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1 Introduction
In this paper we follow a model of Del Piero and Owen [23] providing a continuum mechanics basis for
the application of techniques in the calculus of variations to non-classical deformations of continua. These
structured deformations are suitable for describing deformations of materials whose kinematics warrants
analysis at both the macroscopic and microscopic levels.

The motivation for this work lies on the study of equilibrium configurations of crystals with defects. In
a defective crystal, the macroscopic deformation together with the referential (Bravais) lattice configuration
do not suffice to describe fully the configuration of a deformed body; phenomena such as slips, vacancies,
and dislocations may be present in the deformed (Bravais) lattice basis, thus preventing the use of the
Cauchy-Born hypothesis, as described below.

In a perfect crystal, it is postulated that the crystal lattice consists of identical atoms located at all
positions vectors

X = TUiOi +

where a» € R3 and rrij € Z. The a» are called lattice vectors and the matrix L, whose columns consist of the
a», is referred to as the lattice matrix or lattice basis. At each point x in the crystal there exists a tensor
L(x) representing average values over microscopic regions of lattice vectors which define locally the position
of the atoms. The Cauchy-Born hypothesis (see Ericksen [24]) establishes the behavior of the lattice basis
field under an elastic deformation, and it asserts that an orientation preserving map u : Q —• O* leads to a
new lattice basis L* given by

L*(u(x)) = Vu{x)L(x) x e H, (1.1)

where ft C R3 represents the referential position of the crystal, and fi* = u(Q) is the deformed configuration.



Suppose that we start with a perfect, cubic crystal whose lattice basis field is identically the identity
matrix I. It often happens that, after undergoing some deformation, a new lattice basis is observed which
does not coincide with Vu (see for example Hill [35]). This discrepancy is viewed as the creation of defects.
In [17], [18], and [19], Davini and Parry proposed a continuum model for defectiveness and introduced the
notion of defect preserving configurations. They studied pairs

where L(x) stands for the matrix of lattice vectors at u(x). A complete list of measures of defectiveness,
including a generalization of the classical Burger's vectors, were given in [19]. These measures consist of
line, surface, and bulk integrals of certain functionals depending on L(x) and on its spatial derivatives; as it
turns out, these functionals agree on configurations which are elastically related, in the sense of (1.1). These
measures of defectiveness partition the set of configurations, or equivalently, deformations, into equivalence
classes, and the equivalence class containing the perfect cubic crystal (fl,I) is called the class of neutral
deformations. This class was found to be strictly larger them the class of elastic deformations {(u(£i), Vw(x))}
of a perfect cubic crystal. Indeed, the lattice basis field of a neutral deformation may include a "plastic"
part, accounting for the discrepancy between L and Vu, in spite of the fact that the deformation is defect
preserving. Fonseca and Parry [34] pursued this idea and found that neutral deformations may be represented

(u(Q),Vu{Vv)-1), (1.2)

where u and v belong to some appropriate Sobolev spaces, and det Vv = 1 a.e. The function u is interpreted
as the macroscopic deformation and v as the plastic part of the deformation, or, simply, the slip. Within
this framework, the use of variational principles on neutral deformations was undertaken in [34], under the
assumption that, among all neutral deformations of a perfect cubic crystal (fi,I), equilibria correspond to
minima of some appropriate energy. The energy functional studied in [34] was given by

E{u,v) := / W(Vu(x){Vv(x)}-1) dx, (1.3)
Jn

where the bulk energy density W was the Helmholz free energy satisfying appropriate symmetry properties, as
considered by Chipot and Kinderlehrer [15] in the study of nondefective elastic crystals. In [16], variational
problems consisting of minimizing JÊ u, v) over some appropriate subclass of neutral deformations were
referred to as variation of the domain since, formally, if v is invertible then (1.3) can be written as

/ W(Vw(y))dy,
v(Cl)

where w := MOD" 1 . Several mathematical and physical difficulties were encountered within this model.
The fact that Sobolev functions with nonzero Jacobians are not necessarily locally invertible prevented the
use of the direct method of the calculus of variations; in addition, bounds o n l = VufVt;}""1 in no way
imply bounds on Vu and Vv. Moreover, lower semicontinuity with respect to an appropriate notion of weak
convergence was established only under certain restrictive growth conditions on W (see [30]). Using different
analytical methods, Dacorogna and Fonseca [16] addressed the case where W = | • |r. Existence of minima
was obtained for r > N, and for r < N = 2 it was shown that

inf {£(!*,v) : u €Wl>°°,v eW1'00, u(x)\dQ = x ,detVv = 1 a.e. } = 0;

hence, the infimum is not attained in spite of the convexity of W. Note also that this model associates zero
energy to a rearrangement of a natural state of the crystal, which is a particular type of neutral deformation
where u is invertible, v = u, thus L = I, and the lattice vectors retain their orientation. We take these
results as an indication that the energy defined in (1.3) is "too low", in that it neglects terms which may
account for the presence of microscopic slips.



In physical terms, Fonseca and Parry [34] studied stress in equilibrium configurations in the case where
neutral deformations were admissible. Via the theory of Young measures, it was shown that certain symmetry
properties of W imply that the average stress associated with an infimizing sequence is a hydrostatic pressure;
hence, the crystal is weak at equilibrium, since it cannot sustain non zero averaged shear stresses. This result
had been previously obtained by Chipot and Kinderlehrer [15] in the case where only elastic deformations
were allowed to compete (see, also, a similar result of Ericksen [25] for elastic crystals). When defective
configurations are admissible, the latter result is regarded as an indication that frictional effects due to slips
should be represented in the energy functional to be minimized (see Parry [37]). The question now is: how
should we introduce an energy penalization due to slips, or to more general defects? Intuitively, we expect
that the total energy should include a measure of the discrepancy

[\L{x)-Vu(x)\dx,

or, more generally, some functional of (L(x) — Vw(x)), depending on the interaction between W and some
surface energy associated with slips. Our goal in this paper is to obtain specific information on the total
effective energy which incorporates bulk and surface terms accounting for slips. We provide a description of
the energy functional that should be minimized, in the hope that this information will help determining the
(meta)stable states, or (local) minimizers (see Corollary 5.4, Proposition 5.6, and the subsequent discussion
after it for some partial results in this direction).

In recent years much attention has been given to variational methods addressing discontinuous classes of
functions with energies which include both bulk and interfacial terms. Consider the functional

/ W(Vu)dx+ f rp([u],v)dHN-\ (1.4)
n J crack site

where HN~~l denotes the N — 1 dimensional Hausdorff measure, v stands for the unit normal to the crack
(jump discontinuity) site, and [u] is the size, or amplitude, of the jump discontinuity. Here there is a direct
penalization of jump discontinuities in ti, and a to macroscopic slip is assigned a precise energy via the
density xp. Functional having this form have been studied in relation to problems in fracture mechanics,
phase transitions, image segmentation and pattern recognition (see for example, [21],[29]). In this paper,
we discuss a mechanism for taking into account microscopic defects via limits of configurations with (small)
interfaces which diffuse in the limit, disappear at the macroscopic level, and contribute in some way to the
effective "bulk" energy. This approach lies on a model proposed by Del Piero and Owen [23], which we now
outline.

The theory of Del Piero and Owen deals with three types of deformations. For simplicity, we take the
reference configuration Q to be a bounded, open subset of RN and rephrase slightly the definitions in [23].

• Simple deformations are pairs (K,g) where K C Ct consists of a finite union of Lipschitz sets of
Hausdorff dimension N — 1, and g\ci\x is & one to one differentiate function. We set Vg :=
Xn\K-

• A t r i p l e (K, g , G) i s a l i m i t of simple deformations i f K C £2, g € £ ° ° ( , ) ,
G € L°°(f i ,M N x N ) , and there exists a sequence of simple deformations (Kn,fn) such that

K :=p^in=p Kn> J^2c 'P ~ fn\L-V**N) = °' J!™, IG " V/n^oc^MNxN) = 0. (1.5)

• A triple (K,g,G) is a structured deformation if (K,g) is a simple deformation, G : Q\K -+ MNxN is
continuous and there exists m > 0 such that for all x € Q\K, m < detG(x) < det Vg(x).

Here, and in what follows, MdxN stands for the vector space ofdxN matrices. One of the central results
of the theory of Del Piero and Owen is that every structured deformation is a limit of simple deformations
(see [23], Theorem 5.8). We give two simple examples from [23] illustrating the convergence in (1.5). First,



we consider the so called broken ramp sequence. Let N = 1, SI = (0,1), K = 0, g(x) = 2x, and G(x) = 1.
This structured deformation can be approximated by

/ n ( x ) : = x - l — for — < x < , k = 0, ,n — 1,
n n n

because / n (x ) —» 2x and V/n (x) —• 1 in L°°(0,1); hence, (0,2,1) is a limit of simple deformations. In terms
of the total distributional derivative, we have Dfn —• Dg in the sense of distributions, and

n- l ,

where 6a is the Dirac mass at x = a. Thus, the part of Dfn corresponding to jumps will converge, in the
sense of distributions, to the difference between G and Vg which, in this case, is the constant function 1.
Note the relation between Y^kZi n **• anc* ^ e Riemann sum for f(x) = 1.

The second example is particularly illuminating in the context of the microscopic slip mentioned in
(1.2), and is referred to as the deck of cards. Let N = 3, fi = (0,1)3, K = 0, g(x) is the simple shear
9(x) = 9{xi,X2,x$) = {xi + £3>£2>£3)> and G(x) = I. An approximating sequence is given by

r t x ( k \ r k fc +
fn(x) := (xiH-~,X2,x3 for - < x 3 <

\ n J n n
Within the framework adopted in [17], [18], [19], and [34], (<7,I) represents a particular type of rearrange-

ment of the crystal, namely a slip, and it is a neutral deformation in the sense of (1.2), with u = g and
v = g. The notion of microscopic slip has the interpretation of a limit of decreasing displacements along
glide planes which are diffusing throughout the body.

As the last example suggests, one may consider g as the macroscopic deformation of a defective crystal
with cubic symmetry, K as the macroscopic crack site, and G(x) as the referential description of the averaged
lattice basis field in the deformed configuration. The constructions of Del Piero and Owen support the
interpretation of Get ( { e i , . . . , e^} denotes the standard orthonormal basis in RN) as being a limit of averages
of discrete lattice bases. To see this, approach a purely microscopic structured deformation (0, id, G) (id
stands for the identity deformation) by simple deformations (Kn,fn) such that {/n} are piecewise affine, and
so V / n ei is interpreted as a set of discrete lattice bases for all atomic sites in the deformed state determined
by (Kn,fn). Then, for every x € fi,

n^oo C»(B(x,(n + ! ) - ! ) ) = G ( x ) e * ' ( L 6 )

where B(x, a) denotes the ball with centre x and radius a, and CN is the N—dimensional Lebesgue measure.
See Section 7c of [23] for details. In the phenomenalogical theories of plasticity (see [35],Si), G corresponds
to the elastic component F€ of the total deformation gradient Vg, i.e., G represents the deformation of the
lattice basis. The well-known elastic-plastic decomposition takes the form

F = Vg = G(G~lVg) = Fe Fp,

where Fp is the plastic component of the macroscopic gradient F.
In this paper we will consider a framework for structured deformations which will encompass the use of

modern techniques in nonlinear analysis and the calculus of variations. In particular, the principal fields will
be allowed to oscillate, which is in contrast with the notions of convergence considered in (1.5). We will work
in the space of functions of special bounded variation, SBV, introduced by De Giorgi and Ambrosio in [20],
and consisting of integrable functions u whose distributional derivatives are Radon measures fi = iia + /xa,
where /aa is absolutely continuous with respect to CN and \is is absolutely continuous with respect to
N-l dimensional Hausdorff measure HN~X restricted to the set where the function u experiences jump



discontinuities. We denote /xa by V u £ N , Vu being the Radon-Nikodym derivative of Du with respect to
£N. A structured deformation will be represented by a pair (p,G), where the macroscopic deformation g is
in SBV(ft,Rd) and G is an integrable tensor field in ft. A theorem of Alberti [1] allows us to recover the
approximation theorem of Del Piero and Owen (Theorem 5.8 of [23]). That is (see Theorem 2.12), given any
structured deformation (g,G) there exist deformations un in SBV(Q,Rd) such that

Un-tginL1 and Vun -^ G in M(Sl), (1.7)

where M(Q) denotes the space of Radon measures on ft. Given the lack of information on the convergence
of the jump set of un , this is a weaker statement than the theorem of Del Piero and Owen (see (1.5) and
Theorem 5.8 in [23]). Assume, for simplicity, that g € W M , i.e, there are no macroscopic cracks. Dun

consists of a part absolutely continuous with respect to Lebesgue measure, VunCN, and a singular part,
J{un), which is supported on the jump set of un, denoted by S(un). From (1.7) we have that Dun -* Dg
in the sense of distributions; hence, J(un) —> Vg - G in the sense of distributions, and so the difference
between macro and microscopic bulk is achieved by a limit of singular measures. However, under certain
additional conditions, a compactness theorem of Ambrosio [2] for SBV guarantees that Vg = Ga.e. in ft,
unless HN'1(S(un)) —> oo, i.e., there is a diffusion of cracks whose amplitude is tending to zero (see Remark
2.13 for details, also see Theorem 5.10 of [23]). This fact prevents ip from being bounded away from zero, if
we are to consider Vg ^ G on a set of positive measure, together with the convergence (1.7).

