 2

h1([g)(z0), vg(20)) for HN ' a.e.zo € S(g) (4.7)

> 1
TN ™ = Totol L5 A2 7 { L o W
N-1
’ '/S(“")nQu(zo)(zo,e) 1/)([“"] (.’B)’ V"n) dH (z)}

! im lim {e / W (Vug(zo + €y)) dy
Q

T ool e=o+ n=e | * Jo,..,,

* /‘41—“-5‘" )=z0)ng ¥([un)(zo + ey}, vn) dHN‘l(y)} .

v(zqg)
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Define
Un,e(Y) := un(zo + €y) — 9~ (20)-

By Theorem 2.4 ii) we have
lim lim |Un,c(y) - u[g}(zo),u(zo)(y)lL1(QV(=0)) = 0,

£—0+ n—oo

and
du 1 - / (1
z9) = +——= lim lim ¢ W =Vup(y) ) dy
TETE 5@ ™ = Taleolll eoer "~°°{ Quey  NE
+ / w([un,el(y),vu..,,(y))dHN"(y)}- (4.8)
s(“n.t)nQv(zo)
Now let ¢ € Co(Q.(20)(0,1)). Using (4.5) we deduce that
1 T —Zp
Iim L Vu, = lim lim / ¢( )Vu z)dz
e—0+ n—on;o Qu(2)(0,1) ¢(y) n,c(y) e—0+ n—oo gN=-1 Qu(z0)(Z0:€) € n( )
. 1 I — X
= hm—/ ¢(-—)G:cdx
e—0* eN-l Qv(:o)(xOvE) € ( )
= 0.

Case I: Assume that W is coercive, i.e., there exists a constant C > 0 such that C|A| < W(A) for all
A € M?*N ., Using (H5) and the fact that coercivity implies a uniform L! bound for {Vu, ¢}, we may follow
the arguments given in the proof of Theorem 4.1, Step 3, of [7], to obtain (4.8) with equality replaced by
greater than or equal to, and eW (;) replaced by W°(-). Next, we choose a diagonal sequence in ¢,n, and
a countable dense collection of functions in Co(Q,(z,)(0,1)) to obtain vy such that

Vk = Ug](z0), vy(0) 1D L', Vv =0,
and
du 1 , /
Tg) > ——— lim
IEEN156) ™ = ool k-w{ A

and the result now follows from Proposition 4.1.

Case 2 : Proceeding as in Step 1 (Case 2) of Theorem 3.2, we may remove the coercivity assumption. The
argument is the same except LV is replaced by |[g]|"*HN-1|S(g).

Step 2: [Upper Bound] In view of (4.5), we only need to prove that given (g9,G) € SD, for any open A C Q

Il(g’GyA) < AC(N)(1+ IG(z)P) dx..’.‘/s‘

W (Vui(z)) d$+/5( )¢([vkl(y),vu.‘(y))dHN'l(y)}

v(xzg)

hi([9)(z), v(z)) dHN (). (4.9)
(9)nA
Moreover, we claim it suffices to prove (4.9) for g of the form g = Ax g, where x g is the characteristic function
of a set of finite perimeter E. This follows from an argument of Ambrosio, Mortola, and Tortorelli given in
Proposition 4.8 of [6], and which involves continuity and semi-continuity properties of h; (see Proposition
4.3).
Case 1: Suppose that E is a polygon and W is coercive. We use a Besicovitch covering argument introduced
by Braides and Piat [13). Let g = Axg and G € L'(2,M%*¥). Fix A C Q open, 6§ > 0, and let zo be a
Lebesgue point for the function h; (A, v(-)) with respect to HV=1|S(g). Then there exists €., < 6 such that
for every 0 < € < €,,

ha (M v(20)) € ——

py hi(A,v(y)) dHN 1 (y) + 6. (4.10)

/S(g)r'\Q,,(,o)(:o,e)
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By the definition of h; (see(2.12) ), there exists u,, such that
uco,aQ,(,o)(O,l) = Up,u(zo)s / Vu-‘l:o dz =0, (411)
Qu(z)(0,1)

and

hl(A, V(.’Eo)) Z /

W (Vg (v)) dy + / (luze)(v)) dHY " (y) — 6. (4.12)
Qu(z0)(0,1)

S(uzo )nQu(zo)

Let
X:={ze€ AN S(g) : (4.10),(4.12) hold at z}.

Note that HN=1((AN S(g))\X) = 0. Let

= U{Q,,(,)(z,e) 11 € X,0 <€ <6;,Quq(x,e) C A}

The set of cubes Q,(;)(,€) covers A’ finely, and so by Besicovitch’s Covering Theorem there exist z; and
e,~, i=1,..., such that A’ is the disjoint union of {Q,(z,)(Zi,&:)}. For simplicity of notation, set u; := u,,,
= v(T5), Qi == Qu,(zi,€:), and Q) is the projection of Q; onto the hyperplane perpendicular to v;, passing

through z;. Extend by periodicity u;(-,y~) to the strip { ( ) V,l < m} with period Q;. Let

: ( . ) Vi <2(2k+1)}’ and A .—LiJD,,k.

Note that, due to the polyhedral nature of E, for every k we have S(g)NA C A}. Fory € Q,;,lety = (y',yn)
where yn € R is the component of y along v;, and define

Djx = Qi(zi i) N {-’E

A fz¢ 0" z€E
usk(z) =4 w ((2k + 1)%1) if z € Dix
0 ifr¢é 0",z ¢ E.
We have
lus(@) - 9@y = 3 /D lusk(z) - 9()|dz
i ik
< WY e+ /D lus x(z)| dz, (4.13)
i i ik
where
D el <63 el <6HNTHANS() = 0(9), (414)
i [}
and

ke |
Sl [T [ o+ DV @ D)l

/
‘2k+1/ /Q(, fus((2% + 1)y, 2)| dy/dz,

where 2z := (2k + 1)yn. Since the inner integral tends to

] lus(y's 2)] dy’
Qi(0.1)
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as k — 0o, and in view of (4.13) and (4.14), we conclude that

lim lim |ugx(2) — 9(z)|L1(a) = 0.
Next we show that, for each § > 0, Vusx — 0 as k — oo. To this end, fix 6> 0 and let ¢ € Co(A).

2k +1 T -z
/A Vus x(z)d(z) de = Z /D el ((2k + I)T) . $(z) dz

=>an / (2K + 1)Vus((2k + 1)y)(z: + &) dy
Q:(0, l)n{v lvw <oy }
- Ze,N 1 / / (2k + 1)Vui((2k + 1)y, (2k + 1)yn)$(zi + &9/, T + £iyn)dy'dyn
Q.. 1)

= Z g N1 / / Vui((2k + 1)y, 2)d(zs + €', T + €:2(2k + 1) "1)dy'dz.
i = A ACRY

Ai(2) = / Vui(y',2z)dy'.
Q;(0,1)

Due to the periodicity of Vu;(, z) and the fact that ¢(z; — &;', z; — €;2(2k + 1)~!) converges uniformly, as
k — oo, to ¢(z; — €y, ), we have

[ vuss@ot@dz e / A@ [ olmi+ e,z dy'dz
A k— - Q;(0,1)

= E E,'N_l / A,‘(Z) dz / 43(13,' + e,-y', .’E,‘) dy'.
i -3 Q:(0,1)

By (4.11), f_%% Ai(z)dz = 0, and so Vusx — 0 as k — co. Using Theorem 2.8, we may find h € SBV (4, RP)
such that
Vh =G, ||Dh||(A4) < C(N)IG|L1(amexn), (4.15)
and, by virtue of Lemma 2.9, we consider vx € SBV (A4, RP) piecewise constant such that vy — h in L! and
| Dvk||(A) — ||Dh||(A). Set
wk(Z) 1= us k() + h(z) — v (7).
By the definition of I, (H2) and (H4), we have

Il(gv G7A)

IN

llam(l)nf lim mf {/ W (Vwsi(z)) dz +/

S(ws,x )N

W([wex(2)) dHVY ‘l(x)}

IN

6—0+ k—oo

liminfhminf{ /A W (Vusi(z)) dz + C /A IGldz + /S g sk @D A2 (2)

+ [ clii@ldr-i@) + / cuvkkzndH"-l(z)}
S(h)NA S(ve)NA

C(N)AlG(x)|a+l%§g§fﬁgng[/IJ‘W((—‘?%L) ((2k+l) (z—e“’—))) dz
R CICRRIC-D) )
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e [ (6@ ds
+h§$fhﬂgf{25 f i / {W(@aﬂlvm(‘(2k+l)y)) dy'dyn

eN-1 ' Ny
' Z /H“Q-”{u:wmsm}w([“']((2k+1)y)) dH (y)}

C(N) /A IG(z)|dz

+h111.égfh£{£f{z eN- 12k+1/ /, ((2k+1 ug((2k+1)y',z)) dy' dz
gN-1

+Z(2k+1)~ T

/ P((w)(y))dHY "(y)} . (4.16)
S(u)N2k+1)Qin{w:lyn1<4}

Next, we note that, for each i, £;(6) — 0% as § — 0%, and, due to the coercivity of W, {(2k + 1)Vu;((2k +
1)y’,2)} are uniformly bounded in k; hence, using (H5) , we may replace in (4.16)