Given u € SBV, we associate an energy functional of the form E(u) introduced in (1.4). We define the
energy of a structured deformation (p, G) as the most economical way to build up the deformation using the
approximations in SBV, i.e.,

1(9,G) := inf {liminf E(un) : un -> (p,G)in the sense of (1.7)} . (1.8)
{tin} ^ n—>0° '

Clearly, this class of admissible sequences includes the limits of simple deformations in the sense of (1.5)
provided g and G are sufficiently smooth (see [23], Theorem 5.8).

The energy (1.8) is in relaxed form due to its own definition, and the first question we ask concerns the
description of the resulting interaction between the initial interfacial and bulk densities, t/> and W, appearing
in E. For example, if the macroscopic deformation g is smooth and Vg ^ G, as mentioned above this
discrepancy is realized by the diffusion of jumps in the approximating sequences. Thus, the resulting energy
should involve a new bulk density depending on Vg and G, via some combination of the initial densities
W and t/>. Characterizing this new function amounts to finding an integral representation for / . Integral
representations for similar relaxed energy functionals have been the focus of extensive research in the calculus
of variations over the past decade, for example see [5], [7], [9], [12], [14], [32], [33]. In these cases, relaxation
of E is taken with respect to the L1 (BV weak) topology, whereas in our present situation we relax with
respect to a more restrictive topology where gradients are constrained.

In the context of defective crystals, we interpret (1.7) and (1.8) as a means to realize the deformed
crystal by piecing together elastic crystals at a finer and finer scale; that is, the creation of the non-trivial
microstructure is achieved naturally by rearrangements within the crystal at a very fine scale. We expect
that there will be an interfacial energy associated with this process, in addition to the bulk (Helmholz free)
energy, and we prescribe that the overall energy of the deformation should be lowest ajnong all such possible
rearrangements which give rise to the same macroscopic and microscopic configuration. In this paper, we
characterize this total energy. In doing so, we are not taking the particular view that the integral in (1.4)
which contains rp corresponds to energy which is dissipated during the structured deformation, nor are we
ruling out such an interpretation. The functional (1.8) is the energy associated with deforming the crystal,
and it may be that energy corresponding to small interfaces is stored in the deformed configuration. For
now, we leave open these possibilities.

It is well known that the bulk energy W (the Helmholtz free energy) associated with a crystal may have
potential wells (at matrices where W vanishes) centered at matrices of a material symmetry (point) group
(see [15], [24], [28]). Thus, it is desirable not to impose a coercivity condition on W but only a growth



condition, 0 < W(A) < C(l + \A\P) for some p > 1, constant G, and for all A € MdxN. For p > 1, we require
admissible sequences to satisfy ViXn —* G in IP. This, of course, follows from (1.7) if W is p-coercive, i.e.,
if there exists a constant c such that c\A\p < W(A) for all X € MdxN, and if limn E(un) < oo. On the other
hand, if p = 1, and even under the coercivity hypothesis, the sequence {Vun} may develop concentrations.
To accomodate this fact, we will assume that Vun -^ m, where m € M(£l) and j^k = G. Based on the
above considerations, for W : MdxN —• [0,oo) and ̂  • Rd x 5 N - 1 —• [0, c») continuous functions, where
SN~l := {x € RN : |x| = 1}, we consider the following energies:

/0(s,G,ft) := inf I liminf / W(Vun)dx-

and for p > 1,
:= inf ( liminf / W(Vun)dx+ / iP([un],vUn)dHN~l

4
The main results of this paper are the following (see Theorems 2.16 and 2.17). Assuming that the initial

bulk density is Lipschitz, with p = 1, if ip has linear growth, is subadditive, and is homogeneous of degree 1,
then the following integral representations for I\ and /o hold:

/ g

s(g)nn

and
/o(p,G,fi) = / H1(Vg(x)yG(x))dx^fis(Q), (1.9)

for some Radon measure fj,s absolutely continuous with respect to TiN~1[S(g). The new bulk and crack
density are defined below. If p > 1, then, under some additional hypotheses, the following representation for
Ip holds:

/p(ff,G,n) = / Hp(Vg(x)Mx))dx+ f h([g])dHN'\ (1.10)
Jn ' Js(g)

where, for A,B e MdxN, X € Rd, v € S * - \

ifp(A, S) := inf ( / W(Vu) dx+ f 0([u], i/) dffN~x : u €
u I -/Q Js(u)nQ

r l
1 JQ U X~ )'

/i!(A,i/):=inf( / W°°(Vu)dx+[ rP([u]^u)dHN'1 : u € SBV^.R^.ulag. =
u I ,/Q,, Js(u)nQ

and

ft(A) :== inf < / ^([u],i/tt)rfff : u € S B F ^ R ^ J ^ l a g = t/A,eN, Vu(x)

Here i/ denotes the normal to the jump set 5(u), es is the standard basis vector (0, . . . 0,1) € RN , Q denotes
the open unit cube ( - 5 , \)N, and Qv, u\iV are defined in (2.1) and (2.2). The recession function of W (see

6



(2.11)), W°°, captures the linear behavior of W at infinity. The new bulk density Hp is, essentially, the same
for all p > 1, and it exhibits the interaction between the initial bulk density W and the initial interfacial
density ^(A,i/). This is hardly surprising in view of the fact that at points away from the macro-fractures
S(g), the jumps in the un are diffusing as their amplitudes tend to zero (see Remark 2.13). If admissible
sequences are taken so that {|Vtxn|} is bounded in IP, p > 1, then the new crack (interfacial) density h is
independent of W. Loosely speaking, in these cases it is cheaper to approximate jumps with jumps rather
than with sharp gradients. If p = 1 and if we only require L1 bounds on {|Vun |}, then there is a contribution
of W, via W°°, in the new crack density h\.

Just as it was important not to assume coercivity on W, coercivity and homogeneity of xp may rule out
certain important physical settings. If we include the extra condition on admissible sequences that they must
remain bounded in the BV norm, then we do not have to assume coercivity, while, if p > 1, we may also
relax the homogeneity assumption. In this case, in the new bulk H the density rp is replaced by fa, where

t->0+ *

It is the linear behavior in fixed directions at (amplitude equal to) zero of the initial interfacial energy density
xp which contributes to the new bulk density.

As it turns out, using our results we may recover some of the recently obtained integral representations
for relaxed energies (in the L1 topology) of functional consisting of bulk and interfacial terms. In particular,
by taking the infimum over all G € Ll(Ct,MdxN) on both sides of (1.9) and (1.10), we obtain some of the
representations of [7] and [12]. Also, in the context of crystalline solids, for a given macroscopic deformation
g € Wlil(QiRd) the energy associated with the optimal microstructure is given by the relaxation of E(g)
in the Ll (BV weak) topology. Moreover, if we assume coercivity on W, the direct methods of the calculus
of variations can be implemented to show that the infimum over all microstructures is achieved (for details,
see Section 5).

Lastly, we remark that in the SBV setting, we have the following analogue of (1.6). If Vun - * G i n IP,
then there exists a sequence m(n) such that for a.e. x

and so, as before, we interpret the lattice basis G(x) as a limit of averages of lattice bases resulting from
elastic deformations.

This paper is organized as follows: in Section 2 we briefly review properties of functions of bounded
variation, we introduce the notion of structured deformations (see Definition 2.11), we state the main rep-
resentation theorems, Theorems 2.16 and 2.17, and we prove that Ip(g,G, •) is a finite Radon measure (see
Proposition 2.22). Section 3 is dedicated to the characterization of the effective bulk energy Hp, i.e., the
Radon-Nikodym derivative of Ip(g, G, •) with respect to CN, while in Section 4 we identify the N — 1 dimen-
sional part of that measure, precisely, we obtain a characterization of the new surface energy density, hp.
Finally, in Section 5 we study some properties of Hp and hp, and we relate our relaxation result to others
previously obtained (see Corollary 5.4 and Proposition 5.6).

2 The Spaces BV, SBV, and SD. Statement of the Main Results
Let N and d denote positive integers. Let fi be an open, bounded subset of RN, Q its closure, and let
Q denote the open unit cube ( ~ 5 ^ ) N and Q(a,r) the open cube centered at a with side length r, i.e.,
Q(a,r) = a + rQ. We identify the space of d x N matrices, MdxN, with RdN, \x\ denotes the standard
Euclidean norm of x, and | / |LP is the IP norm of a function / . For integrable functions un,u : fl —> Rd,
un^u stands for weak star convergence in the sense of measures, i.e, for any </> e CQ(Q)

/ <t>{x)un(x)dx-+ I </>(x)u(x)dx.
Jn Jn



Let M(Q) stand for the space of Radon measures on fi. We allow for the fact that /i € M(Cl) maybe matrix
valued, and denote by ||/i|| its total variation measure. Throughout this paper, C(C) is a generic constant
which may vary from line to line. Let v € 5iNr~1, and let Qu be an open unit cube centered at the origin
with two of its faces normal to */, i.e.,

<?„ := { x € R * : | x . i / i | < ~ , | x . i / | < i , t = l , . . . , A T - l l (2.1)

for some orthonormal basis of RN, {1/1,1̂ 2, •.. , ^JV-I, ^} . We write Qv(a, r) := a + rQy, a € RN> r > 0. Given
A € Rd, let UA,I/ be the Revalued function defined in Qv by

{ 0 if - § < x - i / < 0
(2.2)

A if 0<x-v<\.

We state some basic definitions and properties of functions of bounded variation, BV, and of functions
of special bounded variation, SBV, which will be needed in the sequel. For more details, see Ambrosio [2],
Evans and Gariepy [26], Federer [27].

Definition 2.1 A function u € Ia(fi;Rd) is said to be of bounded variation, u € BV(fl;Rd)1 if for all
i € {1 , . . . , d}, j € {1 , . . . , N}, there exists a finite Radon measure fiij such that

/ Ui(x) — (x)dx = - /
Jn OXJ JQ

for every ip G CQ(£2). The distributional derivative Du is the matrix-valued measure with components fjiij.

We denote by \\Du\\ the total variation of the gradient measure^ i.e., \\Du\\(Cl) := £3?=i l l^

\\Dui\\(Q) := sup ifm divipdx : i/, € C o
a ( f i ,R N ) , |V|oo < 1 } .

The space BV is a Banach space equipped with the norm

and it is well known that Co°(£2; Rd) is dense in BV in the following sense.

Proposition 2.2 Let u € BV(Q). There exist un € Cg°(Q) such that

lim /|un-u|dz = 0
n—*oo Jr\
lim / |u n -u |dz = 0 and lim |

n—*oo Jr\ n—•oo

Definition 2.3 A set A C Q is said to be of finite perimeter in fi if XA € BV(Q), where \A denotes the
characteristic function of A. The perimeter of A in fl is defined by



Given u € BV{Sl\ Rd), the approximate upper and lower limit of each component u*, i € { 1 , . . . , d}, are
given by

t*t(x) := inf | t € R : lim+ ̂ £ N ({u{ > t) n (?(x, *)) = o |

and
u"(x) := sup | t € R : jjm+ ^ £ " ({m < t}nQ(x,e)) = o | .

The set

is called the singular set, or jump set of u, and the value u(x) := u (*?+* \x) ^ defined for every x € fi. It
is well known that S(u) is iV - 1 rectifiable, i.e.,

n=l

where HN~l(E) = 0 and iiTn is a compact subset of a C1 hypersurface for each n. If u € £F(fi;RD) , we
write

Du = VuCN + Dsu,

where Vu is the Radon-Nikodym derivative of Du with respect to CN, and D8u and £ N are mutually
singular.