I (2k+ 1

2k+1W

Vu;((2k + 1)y’ ,t))

by

Sy W 2k + )Vui((2k + 1)y, 2)) = W™ (Vus((2k + 1)y, 2))

Using the periodicity of the u;, (4.12), and then (4.10), we obtain

L(g,G,4) < C(N) /A |G(e)ldz + liminf 3 {e? - /Q W (Vus(y))dy + €'~ / ¥ ([ ) dH”-l}

S(u:)NQ;

< oW) [16(@) o+ lmint 3 &M (ha(ll(o) ) - )
< C(N) AIG(z)[dz +1§Iﬂ%gf {}: I:/S hi([g)(z), v(z))dHN "} (z) - 6] - 625?"1} .

(9)NQi(zi,e:)

By (4.14), 6 3",eN~! = O(6) and thus we conclude that
I,(9,G,0) < C(N) /A IG(z)|dz + /S (@), v(@) Y ), (417)

Case 2 : Let E be an arbitrary set of finite perimeter, and assume that W is coercive. The proof of inequality
(4.9) for g = Axg follows from the argument given in the (7] (Step 2d) of the proof of Proposition 5.1), and
from the lower semicontinuity of I(g, G, ) for coercive W (see Proposition 5.1). Indeed, consider a sequence
of polygons E, such that Perq(E,) — Perq(E), LN(E,AE) — 0, and xg, — xg in L!. In view of the
upper semicontinuity of h;(A,-) (Proposition 4.3), we may apply Proposition 3.6 in [7] to obtain a sequence
of continuous functions A™ : RN — [0, 00) such that

hi(A\y) £ h™(y) < Clyl, for every y € RY

and
h(A,y) = inf K™ (y),
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where h;(),-) has been extended to RM as a homogeneous function of degree one. Thus, setting gn = AXE,.,
using (4.9) and the fact that LN (E,AE) — 0, Per(E,) — Per(E), we have

1(g,G,4) < liminfI(gn,G, A |
< C(N)AlG(x)|a+hPLE nAh(,\’Vn(I))dHN-l(z)
< C(N)L|G($)|dx+ﬁ£n-/aE » h™ (va(z)) dHN 1 (2)

< C(N) /A |G(z)|dz + /a EnAh’"(v(z)).dHN‘l(x)

Letting m — +o00 and using the Monotone Convergence Theorem, we obtain

I(9,G,A) < C(N) /A |G(z)| dz + /S - h(\ v(z))dHN "1 (z).

Case 3: To complete the proof of the upper bound, we remove the coercivity assumption on W. Let
We(-) = W(-) +¢|-|. Then, by (4.9) we have

Il(g7G,A) S le(g’G7A)
c / 1+ |G(z)|dz + / K (lg), vg) dHN 1, (4.18)
A A

IA

and given 6 > 0, by definition of h; we may find u € SBV(Q, (0, 1), R9) such that u|aQ, = Uiy, fQu Vudz =
0, and

8§+ hi(A\,v) 2/;W°°(Vu)d:c+/~;( )w([u],uu)dHN‘l.

Thus

hi(A,v)

IA

/ W°°(Vu)dz+e|Vu|+/ V([u), v, ) dHN?
Q S(u)
< hi(\v)+6+€|Vups,
and we conclude that limsup, h§{(A,v) < hi(A\,v) + 6, from which we obtain
h(e.G,A)<C [ 1+16@)|de+ [ hillghvy)aHN2.
A A
It suffices to let § — 0. 0O

Theorems 3.2 and 4.4 reduce to Theorem 2.16. We now state and prove the counterpart result to Theorem
4.4forp>1.