Theorem 2.4 If u e BV(Q;Rd) then

i) for CN a.e. xeQ

] 7

tij /or /f^^1 a.e. x € 5(u), tAene exists a unit vector i/(x) € S N ~ \ normal to S(u) at x, and there exist
vectors TZ_(X),U+(X) € Rd, 5txc/i /̂iaf

lir?+ 7N / lu(2/) - u+(x)|^rdy = 0,
«-0+ € ^{y€C(.)(*,e):(y-»).|/(*)>0}

lim - ^ / |u(y) - u.(x)|^dy = 0;

Hi) for HN~l a.e. x0 € SI \ S(u)

I = 0.

We remark that, in general, (tZi)* ^ (u^Ji. In the following, we shall denote by [u](x) the jump of u at
x, defined by

[u](x):=u+(x)-u_(x).

If u e BV(Q; Rd), then the measure Du may be represented as

Du = VuCN + (u+ - u.) ®vHN-1 [S(u) + C(u), (2.3)



where Vu is the density of the absolutely continuous part of Du with respect to CN, and C(u) is the so-called
Cantor part. The three measures in (2.3) are mutually singular: if HN~l(B) < +00 then ||C(tt)||(JB) = 0,
and there exists a Borel set E such that CN(E) = 0 and ||C(u)||(X) = ||C(tt)||(X n E) for all Borel sets
-Yen.

The following subspace of BV was introduced by De Giorgi and Ambrosio in [20].

Definition 2.5 A function u € BV(Q,Rd) is said to be of special bounded variation ifC{u) = 0. We write
d

Next we state a generalization of the Besicovitch Differentiation Theorem, due to Ambrosio and Dal
Maso ([5], Proposition 2.2).

Theorem 2.6 If A and // are Radon measures in fi, \x > 0, then there exists a Borel set E C ft such that
fi(E) = 0 and for every x e supp fj, \ E

— (z) := lim —
dfiv ' o+ fi + eC)

exists and is finite whenever C is a bounded, convex, open set containing the origin.

The following SBV compactness theorem of Ambrosio (see [2]) will impose restrictions on the growth
conditions of bulk and interfacial energies that we will consider in the sequel (see Remark 2.13).

Theorem 2.7 Let $ : [0,00) —• R and 0 : (0,00] —• R be convex and concave respectively, nondecreasing,
and satisfying

lim —— = 00, lim —— = 00.
t-»oo t t—0+ t

Let {un} be a sequence of functions in 5BF(fi ,R d) nL°°(fi,Rd) such that supn |un|oo < 00 and

SUpi / $(|Vun|)d*+ / < 00.

Then there exists a subsequence {uni} and a function u € SBV(Q,Rd) such that

Urn ""* u strongly in L1 and Vun. —> Vu weakly in L1.

The theorem below was obtained by Alberti [1].

Theorem 2.8 Let f € L1(f2,RdxAr). There exists u € SBV{Sl,Rd) and a Borel function g : Q -> RdxN

such that

Du^f-CV + g-H^lSiu), and I \g\dHN'1 < C\f\LHn^K), (2.4)
•/5(u)nn

C depends only on N.

The next lemma is a simple corollary of the co-area formula (see Evans and Gariepy [26]), and a similar
result may be found in [12], Proposition 3.1, Step 1.
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Lemma 2.9 Let u € BV(Cl,Rd). There exist un piecewise constant, un € SBV, such that **„ -* u in
and

\\Du\\(n) = lim
n—*oo

= lim / \[un]{x)\dHN-\x).

Proof. By Proposition 2.2 we may assume, without loss of generality, that u is a Cg° scalar-valued
function. Further, suppose that u is nonnegative; the general case follows by considering the positive and
negative parts of u. Let Et := {x € Q : u(x) > t} and define

oo n—1

The above sum is finite, and it is easy to check that un —* u in L1(fi). Also,

i=0j=l

where the right hand side of the above formula is simply a Riemann sum for /0°° ||Dx£tll(^)<ft> which, by
the co-area formula, equals ||-Du||(£2). Thus, by the lower semicontinuity of the total variation and the fact
that u € Cg°(RN), we have

< Hminf||Dunj|(fi)

D

Lemma 2.10 Let u € BV(Q,Rd) satisfy u\dQ = uo for some u0 € C(Q,Rd). Then, for every e > 0 there
exists 0 < r£ < 1 such that re —• 1"" as e —* 0, and

\u(x)-uo(x)\dHN-l(x)<e.

Proof. Without loss of generality, assume d = 1. Let tru denote the trace operator. If u € BV(Q) then
we have (see Ziemer [39] Theorem 5.10.7)

f \tTu\dH*-1 < C\u\BV{Q)
JdQIdQ

= C \\Du\\{Q) + I \u\dx\ (2.5)

for some constant C. Fix e > 0. Since ||Z?u|| is a Radon measure, we may choose 6 such that C > 6 > 0 and

(2.6)

Let <p6 € C°°(<5) be such that 0 < tp6 < 1, <p$(x) = 0 if x G Q(0,l - «), </?*(x) = 1 if x G SQ, and
— • = O (6-1). Given A G (0,1) define uA(x) := u(Ax) for x G Q. Clearly, for a.e. x G Q, u(Xx) -4 u(x)

11



as A —> 1 . This, combined with the fact that |UA|BV is uniformly bounded, implies that u\ -+ u in L1.
Now, choose A = \(6,e) € (0,1) such that

We have

,jT |Uo(Ax) - uoix^dH^1 < £ , y j \u{\x) - u{x)\dx < £. (2.7)

/ \tru{x)-uo{x)\dHN-1 = A""1 / \tru{\x)-uo(
JdQ(0,\) JdQ

< \N'1 I |tr (Mu(Xx) - uo(x))) I d ^ - 1

JdQ

+\N~l f \uo{Xx) - uo(x)| dHN~\
JdQ

By (2.5) and (2.7)2 we have

N-1 < C\\\D(<p6(ux - i»))||(Q) + / |ti(As) - u(x)\dx) + |
K JQ ) 4

/
dQ(0,\)

J / f, (2.8)

and by (2.7)i

, 1 - 2 6 ) ) .

Hence (2.6), (2.7)3 and (2.8) yield

/ \u(x)^uo(x)\dHN'1<e./
JdQ(o,\)

D

Now we introduce the space of structured deformations within the SBV framework.

Definition 2.11 The space of structured deformations, SD(Q), consists of pairs (g,G) where

geSBV(n]Rd) and G € L1(fi;MdxN).

We use the result of Alberti (Theorem 2.8) to recover the approximation theorem of Del Piero and Owen
(Theorem 5.8 of [23] ).

Theorem 2.12 Let (g,G) € 5-D(17). Then there exist un € SBV(Sl,Rd) such that

un-+g in L^ftjR*) and Vun -^ G in M{ft). (2.9)
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Proof. We construct a sequence {un} such that for every n, Vun = G CN a.e. By Theorem 2.8, there
exists h € SBV(Sl,Rd) such that

V/i = G CN a.e.

Let {un} be a piecewise constant, L1 - approximation of g - /i on a rectangular grid, so that

un -> g- h in Ll (ft,Rd) and Vun = 0,£Na.e.

Set un := un + h. Clearly un € SBV(n,Rd), un -» 0 in L ^ R * ) , and for all n, Vun = Vh = G £ N a.e.
D

Remark 2.13 Note that we must have D8un —• (Vp - G)£N -f D8g in the sense of distributions and so, if
V p ^ G w e are forced, regardless of whether or not g e W1*1, to consider in (2.9) functions un € SBV\Wlfl.
Moreover, suppose that |Vtxn| are uniformly bounded in LP^p > 1. This is the case when {un} is an admissible
sequence for the energy Ip with p > 1 (see (2.10)). Then Theorem 2.7 implies that in any open subset E of
fi such that Vg{x) ^ G{x) for a.e. x € £,

The jump discontinuities of un diflFuse throughout the part of the body where Vg(x) ^ G(x) which, following
Del Piero and Owen [23], is called the micro-fractured zone. Moreover, Theorem 2.7 and Lemma 2.20 prevent
us to consider surface energy densities with sublinear growth in the case where W has superlinear growth.
Due to these considerations, in this paper we restrict our attention to interfacial energy densities ip with
linear growth at infinity.

Definition 2.14 Let W : MdxN -• (0,oo) and %j) : Rd x 5 N ~ 1 -> [0,oo) be continuous functions. Given
(g,G) € SD(fi), we define the following energies:

/o(p,G,ft) := inf ( liminf / W(Vun)dx+ f ^{[un]^un)dHN"l\ : un € SBV(Q,Rd),

W I n^°° [Jn Js(un)nn J

For p > 1, set

/p(s,G,n) := inf ( liminf / W(Vun)dx+ f rp([un)^un)dHN'l\ : un € SBV(Q,Rd),
{Un} { n-oo |yn Js(un)nn J

un -^ g\nLl{n,Rd), Vun -^ G, sup |Vun|Lp(aMdxN) < ool, (2.10)
» J

and t/p > 1, g e SBV(Q,Rd) n L°°(fi,Rd), we de/me

/~(fl,G,fi) := {mf} | Uminf jf W{Vun)dx + j ^
Un)dHN'A : un €

inL^fi.R**), sup|un|Loc(aRd) < oo, Vun -^ G,
n

>.OO
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Remark 2.15 The uniform IP bounds on admissible sequences {Vun} will allow us to consider bulk den-
sities W which may not be coercive, and for p > 1 they are equivalent to requiring Vun —> u in IP,
while, in view of the Principle of Uniform Boundedness, these bounds are redundant in the case p = 1.
The uniform L°° bounds for {un} are useful for proving that the energy is a Radon measure (see Lemma
2.21 and Proposition 2.22). However, using a truncation argument in Lemma 2.20 for p > 1 and with
g € SBV(fl, Rd) n L°°(fi,Rd), we have Ip(g, G, ft) = I™{g, G, fi), and so we may work simply with Ip. Also
note that, by virtue of the particular construction of {un} in Theorem 2.12, 7o,/p, and J£° are well defined.
Finally, we may avoid a coercivity assumption on xp (cf. (H2) ) by requiring admissible sequences to satisfy
supn ||Dun||(fi) < oo (see Remark 3.3 for details).

Let p > 1, W : MdxN -+ [0, +oo) and xp : Rd x SN~l - • [0, -foe) be continuous functions satisfying the
following hypotheses:

• (Hl)p there exists a constant C such that

\W(A) - W(B)\ < C\A - B\ (1 + IAI*-1 4- \B\*~l)

(W2) there exist constants ci, C\ > 0, such that for all (A,i/) € Rd x SN~l,

• (W3) xp{-, v) is a positively homogeneous of degree 1 function;

• {HA) xp is subadditive, i.e., for all AX,A2 € Rd and v e 5 N ~ \

xp{\\ 4- A2, v) < xp(\i,i/) 4- ^(^2» &0«

We recall that the recession function of W is defined by

W°°(J4) := limsup . (2-11)

If p = 1 then we assume further that

• (H5) there exist constants c ,L>0 , 0 < m < 1, such that

roo{A) _ W(tA)
t

for every A € M d x N with |J4| = 1, and for all t > 0 such that t > L.

It can be shown that if W is Lipschitz then W°° is Lipschitz, and positively homogeneous of degree 1 (see
[33]).

We now state two of the main results of this paper.

Theorem 2.16 Let (g,G) € SD and assume that W and xp satisfy hypotheses (Wl)i, (W2) - (W5). Then
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where, forA,BeMdxN,

Hi(A,B) := inf ( / W(Vu)dx + f il){[u],v)dHN'1 : u € SBV{Q,Rd),u\dQ = Ax,
u VJQ JS(u)nQ

andfor\€Rd, veS1*-1,

/ii(A,i/) :=inf < f W°°(Vu)dx+ I ibl\u\.vu)dHN~l : u e SBV(Qu,R
d), (2.12)

* I JQV JSM

(2.13)

In addition, we have

/o(0,G,n) = / H1(Vg(x),G(x))dx + fjL8(Q) (2.14)
Jn

for some Radon measure \x8 absolutely continuous with respect to HN~1[S(g).