Theorem 4.5 Let p > 1 and W,y satisfy (H1)p, (H2), and (H4). If g € L°(Q, R?) then

dIP(gaGs') ) = 1
i(e* — g I 115() ) = iy el

where h is given by (2.17).
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Proof. The proof is very similar to that of Theorem 4.4, except at the following points where the growth
of W and the convergence of admissible sequences {u,} become relevant.
Step 1: For the lower bound, we apply the same argument to construct u, . and to find a finite, nonnegative
Rodon measure y such that

du _ 1 . . ‘ 1
d(lgt —g-|HN- 1{5(9))( 0) = ol Jim nlgr;o{e Lv(zo)W(eVun,s(y)) dy
/ wuu,.,e](y),u.,,,,(y))dH"*‘(y)}-
S(un,e)NQu(20) _

Assuming that W is coercive, i.e., there exists a constant C > 0 such that C|A|P < W(A) for all A € M¢*N|
and using the fact that the density is finite HV~! a.e. (see Theorem 2.6), we extract a diagonal subsequence,
Uk, from u, . (y) := u,(zo + €y) — g~ (zo) such that

liin |‘Uk(y) - u[a](:o),v(to)(y)ILX(QU(%) =0, Vy—0 in Lp(Qu(zo)(O, 1))

and
du

de™ = THY1[5(2) ) Z Tl (Io)“ -l

The lower bound now follows by Proposition 4.2. Removal of the coercivity assumption can be achieved by
means of an argument identical to the one used in Step 1, Case 2, of Theorem 3.2.

Step 2. For the upper bound, we proceed with the construction of us x(z) as in (4.11), (4.12) , noting that,
in this case, Vus x(z) = 0 a.e. By Theorem 2.8, let h € SBV (A, R?) be such that

Y([vk)(¥), v (v)) dEN 72 (y).

Vh =G, ||Dh]|(4) £ C(N)|G|L:(amexny.

By Lemma 2.9 there exist vy € SBV(O,RP) piecewise constant such that vy — h in L! and ||Dui||(4) —
||Dh||(A), and we define
W k(Z) := us k() + h(z) — vi(z).

Then

I(g,G,A) < C /A 1+ G(2)P dz + lim inf lim inf Y([Wok)(Z)s s, ) dHV 1 (2).

—0+ k—oo S(ws,x)NA

The arguments carried out in (4.13) - (4.17), except now involving only the interfacial energy, allow us to
conclude that
I6.6,4)<C [1416@Pdz+ [ (al@)dH (@),
A S(g)nA

for the case when g = Axg and FE is a polygon. Since h does not depend on the normal to the jump set,
the inequality for E of finite perimeter follows directly by assuming coercivity of W, applying Proposition
5.1, and then Lebesgue Dominated Convergence to xg, — xEg. To remove the coercivity assumption, we
proceed, as in the case where p = 1 (Case 3 of Step 2 for Theorem 4.4), to obtain (4.18) with IS and h®
corresponding to We(.) := W(-) + €| - |P. For p > 1, h® = h and the proof is complete. J

From Theorems 3.2 and 4.5, we have Theorem 2.17 for the case when g € L®(Q,R%). To complete the
proof of Theorem 2.17, we remove this restriction.

Proof. [Theorem 2.17] Define

16.6.9):= [ H,(Ve(e). Gz + [ sz
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By Theorems 3.2 and 4.5, we know that I(9,G,Q) = J(9,G,Q) if g € L>®(9,RY). Let g € SBV(S,R?) be
arbitrary.

Step 1. [Lower bound] Fix § > 0 and let {un} be an admissible sequence such that u, — g in L' Vu, -G
in L?, and

6+1y(9,G,Q) 2 lim {/‘)W(Vu) dz +/ )w([un],uu")dHN—l} )

(un

After extracting a subsequence, we may assume that
W(Vu)dLN + Y((un), vy, ) dHN 2 S g, (4.19)

where p is a finite, Radon measure. The arguments of Theorem 3.2, Step 1, and Theorem 4.5, Step 1, allow
us to conclude that d
m

EL—N(:CO) > Hp(Vg(zo), G(x0)) LN ae. z0€9,

and
du

1
AENEN115(0) ) 2 Tolo)
Clearly , (4.19) — (4.20) yield

h(lg),vg) HN"lae. z0 € S(g). (4.20)

4 +Ip(g,G,Q) 2 J(g,G,Q)

Letting § — 0%, we conclude that
Ip(ga G7 Q) 2 J(g7 G) Q)

Step 2. [Upper bound] Conversely, let n € N and consider ¢, as in the proof of Lemma 2.20, i.e.,
én € C=(R? RP) such that V¢, (z)|z~ <1 and

z if|z] <e®
On(z) :=
0 if |z| > entl.
Since ¢n(g) — g in L', and assuming that W is coercive, Proposition 5.1 implies that
Ip(g’ G7 Q) S h'{llgéf IP(¢n(g)a G) Q)
= liminf J(¢a(9), G, ), (4.21)

where we have used the fact that I;(g,G,Q) = J(g,G,?) whenever g € L>™. Next, we note that by (H2),
we have for all ) € RY,

VS [ llunenhen) N <O,
S(u)
and we claim that there exists a constant C such that for all A, B € M®*¥ we have
H,(A,B) < C(1+|A|+|BJP). (4.22)
Assuming that (4.22) holds, let
Qni={z€Q:|g-(z)| >e"or |g+(z)| >e"}N{z€Q:|g-(z)| <" or |gi(z) < e™*!}.

We have

J((¢n(9),G, Q) < J(9,G, Q)+ C (1+[V(on(9)] + |GIP) dz + C/ |l9)(z)| dHN =1 (z). (4.23)
{z:lg(z)|>e"} Q-
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It can be shown (see (3.19) — (3.22) of [7]) that

2n N Nel
z z Nz
> [ o)) dHY " @) < /. o I@IE @)

i=n

and so there exists i(n) € {n,...,2n} such that

/ llg)(z)| dHN () < = / llg)(z)| BN (z).
Qi(n) n Js(g)nn

(g

Using the fact that the first integrand in (4.23) is bounded independent of n, and that LN {z : |g(z)| >
e"} — 0, we conclude from (4.23) that

1
J(6um)(9). G, ) < J(9,G,0) + 0 (;) ,
which, together with (4.21), yields
IP(g, G1 Q) S J(g, Ga Q)

Removal of the coercivity assumption follows the arguments given in Step 2, Case 3, of Theorem 4.4. Here,
we apply these arguments to both the densities H, and h.

It remains to prove (4.22). By virtue of Theorem 2.8 and Lemma 2.9, there exist h € SBV(Q,R¢) and
piecewise constant functions f, such that VA = B LV a.e., || Dh||(Q) < C|B|, @i, — (Az — h) in L!, and

1Dn||(Q) — |4 — Bl + ||D,h[|(Q) < C(IA] +|B).

Let u, := @y + h. By Proposition 3.1 and (H1),, we have

IA

H,(A,B) liminf/QW(Vun)dx+/;( )w([un],uu")dHN‘l

W(B) + lim ||Dsunl|(Q)
C(Q+ |A| +|BP).

IA

IA

5 Some Properties of the Energy
In this section we discuss certain properties of the energy I. We start with lower semicontinuity with respect

to the appropriate topology, and under the assumption that W is coercive.

Proposition 5.1 Assume that there ezist constants C,c, such that C(|A| — c) < W(A) for all A € M4*N,
Let (gn,Gh), (9,G) € SD(Q) with g, — g in L*(,RY), and G, = G. Then, forp>1,

I(9,.G,Q) < hr{gxcgf I(gn,Gn, Q).

Proof. Without loss of generality, assume that liminf,, I,(gn,Gn, ) = limy, Iy(gn, Gn,?). Due to the
coercivity of W, we may find a minimizing sequence for Ip(gn,Gn,), uy, such that

Ip(gmGn) = mu—rfloo E(u:‘)s u:-;n :n" gn in Lly and VU;? r_:; G’n(:r)
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Coercivity of W yields a uniform bound on {Vu['}, and so we may extract a diagonal subsequence in n,m,
say vk := ull*, such that vy — g in L?, Vuy 2 G, and

1
E(vk) < Ip(gm:vGﬂuQ) + F
Thus

1,(9,6,0) < lLminf E(ux)
lim inf Ip(gn, Gn, ).
n-—00

A

O

Proposition 5.2 Assume that (H1),, (H2), and (H4) hold. Then Hyp(A, B), defined by (2.16), is uniformly
continuous in A and B.

Proof. Let A,, — A. By Lemma 2.9, for each m there exists a sequence of piecewise constant functions
vy, defined on @ such that

Vp = (Am — A)z in L' and h,’,n || Dvnll(Q) = |Am — A|.

Let {u,} be an admissible sequence for the limit description of Hy(A, B) given in Proposition 3.1. Then the
sequence {u, + v,} is admissible for H,(Am, B), and using the subadditivity of v, (H4), together with the
linear growth assumption, we obtain for some constant C, independent of n,m,

E(un + vn) = C||Dun||(Q) < E(un) < E(un + va) + C||Dun||(Q).
Taking the limit in n and then the infimum over all admissible sequences u,,, we obtain
H,(An,B) - C|A— Ap| < Hp(A,B) < Hy(Am,B) + C|Am — A

and continuity in A follows by letting m tend to infinity. To prove continuity with respect to B, consider
B,, — B. By Theorem 2.8 and Lemma 2.9, for each m there exists h € SBV(Q, R?) such that