Theorem 2.17 Let p > 1 and let (g,G) e SD with G € L*(ft,MdxAr), and assume that W and rp satisfy
hypotheses (Wl)p, (W2) - {HA). Then

Ip(g,G,Q) = / Hp(Vg(x),G(x))dx+ f h([g])dHN~\ (2.15)
Jn Js(g)

where, for A,BeMdxN,

HP(A,B) := inf ( / W(Vu)dx+ f ^{\u),u)dHN'1 : u e SBV(Q,Rd),u\dQ = Ax,
u I ^Q JS(u)nQ

\Vu\ e Lp(Q), / Vudx = fij, (2.16)

and for X € Rd,

fc(A):=inf( / *l>{\u),vu)dHN-1 : u e SBV(Q,Rd), u\dQ = ux,eN,Vu(x) = 0 £Na.e\. (2.17)
u Us{u) )

Note that in the definition of h, Q may be replaced by any Qu, for v € SN~l, i.e., for p > 1 the
new relaxed crack density is isotropic. As was mentioned in the introduction, it is possible to relax the
assumptions of coercivity and homogeneity on ip, still obtaining the representation of Theorem 2.17. For
simplicity, we prove the theorem under the original hypotheses and refer the reader to Remark 3.3 for the
appropriate modifications.

We divide the proof of Theorems 2.16 and 2.17 into several parts. First, using properties of i£° we
show that Io(g,G,-) and Ip(g,G, •) are non negative Radon measures, absolutely continuous with respect
to CN 4- \D8g\. Then, using techniques such as the blow up method (e.g. , [7], [32], [33]), we proceed to
characterizing the densities

The next lemma provides an upper bound for the energies. Let / denote either Ip (p > 1) or IQ.

15



Lemma 2.18 Let W : MdxN -* [0,+oo) be a continuous function, and let i/> : Rd x SN'X -+ [0,+oo) be
continuous with 0 < ^>(A,i/) < C|A| for some constant independent of \,v. Then for every (g,G) € SD(Sl)
and p > 1

C is a constant independent of ft.

Proof. By Theorem 2.8 there exists h e SBV(Q,Rd) such that Vh = G £N a.e. and ||jDft||(fi) <
- By Lemma 2.9 there exist {un} piecewise constant such that

Un-+g-h and \\Dun\\(n)-> \\Dg - Dh\\(Q).

Define un := un + fc. Clearly Vun(x) = G(x) for CN a.e. x and tin -» ^ in L1. Thus

/(ff.CIl) < fraud {[ W(Vun(x))dz+ [ xl>{[un){x),vUn{x))dHN-l{x)\
n [Jn Js(un) J

< C limmf | / W(G)dx + | |Dun | |(fi)|

< C liminf | / W(G) dx

Remark 2.19 Lemma 2.18 implies that for all (g,G) € 5£>(fi), Ip(g,G,Q) < oo (and also I0(g,G,n) if
p = 1) provided that fQ W(G) dx < oo.

Before we establish that Ip(g, G, •) and /o(<7,G, •) are traces of Radon measures, we prove that, for
g € L°°(Q,Rd), the additional L°° bounds on admissible sequences do not increase the energy Jp, p > 1.

Lemma 2.20 Let p > 1, g € 5J5F(fi,Rd) nL°°(fi,Rd), and assume tfia* (Hl)p and (W2) ftoW. If(g,G) €
52?(«) tten

7p(p,G,n) = /-(p,G,fi).

Proof. Clearly, it suffices to prove that J^°(p,G,fi) < 7p(p,G,f2). We apply a truncation argument in
the same spirit as in [7] (see Lemma 3.7) and [29] (see Proposition 2.8). Let & € Cg°(Rd,Rd) be such that

{ x if |x| < c*

0 i f | x |>e i + 1 ,

and |V<£i|z,°o < 1. Since g € L°°(Q,Rd) there exists an t0 such that for i > i0, |p|oo < & and </>i(g) = g CN

a.e. Let i>io and define w^x) := 0i(un(x)), where Un —> p in L1, Vun —»• G in L*, and

Urn ( / W(Vun) dx + / V([txn](*), ̂ un(x)) dHN'1) < Ip(g, G, SI)

16



for fixed e > 0. Clearly, |U£ |L~ < «*> S(t<) C S(un), and by the chain rule for C°° functions composed
with BV functions, it follows that Vt^ = V&(un) Vun CN a.e. Moreover, we have

= \<t>i(un(x)) - &($

Next, we consider the convergence of Vti£ as n -• oo. Note that \Vwx
n{x)\Lr < |Vun(x)|i,p < C\ for C

independent of n. Let f € Co(fi), then

(x) dx = / C(x)Vun(x) dx
7 { | | }

where |£ n | < 2 |^|L« /{x:|Un|>c'} |Vun(x)|dx. Since |p|Loc < e* and un -»• p in L1, due to the equi-
integrability of the {Vun} we have

\En\—•O as n-^oc,
and we conclude that

/ f(x)Vti4(x) dx - / ((x)G(i) dx as n -^ oo,

i.e., V ^ - ^ G a s n - ^ o o . Lastly, we compare the energies. Using (Hl)p and (H2) we have

W(Vun(x))dx+ f
J{x :

{x :|un|>e*+1}

< [w(Vun(x))dx+ f ^([Un}(x)^Un

+C / (1 + IVt^ndx + C / \[un]\dH

where we have used the fact that CN({x : \un\ > e i+1}) < e-( i+1) |un|Li. Next, for M > i0,

w 1 M E { / W(V<)dx+ / ^([^(^^^

Clearly, the term inside the parentheses in the last line of (2.18) is bounded independent of n, and so we
may choose M sufficiently large such that the last line in (2.18) is less than e. Hence, there exists some
t € {io, • - •, M} such that
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and we conclude that

The result follows by letting £-^0 + . •

Next, we obtain a subadditivity condition for Ip and IQ.

Lemma 2.21 If (Hl)p and (H2) hold, p > 1, and A,B,C are open subsets o/fi such that A CC B CC G,
then

Jpfo, G, C) < 7P(p, G, J5) + Jpfo, G, G\i ) ,

/or a// (#,G) € SD(Q) with g e Z,°°(fi,Rd). Ifp = 1 then

/ofo,G,O < /0(fl, G,B) + Jofo, G,C\i) and J ^ , G , G) < ^ ( ^ G,S) + J ^ , G, C\A)

foraU(g,G)eSD(fl).

Proof. Fix e > 0 and and let / denote Ip if p > 1, and either 70 or 7i if p = 1. Let un € 5BF(B,Rd)
and vn € 5BF(G\A, Rd) be "almost minimizing" sequences for I, that is,

lim / W(Vun(x))dx+ f iP([un](x)^Un(x))dHN^ < I(g,G,B) + e, (2.19)
n JB Js(un)nB

lim / W{Vvn{x))dx+ f tP([vn](x)1iyVn(x))dHN'1 < I{g,G,C\A) +e, (2.20)
n JC\A Js(vn)nC\A

un-+gui Ll(B,Rd), vn-+gin Ll(C\A,Rd), { IVunlLP^)}^^^!^^^)} are bounded, and

Vun — mi in JM(S) Vun — m2 in M(C\A) with ^ 7 = G> l' = ^ 2-

In the case where / = 7P, p > 1, we have mi = XB<? and m2 = Xc\^^- Moreover, by Lemma 2.20 if p > 1
we may assume that the sequences {un},{vn} and {Vun},{Vi>n} are uniformly bounded in L°° and Lp,
respectively.

Consider
i := {x € B : dist (x, A) < <5},

where, by virtue of the countable additivity property of the Radon measures, 6 is choosen such that
i = 0. Define

an := |un - vn\l^AW and nn := [[|un - t ^ l j ^ ^ j j J ,

where [[•]] denotes the greatest integer function. For i = 0, . . . , /cn - 1, define

V;n := [x € B\A : 6 - — 4- —^— < dist (z , i ) < 6 - —

For each t we introduce cut off functions which are either 1 or 0 on the complement of V™, that is, we
consider <ft € G^°(RN, [0,1]) such that |V#* |L~ < C(anKn) and

{ 1 if dtet ( * , ; ! ) < « - £ -

0 if dist (x, A) > 6 — •£- -f Q
i"̂ 1 .

For each t = 0,. . . , «n — 1 define
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where we have extended un by 0 on the complement of B and vn by 0 on the complement of C\A. It is clear
that for each i

| z i (x) -p(x) | L i ( C | R-)->0 as n -^ 00.

Using (Hl)p and (W2), we have

f W(Vzi(x))dx + /
Jc Js(z*n

< f
JB

/
s(z*n)nc

f /
B JS(un)nB

/ W(Vvn(x))dx+ I
c\A Js(vn)nc\A

+C / (1 + |Vun(x)|p + \Vvn(x)\n dx + C(an«n
7v;n

+c / iKiidH^^ + c / iKiidH^1

J5(un)nv.n »/5(vn)nv;n

Thus, summing over i, and using (2.19), (2.20), we obtain

{/. /
JC

( | n n / ( I n H /
B JC\A JS(un)nB

+ C WvJldH^+Cia^yiun-v^B^}. (2.21)
Js(vn)nc\A

If p > 1, the L°° bounds on {un} and {vn} yield

— (anKn)P\un - t;n|Jp <
Kn

= C\un - ^ n

where a > 0 This, combined with the uniform bounds for {Vun}, {Vvn}, (H2), and (2.19), (2.20), implies
that the last two lines of (2.21 ) tend to 0 as n —* oo. Hence, we may choose in € { 0 , . . . , Kn — 1} such that,
setting wn := z^n, we have wn —* <? in Ll(C,Rd) and

?,G,C) < limsup/ W(Vwn(x))dx+ ff
s(wn)nC

The result now follows by letting e —> 0 + , as long as we show that supn \Vwn\LP(C#d) < oo and that

Vwn -^ x^^i + Xc\^m2 in -M(C),

since, by definition of A,

™ + X m ) dm1 dm2 „ ^N

+ Xc\AdC*=G **«•*€ C
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To this end, we recall that

/ \Vwn\*dx< I |Vun|"dx + f IVVnl'dx + iOnKnY* f \un - Vn\* dx,
Jc JB JC\A JB\A

and so supn |Viyn|x/P(c,Rrf) < oo. As for the convergence, let f € CQ{C) and consider an increasing sequence
of open sets Am C A such that dist(Am, dA) = m"1. Let dm € Cb(C, [0,1]) be a sequence of cut-off functions
such that 0m(x) = 1 if x € Am and 0m(x) = 0 if x $ Am+i' Then

n-*oo
lim / £Vwn dx = lim / (f#T Vun + f(1 - ^)Vt/n + £(un - vn)

= lim lim I / temVundx + / { ( ^ - e^Vxindx + / {(1 - 0m)Vt;ndx

C(̂ m - (p^)Vvndx \ + limlim I?n,

where

\En\ =

Thus

--{OLnKn)\un-Vn\Li ->0.

lim I £Vwndx = lim lim i / ^ m Vu n dx-f / ^(1 - 0m)Vvndx > + lim lim Fn ,m
—*<x>jQ m—+oo n—*cx> I j B JC\A I m~>oon""*°°

= lim i / ^ m d m i + / e(l~»m)dm2i+ Urn lim Fn,m
m->o° [ 7 B 7C\A J m—oon—cx>

= / f d m i + / ^dm2-(- lim lim Fn,m,
JA JC\A m—oo n-^cx>

/
JC\A

where

Finally, we note that limm limn Fn,m = 0- Indeed, recalling the definition of <j>x
n, for each m we may choose

n » m such that <f>\? (x) = 1 if x € ^4m, and so

Urn lim sup / \<fc-0m || Vun | dx < 2 lim
m-*oo n-»oo J B m->o

A similar argument gives

= 0.

lim lim
m—»oo n—»oo

Using Lemmas 2.18, 2.20, and 2.21, we show that if (p,G) € SD(Sl), G € -Lp(fi,MdxAr), g €
if p > 1, then Ip(g, G,-),p>l, (also Jo(5, G, •) if p = 1) is a Radon measure, and

/,(<?, G, •) (also h{s, G, •) if p = 1) « £ * + ||£>.ff||.
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Proposition 2.22 Assume that (Hl)p and (W2) hold and let g € L°°(fi,Rd) if p > 1. 27ien, /o rp > 1,
Ip(g, G, •) ("a/so 70(^, G, •) i/p = l ) is the trace on {U C fi : U is open} of a finite Radon measure on B(Q)

Proof. We proceed separately for Ip and h- First we consider Jp, p > 1, and we use an argument
introduced in Fonseca and Maly [31].
Step 1. We assume coercivity, i.e., there exists a constant C > 0 such that W(A) > C\A\P for all A € MdxN.
In this case, by means of a diagonalization procedure we can find a minimizing sequence for Ip(g, G, fi), that
is, there exist un € SBV{Q,Rd) such that un -> g in L1, supn |Vun|z,p < oo, Vun -> G in L*\ and

Jp(<?,G,fi) = Urn \ I W(Vun(x))dx+ f ^([un)(x)^un^))dHN^1 \ .