Vh=Bn - B, ||Dh|l<C|Bm— B,

and there exist piecewise constant functions v, such that v, — —h in L!(Q,R%) and lim, ||Dv,||(Q) =
||DR||(Q). Let {un} be an admissible sequence for H,(A, B). Then the sequence {u, + h+v,} is admissible
for H,(A, Bm) and, proceeding as before, we obtain

H,(A,Bp,) - C|B - By| < Hy(A,B) < Hp(A, By,) + C|By, — B|
and the result follows. ]

In the following proposition we use the notion of inf-convolution, precisely, the inf-convolution of W and
¥ is given by
(WV)(A) :=inf {W(A - a ®b) + to(z,a,b) : a € R%, b e SN~}

Also, given f: M?*N — R, Qf denotes the quasiconvez envelope of f, that is,

QF(A) = inf {ﬁg—) [ 4+ Ve@)dz s e Wi, Rd)} .
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Proposition 5.3 Let (9,G) € SD(2) and p > 1. Assume that there exist constants C, ¢, such that C(|A|P —
c) < W(A) for all A€ M¥*N, Then

= inf
vl [[EVo@,CaNds = [ it H(Ve(e), B)ds

/n QUWVY)(Vg(z)) dz.

In particular,
odnf | Hy(4,B) = QWVY)(4).

Proof. For fixed A € MV and by definition of H,, we have

o2l Hy(4,B) = inf { Jwoudes [ aunart e SBV(Q R, ulaq = Az}
QWVY)(4),

where the last equality was established in (7]. Hence, it suffices to construct for each € > 0 a function
G € L'(,M%*¥) such that

H,(Vg(z),G(z)) < i%pr(Vg(z),B) +¢e for LNae z€Q.

To this end, let f, be a sequence of simple functions which converges in L! to Vg, satisfies | f,(z)| < |Vg(z)|,
and such that f,(zo) — Vg(zo) for LV a.e. x5 € Q. Assume that z is such a point. For every n, choose
G™(zo) € M¥*¥ such that

p(fn(xo) G"(Io)) < mf p(fn(xO) B) + &, (5-1)

and G"(:) is a simple function. Define

G(zo) := limsup G™(zo),

n—0o0
where, upon extracting a suitable subsequence, the limsup is taken componentwise. Note that for every
n, G™(-) is measurable, and so G(-) is measurable. In order to show that G(-) is integrable, let u be an
admissible function for Hy(fn(z0), G™(zo)) such that
E(u) < Hp(fa(z0),G"(20)) + ¢
By (H1), and (5.1) with B = f,(zo), we have

E(u) < Hp(fa(zo),G"(z0)) +¢

< Hy(falzo), fulzo)) +2¢
< C|fa(zo)|? + 2¢.

Thus, by Jensen’s inequality and the coercivity of W, we deduce that

14
IG™(zo)P =

CE(u)
C'(|fa(m0) P + 2¢)
C'(IVg(zo)IP + 2¢).

TIA AN LA
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Hence, for almost every zg,
1
|G™(x0)| < C' (IVg(z0)I” +26)7,

and we conclude that G € L'(Q,M%*¥). Finally, by Proposition 5.2 and by virtue of (5.1), for every
B € M%*N we have

Hp(Vg(o), G(z0))

Jim_ Hy(fa(@0), 6" (z0)
nllﬂoloHp(fn(IO)aB) +e€
H,(Vg(zo), B) +¢,

IA

and so
Hp(Vg(20), G(20)) < inf Hp(Vg(20), B) +e.

As a corollary, we obtain integral representations for the relaxation in the L} topology of

E(g) = / W(Vg(z)) dz + / (9] (@), vo(2)) dHN 1 (2),
0 S(g)

Set
o - . 7l d
F(g) := {gtf} {hﬂgéfE(un) tup, € SBV,u, - gin L' (Q,R )}

Corollary 5.4 Assume that (H1),, (H2)—(H4) hold, and that there ezist constants C, ¢, such that C(|A|P —
c) <W(A) for all Ac M¥*N_ Ifp> 1, and if g € SBV(Q,RY), then

F@) = [ @wvu)(Voyds+ [ h(a)dHN,
) S(9)
where h is defined by (2.17). If p=1, and if g € WH1(Q,R?), then

F(g) = /ﬂ Q(WVY)(Vg)dz.

Remark 5.5 A representation of F(g) for p = 1 and for all g € BV(,R¢) was obtained directly in [7],
precisely

Flg) = /n QUWVY)(Vg)dz + /n QWVY)™ (D,g).