After passing, if necessary, to a subsequence, we may find \i € M(Cl) such that

and, in particular, _̂
fi(fi) = Jp(s,G fn). (2.22)

Let F c f i b e open. We must show that /i(V) = Ip(g, G, V). We always have,

Ip(9,G,V) < liminf / W(Vun(x))dx+ f ^{[un){x),vUn{x))dHN'1

n-+oo Jv Js{un)nV

< fi(V). (2-23)

Let e > 0 and take W CCV such that /z(V\W) < e. By Lemma 2.21, (2.22), and (2.23),

Letting e —• 0 + , we obtain
»{V)<Ip(g,G,V). (2.24)

On the other hand, Lemma 2.18 implies that

Denote by A the Radon measure on the right hand side. Let K CC V be a compact set such that \{V\K) < e,
and choose W open such that K CC W CC V. Using Lemma 2.21 and (2.23), we have

iP(g,G,v) < jp(£,G,jy)+ /„(</,

and, together with (2.24), the result follows by letting e —• 0+ .
Step 2. We remove the coercivity assumption. Considering in Step 1 the bulk density W£ := W(-) + e\ • |p ,
we obtain measure representations /xe for Ip{g, G, fi), where 1^ is the energy in which W is replaced by W€.
Let {txn} be an admissible sequence, i.e., un —> p in JL1, Vun —> G in 1^. Then, by Step 1,

< liminf

<oo,
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and so, after extraction of a subsequence, there exists /x € M{£l) such that /x£ -^ /z, and for every open set
Veil,

IP(9,G,V) < Pp(g,G,V)

hence,
/ P ( < 7 , G , V ) < M 0 0 - (2-25)

Conversely, given e > 0, there exists a sequence {*;„} admissible for Ip such that

> lim { / W(Vvn(x))dx+ f
[ n)nv

and so, for n sufficiently large,

He(V) < hminfl [ W*(Vvn(x))dx+ f 1>([vn](x),vVn(x))dHN-l\
£ [Jv Js(vn)nv )

[ \Vun\pdx
Jv

Letting e —• 0+ we obtain

It remains to prove that /x(V) > Ip(g,G, V). This follows by using the upper bound on Ip (Lemma 2.18),
(2.25), and proceeding exactly as in the last part of Step 1.
Step 3. The method used in Steps 1 and 2 to prove that Ip is a Radon measure may fail for Jo, as we are not
able to show that 7o(<7, G, fi) is realized by some admissible sequence {un}. Thus, we use the De Giorgi-Letta
criterion (see [22]) to establish that Io(g, G, •) is a measure. The following four conditions are necessary and
sufficient for guaranteeing that 7o(<7, G, •) is the trace of a Borel regular measure on the set of open subsets
of Q. Let JB, C be open subsets of fi.

• (a) if B C C then I0(g, G, B) < I0(g, G, C);

• (b) If B fl C = 0 then Jo(0, G, B U C) = J0(S, G, B) + Io(<7, G, C);

• (c) I0(g,G,BUC)< J0(fl,G,B) + 70(p,G,C);

• (d) Jote,G,£) = sup{/o(0,G,C) : C C C B } .

Conditions (a) and (b) hold trivially. Condition (d) follows by using the upper bound measure A for Jo
(Lemma 2.18) and the subadditivity, (Lemma 2.21). This brief argument is given in the last part of Step
1. To prove (c), it suffices to follow Proposition 2.10 of [29], noting that we have already established the
subadditivity property, Lemma 2.21. •

3 The Bulk Density
We recall the definition of the density function Hp(A,B),p > 1, introduced in (2.16),

HP(A,B) = inf ( / W(Vu)dx+ f ^([u^u^dH^1 : u € SBV{Q,Rd),u\dQ = Ax,

, f
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where A,B € MdxN. We give the following limit characterization for Hp.

Proposition 3.1 Let p > 1 and assume that (Hl)p,(H2), and (Hi) hold. Then

HJA,B) = inf (liminf I / W(Vun)dx+ f ^{[un),uUn)dHN'1 : un € SBV(Q,Rd),
{Un} I "-OO [JQ JS{un)r\Q

un -> Ax in L1, Vun -^ B, sup |Vun|i," < <x> >
n J

=: HP(A,B).

Proof. Step 1. We prove that HP{A,B) < HP(A,B).
Fixue SBV(Q,Rd) such that u\dQ = Ax, |Vu| G I^CQ), and/ Q Vudx = J5. We write u(x) =

where <?!> € SBV(Q,Rd), <f>\dQ = 0 , and

f V<f>(x)dx = B-A.
JQ

Extend <f> periodically, with period one, to RN and define un(x) := Ax -f ^<f>(nx). Then

un(x) —• Arin L1, Vun -^ B, and sup|Vun|i,p < oo.
n

Thus, using (H2) we obtain

+ [
Js(un)nQ

HP{A,B) < limuif I [ W(Vun)dx

= liminf J / W(A + V^(nx)) dx + / ^ f~M(nx), is*) dHN'\x) 1
n—oo [JQ JZglnQ \ n / J

S(<f>)nnQ

,vt)dHN~\y).
JS{<t>)nQ

Taking the infimum over all such <f> € SBV we obtain HP{A,B) < HP(A,B).
Step 2. We claim that HP(A,B) > HP{A,B).

Let {un} be an admissible sequence in SBV(Q,Rd), i.e., un —» Ax in L1, Vun -^ B, and supn

oo. Let Qk be the cube (—5 + £>| — jg)^- Using the argument given in Lemma 2.21, for each k we can find
Q'k such that Qk CC Q^ CC <?, and u£ such that

uj^(x) = Ax for x € 9Q, u*(x) = un(x) for x € Qk,

and for each fc

u£ - • Ax, Vujj -^ XQ'B + (XQ - XQL ) A as n - • oo, |Vu^|LP < C(|Vun|Lp + \A\) + 1.

Thus, we may take a diagonal subsequence vk := w f̂ĉ  such that vk\aQ = Ax , t;* -+ Ax in L1, Vvjt -̂ * B,
and

limsupj / W(Vt;fc(x))dx+ /pj / ( f c ( ) ) + / ^(N^

= liminf ( / W(Vun(x))dx+ / *([un],vUn)dHN71). (3.1)
n^°° (JQ Js(un)nQ J
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Without loss of generality we may assume, upon extracting a subsequence, that limsupfc in (3.1) is lim*.
Lastly, we modify vk to accommodate the condition on the average gradient, and we consider two cases.
Case 1 (p > 1): By Lemma 2.10, there exists rk —» 1~ such that

/ \vk(x)-u0(x)\dHN-\x)<l, (3.2)

where uo(x) := Ax. Define

«o(x) if x € Q\Q(0,rk)-iwk(x)
vk(x)

where Ck is chosen such that JQ Vwk(x) dx = B, that is,

Ck := „ „ , * „ \B- ( Vvhdx-ACN{Q\Q{Q,rA .

Using the equi-integrability of the sequence Vvk and the fact that Vvk -^ J5, we have

Cfc -> 0 as k - • oo. (3.3)

Clearly tt;* —»txo in L \ and by (Hl)p, (W2), we have

/ W(Vwk)dx + / ^KKx),^)^^1^) < / N

Q Js(wk)nQ JQ

iCfci ( I + / ivvfcr
idx+ / ivufcr1***} + /

I JQ JQ J Js

C f \ttvk{x) + Cfcx - uoWldff^-1

JdQ(0,rk)

/
s(vk)

f \ttvk{x) + Cfcx - uoWldff^-1^).
dQ(0,rk)

Using (3.2), (3.3), and the fact that {Vvk} and {Vwk} are uniformly bounded in IJ'iQ.R0), we obtain

lim { / W(Vwk)dx+ f 4>([wk](x),vWk)dHN-l(x)\
*-*<» [JQ Js(wk) J

/ }
y5(

< lim { /

(p = 1): By (3.1), (W2), using the fact that supn \Vvk\^ < oo, and after extraction of a subsequence,
we may find a Radon measure /? such that \\Dvk\\ -^ /?. Thus, for all but a countable number of e > 0,

,1 - £)) = 0, and \\Dvk\\(Q(0,1 - e)) - /J(Q(0,1 - e)) as * - oo. (3.4)

Fix such an £, and define

(x) i£xeQ\Q(0,l-e)
wkye(x) :=

Ck,eX

where Ck^t is chosen so that JQ Vwk,e(x) dx = B, i.e.,

{ uo(x

vk{x) + i

B - / V t * d i - A£N(Q\Q(0, l-e))\.
JQ(0,1-C) J
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The weak star convergence (in the sense of measures) of Vi;* to B implies that

lim+ lim |C*,c| = 0; (3.5)

hence,
lim lim

Using (Wl)i, (W2), we obtain

JQ '* JS(wk,e)

< f W{Vvk + CM)dx + / 1>{[vk](x),vVk(x))dHN-\x)
JQ JS(vk)

+ C (\A\ + 1)£N(Q\Q(O, l - e ) ) + C ' / |t:

+ 1) £N(Q\Q(0,1 - e)) + C l C e l ^ " 1 ^ ^ 1 - e))

+C / \trvk(x)-Ax\dHN-1. (3.6)

Next, in the spirit of Lemma 2.10, we address the asymptotic behavior of the last term in (3.6). Let
<t>s G Cfi°(Q) be a sequence of cut-off functions such that, 0 < <j>s < 1, <t>s = 0 if x € Q(0,1 — e — 2<5), <fo = 1
if x € Q\Q(0,1 - £ - 6), and | V < ^ | L ~ = O ( | ) . By (2.5)

/ Itn^-Axldff*-1 = / Itr^^xJ^^xJ-AxJIdif^"1

JdQ(0,l-e) JdQ(0,l-e)

< f d\\D(4>*-(vk-Ax))\\+ [ |(
JQ(0,l-e) JQ(0,l-e)

< j _ d{\\Dvk\\ + \A\CN) + \

Thus, from (3.4) we obtain

lim lim / |trvic(x) - AxldH*-1 < Um lim lim (||.Dt;k||(Q(0,l-e- 6)\Q(0,l-e-26))

c f - £ ) ) = 0. (3.7)

Finally, setting £ = 1/j, we take a diagonal sequence of wk,ei Wj := Wj k/x\, satisfying

™Ax)\dQ = Axi I Vti7j-(x)dx = B,
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and, by (3.5), (3.6), and (3.7),

lim sup 1 / W(VWJ) dx+ f V(K](x), vWj (x)) dHN~l{x) 1
i-.ro [JQ Js(wi) . J

< liminf ( / W(yvk)dx+ f rl>(lvk)(x),vVk(x))dHN-1(x)\ .fc-oo yjQ j S ( V k ) j

D

The following characterization of the relaxed bulk density holds for Ip, p > 1, as well as for Jo-

Theorem 3.2 Let p > 1 and W, ip satisfy (Hl)p, (W2) - (W4). Then for (g, G) € S-D(fi), with g € X°° if
p> 1, we have

d I p ^ - \ ,G(x)) CNa.e.x,

where Hp is given by (2.16). Ifp = 1 then for all (g,G) € SD(il) we have

Proof. Step 1.[Lower Bound] Let A C fi be an open set and let I{g,G,-) denote either Io(g,G,-) or
h(g,G, •) if p = 1, and /($,G, •) = Ip(g,G, •) if p > 1. We will prove that

I(g, G,A)> f Hp{Vg{x), G(x)) dx. (3.8)
JA

FVom (3.8) and from Proposition 2.22, it will follow that

Let e > 0 and let un be an admissible sequence for / such that

e + I(g,G,A)> lim { / W(Vun(x))dx + / ^{[un]{x)^Un{x))dHN'l{x) } , (3.9)
n"->°° [ ^ J5(un)n^ J

where un —> p in L1, supn |Vun|Lp < oo, and Vun -^ m in ^(^4), with m = G • CN + m8, m8 ± £N. By
Theorems 2.4 and 2.6, for CN a.e. XQ G fi, we have

Urn - ^ J T / |»(x) - g(x0) - Vg(x0) • (x - xo)| dx = 0, (3.10)
e—0+ e: JQ(xo,e)

lim i / |G(x) - G(xo)r dx = 0, (3.11)

and

Choose such a point xo- Upon extraction of a subsequence, which we do not relabel, there exists a non
negative Radon measure fi such that

W(Vun) dx + WunU^dH"-1 [S(un) A ti.
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We claim that proving

- ^ ( * o ) > tfp(V5(zo),G(xo)) (3-13)
dL

implies the lower bound. Indeed, from (3.9) and (3.13), we have for all A CC A

,G,A) > f dfx
JA'