Proof. Let p > 1 and assume that u,,g € SBV(Q,R?), g € LP(Q,R?), {Vu,} is uniformly bounded in
L?, and u, — g in L'. Then, upon extracting a subsequence, there exists G € LP(Q, M?*¥) such that

Vu, — G in LP(Q,M%*N)

and so

GigI{P IP(g) G) S ‘F(g)'
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Hence,

ot 1(9,6) = F (o),

and the result now follows by virtue of (2.15) and Proposition 5.3.If p = 1, and if Vu, uniformly bounded
in L!, then, up to a subsequence, there exist m € M(2) and G € L}(Q,M?*¥N) such that

™ dm
Vu, = m and N = G.
Thus
. < '
Jof Io(9,G) < Flg)
Hence

Jof 1o(9,6) = F(9)
and the conclusion follows from (2.14), Lemma 2.18, and Proposition 5.3. O

Next, we search for relations between I(g, Vg, Q) (Ip or Iy) and the relaxed energy
/ QW (Vg) dz.
)

By Theorem 3.2 and Lemma 2.18, if g € W}(92,R?) then Io(g,Vg) = I1(g, Vg). Let I denote I,.

Proposition 5.6 i) The function A € M#*N  H,(A, A) is quasiconver and Hy(A, A) < QW(A). In
particular, if g € WH1(Q,R9) then

1(9,Vg, ) = | Hy(Vg(z),Vg(z))dz < | QW(Vg(x))dz.
Q Q

ii) Let g € WH1(Q,R?). If W is convez, or if W is quasiconvez, has linear growth (i.e. for some constants
¢,C clA| < W(A) < C|A]), and ¥(\,v) = W=(AQv), then

16.V9) = [ W(Vg(e)ds.
i1i) A € M¥*N s such that W**(A) < QW (A) if and only if there exist a constant a € R such that
10.V9) < | QW(Ve(a) s,

where g(z) = Az and Y(-) = |- |.
Proof. i) By definition of H, (see (2.16)) we have

Hp(4,4) < mf{/qW(Vu)d:c tu=Az+¢, ¢ € ngw} = QW (A).
Therefore, if g € WH1(92,R9), then by Theorems 2.16 and 2.17 we obtain
I(9,Vg) = /ﬂ Hy(Vg,Vg)dz

/n QW (Vg(z)) dz.

IA
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In order to prove that A — H,(A, A) is a quasiconvex function, it suffices to apply Theorems 2.16 and 2.17
to I,(g,Vg), to conclude that

I,(9,Vg) = / H,(9,Vg) dz + / h(lglve) dHN1,
(9] S(G)nQ

where we have used the lower semicontinuity property of I, (see Proposition 5.1), and where H,, and fzp are
associated to Hy and to h (or h; if p = 1), through the formulas in Theorems 2.16 and 2.17. Thus
Hy(A,B) = Hy(A, B),
and, in particular,
Hy(A,A) = Hy(AA)
inf {/QH,,(Vu, Vu)dz : u € WHP(Q,RY),ulag = A:c}
QH,(A, A).

IA

ii) For g € W1, I,(g,G, Q) = Ip(g,G, ), and hence it suffices to consider I, p > 1. Suppose that W is
convex, and let u, — g, Vu, — Vg. Then, using Jensen’s inequality we conclude that

liminf E(u,) > liminf [ W(Vu,)dz

n—0oo n—oo [y)

> liminf [ W(Vg)dz.
Q

n—oo

Taking the infimum over all such sequences {u,}, we obtain Ip(g, Vg) > [, W(Vg)dz, and the result follows
by part i).

Next, assume that W is quasiconvex with linear growth, and that y¥(\,v) > W*°(A ® v). Take u, — g,
Vu, — Vg. Then

n—oo

liminf E(u,) > liminf /W(Vu,,)d:c+/ W ([un] ® v, ) dHN !
n—oo Q S(un)
=: liminf G(uy,).
n—0oo

By a result of Fonseca and Miiller (see [33]), G(u,) is lower semi-continuous with respect to the L! topology,
and so

liminf E(un) 2 (o)
Q
This yields I(g, Vg) 2 [, W(Vg) dz, and the converse inequality follows from i).

iii) Let %(-) = a| - | and suppose that W**(A) < QW (A). Then there exist an A € M?*N and f €
L'(Q,M%*¥) such that

/Q f@dz=0, [ W(A+(=)dz<QW(A) -
Q
for some € > 0. Let Qs := Q(0,1 — §), where § is chosen sufficiently small so that

W(A) LY (@Q\Qs) < 5.
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Set 1
Cs = ——

* T IVQs) Jores

By Theorem 2.8, there exists ¢ € SBV(Q;s,R?) such that V¢ = f, st ¢ =0, ||D¢||(Qs) £ C|f|L1, and by

(2.5) we have

f(zx)dz, Cs—0 as é—0".

] lbr 8| dHY 1 < CIf1s.
8Qs

Define
0 fz¢Qs

d(z)+Csz ifz € Q5.

Clearly u|sq = Az, and using the fact that f has zero average over Q, it follows that fQ Vudz = A. Thus,
by definition of Hy(A, A) and by (H1),,

u(z) := Ar + {

H,(AA) < _/;W(Vu)d:c+a/s( )l[u][dHN‘1

< g +/ W(A+ f(z))dz + C(Cs) + aC'|f| 11
Q
< QW(4) - £ +C(Cs) +aC'lf |-
Choosing o and é sufficiently small so that

C(Cs) + aC'|f|11 < g

we obtain
H,(A,A) < QW(A).

Conversely, if
I(g.Vg) < LN (A)QW (4)

then
Hy(A, A) < QW (A)

and so

W (4) = mf{/qW(AJrf)dxzqudz:o}
< inf{/QW(Vu)da:+/;(u)n0¢([u],u)dHN‘1 :u € SBV(Q,RY),

Vu=A+f,/ fdz = 0,ulsg =Az}
Q

= Hy(A4)
< QW(A).

O

We note that Corollary 5.4 has the interpretation that, for a given macroscopic deformation g €
Wh1(Q,R?), the energy associated with the optimal microstructure is given by the relaxation of E(g) in the
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L! topology (BV weak). Percisely, by Theorem 2.17, Proposition 5.3, and Corollary 5.4, we have

inf
GELP(QMPxN)

—_ N-1
66,9 = /n QUWVY)(Vg) dz + /S M) a

/n QWVY)(Vg) dz.

Moreover, if we assume W to be coercive, the direct method of the calculus of variations can be implemented
to show that the infimum over all microstructures is achieved. Indeed, let

GELP(Q Mpr) P(gv G Q) - hm Ip(g1 Gn’Q)
For every n choose v, such that |g — va|Ls(aRre)y < 1/n, and I(g,Gn,) = E(vn) — 1/n. Then {Vv,} is

bounded in L?, and, upon extracting a subsequence, we have Vv, — £ in L?, for some £ € LP(2, MP*N)._
Finally, by Proposition 4.3 we conclude that

I(g9,8) < hﬂicfépr(vmvvn)
< liminfE(v,,)

= ,G,§
GeLr(8, MP"N) T(g )-

There are cases in which
Io(9,G,9) > Io(g,Vg,9),

for all G € L}(Q},M?*V), e.g., if W is quasiconvex with linear growth and ¥(\,v) > W™ (A ® v). Hence,
if variational principles are accepted for this model, we may interprete this result as evidence that for this
particular crystal it is energetically more costly to form defects. On the other hand, there are simple examples
in which

Glgi’ IO(ga G1 Q) < 10(gs Vg? Q)

Consider W(-) = |- | and 9(-,v) = a| - |. Using Corollary 5.4, Proposition 5.6 ii), and Theorem 2.14 in [7],
we have
[ Vel = 1(6.90)
S
Z Glg{‘ IO(gv Gy Q)
= F(9)

1l

/ min(a,1) |Vg(z)|dz.
Q

Hence, if a > 1 the above inequality is in fact an equality, and if a < 1 then the inequality is strict.
We end with the following conjecture. Fix p > 1. Then

Hy(A,B) = F1(B) + F2(A - B),

for some functions F; and F3. Even though we are not able to prove this at the present time, we note that
it follows immediatly from its definition that

H,(A, B) < H,(B, B) + H(A - B),

where

H(C) := inf / ¥([u),v) dHV ! :u € SBV(Q,R%), Vu(z) = 0ae., ulsgg =Cz § .
Su)NQ
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Proving this conjecture would confirm what was postulated in the introduction. Precisely, the energy
functional associated with a structured deformation of a crystal should involve a measure of the discrepancy
between the macroscopic and microscopic strains Vg , G, respectively. Such a result could motivate the use
of H,, as the total free (stored) energy in computing stress at equilibrium. Work in this direction has already
begun within the classical setting of Del Piero and Owen for structured deformations (see [36]).
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