> / -%(x)dx

> f Hp(Vg(x),G(x))dx,
JA'

and (3.8) follows by letting A1 / A and e -> 0+. It remains to prove (3.13). Using the countable additivity
property of /i, choose radii e > 0, e —> 0 + , such that /i(9Q(x0, c)) = 0. By Theorem 2.6 we have

/
s(un)nQ(x0,e)

(x0) = lim Urn \ \ f W(Vun)dx + ^

= Urn lim I fw(Vun(x0 + ey))dy + ± f iP([un)(x0 + ey),vUn)dHN-l{y) 1 .
€->0+n-+oc \ J Q E J(S(un)-*o)ng I

Define

and

By (3.10) we have
lim lim \un,e(y) - uo{y)\LHQ) = 0,

c—•()+ n—>oo

and, due to the homogeneity of rp,

= Urn lim ( / W(Vun,£(y))dy + / ^([un,e}(y)^unAy))dHN'\y)\ . (3.14)

Case 1 : We assume coercivity, i.e., there exists a constant C such that C|J4| < W(A) for all A €
Then (3.14) implies that

supsup|Vun,c|Lp(Q) < oo.
e n

Let <f> 6 C0(Q). By (3.11) and (3.12) we have

lim lim / [Vun(x0 + ey) - G(x0)] <t>(y) dy

= Urn ( / (G(x0 + ey) - G(x0)) <t>(y) dy + ± [ <t> (^^) dm8(x)\
*-o+ [JQ e" JQ(XOie) \ e J J

= lim *
c—o+ eN

and

PSL + U 4>[>—?L)dm.{y)lim 4 I /" ^ f LZf£) dm,

By virtue of the separability property of C0(Q), we may extract a diagonal subsequence Vk € SBV(Q,Rd)
such that

-^ G(x0), sup|Vt;fc|Lp < cx>,
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and

——-(xo) = lim < / W(^7vk{x))dx + I xp([vk](x)1i/Vk(x))dH (x) > . (3.15)
dC fc->oo [JQ JS(vk)nQ J

The inequality (3.13) follows from Proposition 3.1 and (3.15).
Case 2: Next, we remove the coercivity assumption. To this end, let We(-) := W(-) + e\ • \p and let {un} be
an admissible sequence for / satisfying (3.9). Let A C fl be open and let fi£ € M(A) be such that

N + il,([un],vUn)dHfl-1[S(un) - /*,.

By Case 1 we have

where if* is given by (2.16) with We replacing W. This, combined with (3.9) and the uniform LP bound on
, gives for all A1 CC A,

,G,A) > lim f W{Vun)dx+ f
n^ocJA JS(un)nA

> lim / We{Vun)dx + /
s{un)r\A

> f dfie-eC
JA'

> f Hp(Vg(x),G(x))dx-eC
JA'JA

Letting Af / A and then e —• 0 + , we conclude that

Ug,G,A)> I Hp{Vg{x),G(x))dx.
JAA

Step 2: [Upper Bound] Fix e > 0 and consider an admissible sequence un € SBV(Q,Rd) for HP(A,B), i.e.,
un(x) -+ uo(x) := Vp(xo)x in L1, Vun -^ G(x0), supn |un|Lp < 00, and

> lim { /
n-*°° [JQ

•Hp(Vg(xo),G(xo)) > lim < / W(Vun)dx-h / il>(\un],vu )dHN~~1). (3.16)
/S(un)nQ J

Using the argument given in Proposition 3.1, Step 2, we may assume, without loss of generality, that
u>n\dQ = wo- Thus, we may write un(x) = uo(x) + Cn(̂ ) where

Cnlag = 0, Cn - Oin L1, sup IVCnU* < oo, and VCn -^ (G(x0) - Vj(x0)).
n

We extend Cn periodically to all of RN, with period Q. By Theorem 2.8 there exist
he € SBV(Q(xQ,e),Rd) such that

Vh£(x) = G(x) — G(xo) + V<?(xo) — V^(x) for CN a.e. x € fl,

and
||D/ic||(Q(xo,e)) < C(N) j \G(x) — G(xo)| -f |Vp(xo) ~ Vp(x)|dx =: a(e),

where Xo is chosen such that

))\vdx\ -+0as el
J
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Hence,

^ — 0 a s s — 0 . (3.17)

By Lemma 2.9, there exist /ic,n piecewise constant such that for each e,

hen _ -he ^ Ll(Q(x0,e),Rd) and \\Dhe,n\\(Q(xo,e))\\Dh£\\(Q(xo,e)) (3.18)

as n —̂  oo. Now define

Wc,n(a:):=0(x) + eCn

For each e > 0, tu£,n - » $ in L1, supn |Vu>£,n|i,p(Q(l0,£)) < 00, and

Vtu«lB(x) = Vp(io) + VCn ( £ 7 £ £ ) + G(x) - G(x0) - G(x)

in Q(io,e) as n —» 00. Thus {tu£in}n is an admissible sequence for I for each e > 0, and by (W4) we have

,-) J(g>G,Q(x0 ,e))
( J ) = l™

<limsupUminf|^- / W(Vu;£,n) di + -4 / V>(K«K*W JdH^-^x) 1
0 + n - * ° ° ( / ^ Q ( ) e JS()nQ(0,e) ' J

/
(/ S(w,,n)nQ(x0,

< Umsupliminf i 4r / f
£_0+ n - ° ° [£ JQ(xo,c)

/
S(ht)nQ(x0,e)

/ m<.n](x),VH9tn)dHN-1)
S(he,n)nQ(xo,e) J

< Umsupliminf I f W(Vg(x0) + V£n{y))dy
c—0+ n">o° ^Q(0,l)

/ [ 4- VCn(2/) + G(x0 + q/) -
Q(O.l)

I
JS(g)nQ(xo,t)

+7* I
C" JS(ht)nQ(xo,e)

On the other hand, by (H3) we have

)dHN-1 +± f ^([fc
f Js(h.,n)nQ(xo,t)

limsupUmmf 4 / 4, (e[Cn] (*IL*°tV(X)
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< liminf /
Js(Cn)r\Q{0,i)

and so, by (Hl)p and (3.18) we conclude that

< liminf / W(Vun(y))dy + lim sup lim inf / \G(x0 + ey) - G(xo)|
n-^oo 7^(0,1) c-»0+ n-^°o JQ(Q,1)

) + V<n(y) + G(x0 + ey) -

+ Um inf /

/
S(g)nQ(xo,e)

Since {VCn} are uniformly bounded in L*, (3.16) - (3.17) and {H2) imply that

/
S(g)nQ(xo,e)

The result follows by letting £ —* 0+.

Remark 3.3 If p > 1, we may replace hypotheses (W2) and (W3) by

• (W2)* there exists a constant c> 0 such that

0<^(A,i / ) <c|A|

f o r a l l ( A , i / ) € R d x 5 A r - 1 ;

• (H3)* there exist constants C,l,a > 0 such that

for every (A, v) € Rd x S7^"1 with |A| = 1, 0 < t < Z, and where \p0 is the positively homogeneous of
degree 1 function defined as

)
i—0+

We must redefine the energy Jp as follows:

liminf : un

sup (IVUHILP^M-XN) + |un|BV(n,R«)) < oo I.
n J

The integral representation for Ip provided in Theorem 2.17 holds true, except that the new bulk density
(Theorem 3.2) involves Vo in place of rp, that is,

HP(A,B) := inf ( / W(Vu)dx+ f ^{[u],u)dHN'1 : u e 5BF(Q,Rd),u|dQ = Ax,u I JQ JS(U)

\Vu\ e L>(Q)i I Vudx = Et\.
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The proof of Theorem 3.2 is carried out with the obvious adaptions. As an example, (3.15) would read

da if 1 f N-i 1
—^rr(xo) = lim < / W(Vvk{x))dx-\ / ip([£kVk](x),i/Vk(x))dH (x) > ,
d£N *-°o [JQ ekJs(vk)nQ . J

with t;* - • u0 in L1, Vvfc — <^(x0) in IP, and supfc ||Z?Vfc||(Q) < oo. Using the truncation argument
introduced in the proof of Lemma 2.20, for all 6 > 0 we may find a new sequence wk = wk(6), with the same
convergence properties as vk and satisfying

sup|u;fc|£,<« < C(6), sup{|Vu;jfc|L*> -I- ||.Dwfc||(Q)} < oo,
k k

and

lim ( flim ( f W(Vwk(x))dx + -

Since wk are uniformly bounded in L°°, and by virtue of (H3)*, we have

lim { / W(Vwk(x))dx+ f M[wk}(x),vWk(x))dHN-l(x)\
fc-oo [JQ JS(wk)DQ j

> 6 + Hp(Vg(x0),G(x0)).

It suffices to let 6 —> 0+ to conclude that

We remark that replacing (H2) — (W3) by (H2)* — (H3)* may accommodate for surface densities ip which
appear naturally in fracture mechanics, for example, functions V(A, v) which are sublinear in A and approach
a constant as |A| —• oo.

4 The Crack Density

We will need the following limit characterizations of the functions h\ and h.

Proposition 4.1 Assuming (Wl)i, {H2), {HA), and (W5), we have

fti(A,i/) = inf ( Uminf / W°°(Vun)dx+ f itiMvuJdH*-1] : un € SBV(Qu,R
d),

{Un} I n-oo yQv JS(un)nQv J

un -» uAtl/ in LHQ^O.l),!^), Vun - 0 J.

Proof. The proof of Proposition 4.1 is identical to that of Proposition 3.1. •

Proposition 4.2 Letp>l. If(Hl)p, (W2), (W4), and (H5) hold then

h(X) = inf /lim inf / ^ ( [ u n l ^ u j d ^ " 1 : un € 5BF(QI/,R
d),i/ € S^"1 ,

{Un} (̂  n-.cx> Jsiu^nQ.,

tin — UA,,, in L^Qi/CO,!),^), Vun — 0 in Lp \

=: MA).
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Proof. To prove that h < h, we consider u = UA,CN + $ with 4>\dQ = 0, V0 = 0 CN a.e. Extending
periodically to all of RN with period Q, and setting un := UA,CN +n~ V(*WOI it is easy to see that un —»UA,e
in L1, Vun = 0 £ N a.e., and

)dHN'1^ f tP([u],vu)dHN-1 asn
JS(u)nQ

00.
S(un)nQ

Conversely, let v € SN"X and let un € SBV(Qu,Rd) be such that un -> UA,»/ in L1 and Vun - • 0 in 1^
strong. By Theorem 2.8, for each n we choose fn e SBV(QV{Q, l),Rd) such that V/ n = Vun C

N a.e. and
ll«D/nll(d/) £ C|Vun|x,i(Qv. By Lemma 2.9, there exist pUjm piecewise constant such that pn,m —• / n and

\\Dgn,m\\{Qu) -» H^/nlKC). Let

Clearly, Viun,m = 0 CN a.e. and limn limm \wnim - ^A^IL1 = 0- Moreover, using (W2) and the fact that

we have

lim lim )dHN'l<\im f
n^oc JS

f [ l
S(Un)nQu

Hence, we may extract a diagonal sequence in m,n, say Vk such that Vk —• u\^ in L1((5,/,R
d), Vv/c = 0 a.e.,

and

lim / 1>(\vk],Vvk)dHN-1 < lim
J

Next, we amend the sequence Vk to equal u\yU on 9(5»/. To this end, by Fubini's Theorem there exists
Tk —• 1~ such that, upon extracting a subsequence,

*°' (41)

Define

r
1

ifx€^(O,l-rfc)

O,l)\^(O,l-rfc).

Clearly Vvk = 0 a.e., and by (4.1), (W2), we have

Urn / 1>{[*k),Vvh)dHN-1 < lim / ^ ( W ^ u . ) ^ " 1 . (4.2)

Let R be a rotation such that Res = ̂ , and set 6k := t5/k(Ar). It follows that {#*} is an admissible sequence
for h and

// ]
s(6k)nQ

which, together with (4.2), concludes the proof.

We will also need the following continuity property for hi and h.

32



Proposition 4.3 Let W,ip satisfy (Hl)p - (W5). Then there exists a constant C such that

\hx(\, v) - /u(A', i/)| < C\X - A'| if p = 1 and |/i(A) - /i(*')l < C|A - A'| if p > 1.

O, i/p = 1, t/ien hi is tipper semtcontanuous twtft respect to v.

Proof. We start by proving that

A'|. (4.3)

Fix e > 0. Using Proposition 4.1, let {un} be a sequence in SBV(QU, Rd) such that un -> UA',». in Ll(Qu, Rd),
Vun -^ 0, and

» > lim { /
QV

By Lemma 2.9 we may find a sequence of piecewise functions {vn} such that

Vn -> tiA,̂  ~ UA',,f HDVnlKQ,,) ^ II^^A,^ - Uy^WiQv) = |A - A'|.

Then

and so, by Proposition 4.1,

hi(\,v) < liminf/ \l){[wn],vWn)dHN~l +e

n~*°° ^S(iun)nQ l /

ip([un],i/Un)dH 4- / ^j([vn], ^vn) dH >-f £

< MA» + e+|A-A'|,
where we have used the subadditivity of ip. The inequality converse to (4.3) is proven in the same way. Also,
this argument is valid for h as well.

Next, we show that, for fixed A,

v *-+ h\ (A, v) is upper semicontinuous.

We follow the proof of Proposition 3.6, iv, in [7]. By (2.12) we have

MA,") = inf { / W°°(VuRT)dx+ I tf([u],i/tt)dHN~x :R is a rotation,ReN = v,
u I JQ JS(U)DQ

u € SBV(Q,Rd), u\dQ = uA,c*, / Vudx = o | .

Let vn —̂  v and choose a rotation R such that Re^ = ". Fix e > 0 and let uc € 5SV((5, Rd), ut = u\€N,
Jo Vue dx = 0 and

MA,*) - / W~(VueR
T)dx+ f <£.
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Considering a sequence of rotations {Rn} such that Rn-* R and Rnen = i/ni we use the Lipschitz continuity
of W°° to conclude that

,i/) < liminf \ [ W°°(V f xl>([ue),vUt)dHN-11
JS(ue)nQ * J

)dx + f tf([ttc],Vut)dHN~l

Js(ue)nQ

It suffices to let e —> 0+.

Theorem 4.4 Let W,i/> satisfy (Hl)i, (W2), (W4) and (W5). 77ien

a.e. x € 5(5), (4.4)

is given by (2.12).

Proof. Step 1. [Lower Bound] Fix e > 0 and assume that xo € fi Pi 5(^) satisfies the equalities in
Theorem 2.4 ii) with respect to g and, in addition,

^ X 0 - <«>
It is well known that (4.5) can be guaranteed for HN~l a.e. Xo (see Ziemer [Zi] ). Let A be an open subset
of £2 and let {un} be an admissible sequence for I\ such that

e + h(g,G,A) > Urn / W(Vun(x))dx+ / il>([un](x),vUn(x))dHN-\x), (4.6)

Un —• p in L1 and Vun -^ G. Up to extraction of a subsequence, which we do not relabel, there exists a non
negative Radon measure /i such that

By (4.6), the inequality

^ ^ N 1 (4.7)

yields the lower bound, after letting e -• 0+. Choosing a sequence e -* 0+ such that /i(dB(xo,e)) = 0, we
have
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Define

t w ( y ) : = un(^o + ey) -

By Theorem 2.4 ii) we have

and

7—rrr lim lim < £ I W ( -Vun,c(t/) ) dy
(X0)]|e-0+n-oo |̂  JQV{XQ) \€ )

Now let <f> 6 C0(Q^Xo)(0,1)). Using (4.5) we deduce that

- i r / T T \
lim lim / <£(y)Vun,e(t/) = lim lim Nmml / (^( } V u n ( x ) d x

= lim —jy--

= 0.

I: Assume that W is coercive, i.e., there exists a constant C > 0 such that C\A\ < W(A) for all
A € Md x ; v . Using (W5) and the fact that coercivity implies a uniform L1 bound for {Vun ,e}, we may follow
the arguments given in the proof of Theorem 4.1, Step 3, of [7], to obtain (4.8) with equality replaced by
greater than or equal to, and eW ( j ) replaced by M/oc(-). Next, we choose a diagonal sequence in £, n, and
a countable dense collection of functions in Co(QI/(a:o)(0,1)) to obtain Vk such that

Vk —> u[g](xo),i'g(xo) *& L i VVk —* 0,

and

A,, i I r
0 (Vw*(x)) di +

d(|[<?]|#WS(s))V ' " l[9(*o)]| * - ~ V Q , ( , 0 )

and the result now follows from Proposition 4.1.
Case 2 : Proceeding as in Step 1 (Case 2) of Theorem 3.2, we may remove the coercivity assumption. The
argument is the same except £N is replaced by Kp]!"1^N"1 [S(g).
Step 2: [Upper Bound] In view of (4.5), we only need to prove that given (p, G) € SD, for any open A C £2

hig&A) < f C(N)(1 + |G(*)|')dx+ / ^([g^M^dH^ix). (4.9)
JA JS(g)r\A

Moreover, we claim it suffices to prove (4.9) for g of the form g = \XE, where \E is the characteristic function
of a set of finite perimeter E, This follows from an argument of Ambrosio, Mortola, and Tortorelli given in
Proposition 4.8 of [6], and which involves continuity and semi-continuity properties of hi (see Proposition
4.3).
Case 1: Suppose that E is a polygon and W is coercive. We use a Besicovitch covering argument introduced
by Braides and Piat [13]. Let g = X\E and G € L1(fi,MdxAr). Fix A C fi open, 6 > 0, and let x0 be a
Lebesgue point for the function hi(\,v(-)) with respect to HN"1[S(g). Then there exists eXo < 6 such that
for every 0 < e < eXo,

(4.10)
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By the definition of h\ (see(2.12) ), there exists uXo such that

uxo\dQu(xo)(o,i) = tiA,i/(xo)» / Vuxo dx = 0, (4.11)

and

hi(\M*o)) > J W°°(VuX0(y))dy + / xP([uXo}(y))dHN-l(y) - & (4.12)

Let
X := {x € A D 5($) : (4.10), (4.12) hold at x}.

Note that HN~l{{A n Sfo))\X) = 0. Let

A1 := (J{Q^(x)(^^) :xeX,0<e< £x,Qv(x){x,e) C -A}.

The set of cubes Qi/(x)(£i£) covers A' finely, and so by Besicovitch's Covering Theorem there exist x» and
£i, t = 1 , . . . , such that A' is the disjoint union of {Qv{xi){^u^i)}' For simplicity of notation, set Ui := uXi,
Vi := i/(xi), Qi := Q .̂ (x», ei), and Q'{ is the projection of Qi onto the hyperplane perpendicular to */», passing

through x». Extend by periodicity Ut(-,2/Ar) to the strip j x : ( ^ T 2 1 ) • ̂ » < 2/2fc-n\ f 1 w ^ Period QJ. Let

, and

Note that, due to the polyhedral nature of E, for every k we have 5(5) n.4 C A'^. For j/ € QVi, let j/ = (y',
where ys € i? is the component of 3/ along t/j, and define

{ A iix<£O",x€E

m((2fc + l)2=fi) ifx€A,fc
0 '

We have

K * ( x ) - 0 ( x ) | L i M ) = _^

< l A l H £ f + 5 Z / |««,fc(x)|da:, (4.13)

where

and

f < ̂ c f " 1 < SH^HAHSig)) = O(«), (4.14)
t

V2*TT/_*

where z := (2k 4- 1)J/N- Since the inner integral tends to
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as k —> oo, and in view of (4.13) and (4.14), we conclude that

limlim |u*,fc(x) - 9(X)\LHA) = 0.
6 k

Next we show that, for each 6 > 0, Vu*,* -^ 0 as fc -+ oo. To this end, fix 6 > 0 and let <£ € C0(A).

* + l )2Ll£i ) -<t>{x)dx
£ J

i (2fc + l)Vui

2(2fc + l ) f ,

I (2k + l)Vui((2fc + l)y', (2A: + l)y;sr)</>

i r

Let

Due to the periodicity of Vui(-, z) and the fact that <j>(xi — Siy', x» — £iz(2k + 1) *) converges uniformly, as
k —> oo, to <{>(xi — €iy\xi), we have

i
/Vu6ffc(x)0(x)dx -> y " ^ " 1 / AiW / ^

By (4.11), / J , Aj(z) dz = 0, and so Vu6,k -^ 0 as fc - • oo. Using Theorem 2.8, we may find /i € SBV(A,RD)
such that

and, by virtue of Lemma 2.9, we consider Vk € SBV(A, RD) piecewise constant such that Vk —> h in L1 and

||D^| |(A)^| |D/i | | (A). Set

By the definition of Iu (H2) and (W4), we have

Ji(p»G,i4) < liminf liminf < / W(V^,fc(x))dx+ / tp([ws%k(x)])dH 1(x) >

< liminfUminfi / W{Vu6tk{x))dx + C / |G|dx+ / ^[tx^WDdH^^x)

+ / C|[/i](x)|dtf»-1(x)+ / ^[^(xJId^-^x)}
^5(/i)nA Js(vk)r\A J

< C(iNT) / |G(x)|dx + liminfliminfy"[/ Ty ((2fe + X)Vui f(2fc + 1) (—-X\\ dx
JA 6-^0+ *->°° ^ UDi \ e i \ \ Si ) ) )
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= C(N) f \G(x)\dx
JA

X 1 ^ j W

<W,{V:|v»|<3T3£nT}

= C(N) [ \G{x)\dx
JA

1 ^)} . (4.16)
J

Next, we note that, for each i, £*(£) —> 0+ as ^ —> 0 + , and, due to the coercivity of W, {(2k 4- l)Vui((2k -h
l)y',z)} are uniformly bounded in A:; hence, using (H5) , we may replace in (4.16)

2k

by

Using the periodicity of the Uj, (4.12), and then (4.10), we obtain

Ii(9,G,A) < C(N) f\G(x)\dx + hmini ̂  K " 1 I W^Vuiiy^dy + e^1 f

< C(JV) J\G{x)\dx + liminf J^ef-1 (/n([5](x),i/,) - 6)

^ 1 ^ ) - 6

By (4.14), <5£ i£ f - 1 = O(<5) and thus we conclude that

/i(<7,G,O) < C(N) I |G(x)|dx+ / ^ ( b l W ^ W ) ^ ^ 1 ^ ) . (4.17)
JA JS(g)r\AS(g)r\A

Case 2 : Let E be an arbitrary set of finite perimeter, and assume that W is coercive. The proof of inequality
(4.9) for g = X\E follows from the argument given in the [7] (Step 2d) of the proof of Proposition 5.1), and
from the lower semicontinuity of I(g, G, fl) for coercive W (see Proposition 5.1). Indeed, consider a sequence
of polygons En such that Per^(En) - • Pern(E), CN(EnAE) -> 0, and \En -+ XE in L1. In view of the
upper semicontinuity of /u(A, •) (Proposition 4.3), we may apply Proposition 3.6 in [7] to obtain a sequence
of continuous functions hm : RN —• [0, oo) such that

Ai(A, V) < hm(y) < C\y\, for every y € RN

and
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where /ii(A, •) has been extended to RN as a homogeneous function of degree one. Thus, setting gn = XxEn>
using (4.9) and the fact that CN(EnAE) — 0, Per(£n) -> Per(£), we have

I(g,G,A) < )imudI(gn,G,A

< C(N) I |G(x)|dx + lim / h(X1un(x))dHN"1(x)
JA n JdEnnA

< C(N) f |G(x)|dx + lim / hm{un(x))dHN'l{x)
JA n JdEnc\A

< C(N) j |G(x)|dx+ / hm(v(x)).dHN~l(x)
JA JdEnA

Letting m —• +c» and using the Monotone Convergence Theorem, we obtain

I(g,G,A)<C(N) f |G(x)|dx+ / h(X^(x))dHN^(x).
JA Js(g)nAJs(g)nA

Case 3: To complete the proof of the upper bound, we remove the coercivity assumption on W. Let
We(-) = W(-) + e\ • |. Then, by (4.9) we have

h(g,G,A) < If(g,G,A)

< C f l + |G(x)|dx+ / h\{[g),vg)dHN-1, (4.18)
JA JA

and given 6 > 0, by definition of hi we may find u e SBV(Qu(0, l) ,Rd) such that u\dQv = u\,u, JQ^ Vudx =
0, and

Thus

and we conclude that limsupc /if (A, v) < /ii(A, v) + 6, from which we obtain

h(g,G,A) <C l + |G(x)|dx+ / hi{[g],vg)dHN~l.
JA JA

It suffices to let 6 —» 0 + . •

Theorems 3.2 and 4.4 reduce to Theorem 2.16. We now state and prove the counterpart result to Theorem
4.4 forp> 1.

Theorem 4.5 Letp>l and W,tp satisfy (Wl)p, (H2), and (HA). If g € L°°(n,Rd) then

dIP(g,G,.)

where h is given by (2.17).
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Proof. The proof is very similar to that of Theorem 4.4, except at the following points where the growth
of W and the convergence of admissible sequences {un} become relevant.
Step 1: For the lower bound, we apply the same argument to construct Uni€ and to find a finite, nonnegative
Rodon measure \x such that

w (ivunAy))dy

f
./S(

Assuming that W is coercive, i.e., there exists a constant C > 0 such that C\A\P < W(A) for all A € MdxN,
and using the fact that the density is finite HN~l a.e. (see Theorem 2.6), we extract a diagonal subsequence,
vki from un,c(y) := un(x0 + ey) - g~(x0) such that

to* \vk(y) - uw*o)rtxo)(v)\LHQl,{9o) = 0. Viz* -> 0 in L ^ Q ^ j t O , 1))

and

The lower bound now follows by Proposition 4.2. Removal of the coercivity assumption can be achieved by
means of an argument identical to the one used in Step 1, Case 2, of Theorem 3.2.
Step 2. For the upper bound, we proceed with the construction of ustk(x) as in (4.11), (4.12) , noting that,
in this case, Vu*ffc(z) = 0 a.e. By Theorem 2.8, let h € SBV(A,Rd) be such that

Vft = G, ||ZWI||(J4) < C(N)\G\LHAMd«N).

By Lemma 2.9 there exist Vk € SBV{O,*RD) piecewise constant such that Vk —* h in L1 and ||Dvfc||(j4) —•
||i?/i||(i4), and we define

Then

/ l , ) S t h ) ( )
s(w6>k)nA

The arguments carried out in (4.13) - (4.17), except now involving only the interfacial energy, allow us to
conclude that

Hg,G,A)<C [ l + \G(x)\*dx+ f
JA Js(g)nA

for the case when g = \\E and E is a polygon. Since h does not depend on the normal to the jump set,
the inequality for E of finite perimeter follows directly by assuming coercivity of W, applying Proposition
5.1, and then Lebesgue Dominated Convergence to \En —• XE- TO remove the coercivity assumption, we
proceed, as in the case where p = 1 (Case 3 of Step 2 for Theorem 4.4), to obtain (4.18) with I* and he

corresponding to We(-) := W(-) + e\ • |p. For p > 1, he = h and the proof is complete. •

From Theorems 3.2 and 4.5, we have Theorem 2.17 for the case when g € L°°(fi,Rd). To complete the
proof of Theorem 2.17, we remove this restriction.

Proof. [Theorem 2.17] Define

.n) := / Hp{Vg{x),G{x))dx+ f
JO. Js

f
s(g)
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By Theorems 3.2 and 4.5, we know that Ip{g,G,Q) = J(g,G,tt) if g € L°°(ft,Rd). Let g € 5BV(fi,Rd) be
arbitrary.
Step 1. [Lower bound] Fix 6 > 0 and let {un} be an admissible sequence such that un - • g in L1, Vtxn —* G
in L**, and

6 + Ip(g,G,Q)> lim { [ W(Vu)dx + f ^([un^^dH^11.

After extracting a subsequence, we may assume that

- / x , (4.19)- 1 -

where /x is a finite, Radon measure. The arguments of Theorem 3.2, Step 1, and Theorem 4.5, Step 1, allow
us to conclude that

{x) > Hp(Vg(x0),G(x0)) CNa.e. x0 € fi,

and

£ W b N ( 4 ' 2 0 )
Clearly , (4.19) - (4.20) yield

6 + Ip{g,G,Q)> J(p,G,fi).

Letting 6 —• 0 + , we conclude that

2. [Upper bound] Conversely, let n € N and consider <t>n as in the proof of Lemma 2.20, i.e.,
<j>n € G°°(Rd,RD) such that |V<£n(x)|Loc < 1 and

{ x if |x| < en

0 i f | x | > e n + 1 .

Since <pn{g) —• <7 in L1, and assuming that W is coercive, Proposition 5.1 implies that

Ip(g,G,Q) < liminf Jp(<£n(0),G,fi)

= liminfJ(0n(p),G,n), (4.21)
n—•oo

where we have used the fact that /p(#,G,fi) = J(p,G,fi) whenever g e L°°. Next, we note that by (W2),
we have for all A € Rd,

h(X) < f tp([ux eN],eN) dHN~l < C|A|,
Js(u)

and we claim that there exists a constant G such that for all A, B € MdxN\ we have

Assuming that (4.22) holds, let

fin := {x € fi : \g-(x)\ > en or |s+(x)| > en } D {x € fi : |p.(x)| < en + 1 or |p+(x)| < en + 1 } .

We have

f (1 + \V(<t>n(g))\ + |G|p)dx + G / IbKxJIdH^-^x). (4.23)
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It can be shown (see (3.19) - (3.22) of [7]) that

£ / \\g](x)\dH»-l(x) < I M(x)\dHN-\x),

and so there exists i(n) € {n,. . . , 2n} such that

^x) < i / \\g](x)\dHs-l(x).

Using the fact that the first integrand in (4.23) is bounded independent of n, and that CN{x : \g(x)\ >
en} —> 0, we conclude from (4.23) that

which, together with (4.21), yields
/p(0,G,fi)

Removal of the coercivity assumption follows the arguments given in Step 2, Case 3, of Theorem 4.4. Here,
we apply these arguments to both the densities Hp and h.

It remains to prove (4.22). By virtue of Theorem 2.8 and Lemma 2.9, there exist h € SBV(Q,Rd) and
piecewise constant functions un such that V/i = B CN a.e., ||£>/i||((2) < C|J3|, un —* (Ax - h) in L1, and

\\Dun\\(Q) —, |X - B\ + \\D9h\\(Q) < C(\A\ + \B\).

Let un := un + h. By Proposition 3.1 and (Wl)p, we have

HP(A,B) < limmf [ W(Vun)dx+

5 Some Properties of the Energy
In this section we discuss certain properties of the energy 7. We start with lower semicontinuity with respect
to the appropriate topology, and under the assumption that W is coercive.

Proposition 5.1 Assume that there exist constants C,c, such that C(\A\ - c) < W(A) for all A € MdxN.
Let (gn,Gn), (g,G) e SD(Q) with gn->9 in Ll(Q,Rd), and Gn^G. Then, forp > 1,

Proof. Without loss of generality, assume that liminfn/p(pn,Gn,n) = limn Jp(0n,Gn,fi). Due to the
coercivity of W, we may find a minimizing sequence for Ip(gn, Gn,ft),u^, such that

Ip(9n,Gn) = lim E(v%), u™->gn in L\ and V t # - Gn{x)
tn—*oo m mtn—*oo
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Coercivity of W yields a uniform bound on {Vu™}, and so we may extract a diagonal subsequence in n, m,
say Vk := u™fe, such that Vk -* g in X1, Vt;* -^ (?, and

Thus

Ip(g,G,Sl) < KminfE(vk)
fc—*oo

Proposition 5.2 i455txme t/ia* (Wl)p, («2), and (HA) hold. Then HP(A,B), defined by (2.16), is uniformly
continuous in A and B.

Proof. Let Am —> A. By Lemma 2.9, for each m there exists a sequence of piecewise constant functions
vn defined on Q such that

vn-^(Am-A)x inL1 and ]hn\\Dvn\\(Q) = \Am-A\.
n

Let {un} be an admissible sequence for the limit description of HP(A, B) given in Proposition 3.1. Then the
sequence {un 4- vn} is admissible for Hp(Am,B), and using the subadditivity of ip, (W4), together with the
linear growth assumption, we obtain for some constant C, independent of n, m,

E(un + t;n) - C||Z>t;n||(Q) < E(un) < E(un + vn)

Taking the limit in n and then the infimum over all admissible sequences un, we obtain

Hp(Am,B) - C\A-Am\ < HP(A,B) < Hp(Am,B)+ C\Am-A\

and continuity in A follows by letting m tend to infinity. To prove continuity with respect to B, consider
Bm -> B. By Theorem 2.8 and Lemma 2.9, for each m there exists h € SBV(Q,Rd) such that

V/i = B m -S , \\Dh\\<C\Bm-B\,

and there exist piecewise constant functions vn such that vn —> —h in L1((J,Rd) and limn ||Z)t;n||((5) =
||/}/i||(<2). Let {un} be an admissible sequence for HP(A,B). Then the sequence {un-f/i + vn} is admissible
for HP(A, Bm) and, proceeding as before, we obtain

Hp(A,Bm) - C\B - B m | < HP(A,B) < Hp(A,B

and the result follows. •

In the following proposition we use the notion of inf-convolution, precisely, the inf-convolution of W and
\j) is given by

(WVfp)(A) := inf {W(A - a ® 6) + ^o(x, a, 6): a € Rd, 6 € S*-1} .

Also, given / : MdxN -* R, Qf denotes the quasiconvex envelope of / , that is,

Qf(A) :as m
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Proposition 5.3 Let (g,G) € SD(Q) andp > 1. Assume that there exist constants C,c, such that C(\A\P-
c) < W(A) for all A € MdxN. Then

inf / HJVg(x),G(x))dx = / inf Hp(Vg(x

= f Q(WVrP)(Vg(x))dx.
Jn

In particular,
infxjv HP{A, B) = Q(WVxP)(A).

Proof. For fixed A e MdxN, and by definition of Hpj we have

inf HP(A,B) = inf 1 / W(Vu)dx+ f iP([u})dHN^ : u € SBV(Q,Rd),u\dQ = Ax 1

where the last equality was established in [7]. Hence, it suffices to construct for each o O a function

,B) + e for CN e..e. x€Cl.

To this end, let /„ be a sequence of simple functions which converges in L1 to Vg, satisfies |/n(x)| < |Vp(x)|,
and such that fn(xo) -* V</(xo) for CN a.e. io € Q. Assume that io is such a point. For every n, choose
Gn(i0) 6 MdxN such that

fip(/B(*o),B) + e, (5.1)

and Gn(-) is a simple function. Define

G(xo) := limsupGn(xo),

where, upon extracting a suitable subsequence, the limsup is taken componentwise. Note that for every
n, Gn(-) is measurable, and so G(-) is measurable. In order to show that G(-) is integrable, let u be an
admissible function for Hp(fn(xo),G

n(xo)) such that

E{u)<Hp(fn(xo),G«(xo)) + e.

By (Hl)p and (5.1) with B = /n(x0), we have

E(u) < Hp(

Thus, by Jensen's inequality and the coercivity of W, we deduce that

< [ \Vu\*dx
JQ

< CE(u)
< C'(\fn(x0)\'

>

44



Hence, for almost every XQ,

and we conclude that G € L1{QMdxN)- Finally, by Proposition 5.2 and by virtue of (5.1), for every
B € MdxN we have

Hp(Vg(x0),G(x0)) = lim Hp(fn(x0),G
n(x0))

n—*oo

< KmoHp(fn{x0),B) + e

= Hp(Vg(x0),B) + e,
and so

Hp(Vg(x0),G(x0)) < infHp(Vg(x0),B) + e.

D

As a corollary, we obtain integral representations for the relaxation in the L1 topology of

E(g)= [w(Vg(x))dx+ f
Jn Js(f

Set
:= inf ^liminf E(un) : un € SBV,un - p in L1^,^) \ .

{u n } I n-*cx> J

Corollary 5.4 Assume t/iat (Wl)p, (H2)-(W4) ZioW, and t/iaf t/ier^ exist constants C,c, such that C(|.4|p

c) < W(A) for all A € MdxN. / /p > 1, and i/^ € SBV(Q,Rd), then

= / Q(WVxP)(Vg)dx-

h is defined by (2.17). If p = 1, and if g e Wl^(n,Rd), then

= IQ(WV\l>){Vg)dx.
Jn

Remark 5.5 A representation of F{g) for p = 1 and for all g € BV(Q,Rd) was obtained directly in [7],
precisely

'(D.g).

Proof. Let p > 1 and assume that txn,p € 5BV(£2,Rd), $ € 1^(17,Rd), {Vun} is uniformly bounded in
IP, and un —> p in Ll. Then, upon extracting a subsequence, there exists G € Lp(f2,MdxAr) such that

and so
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Hence,

and the result now follows by virtue of (2.15) and Proposition 5.3.If p = 1, and if Vun uniformly bounded
in L1, then, up to a subsequence, there exist m € M(fl) and G £ L1(n,Md^JV) such that

* , dm
—k m and -—rr = G.

Thus
mfJ0(9,G)<T(g).

Hence

and the conclusion follows from (2.14), Lemma 2.18, and Proposition 5.3. •

Next, we search for relations between I(g, Vg, ft) (Ip or Jo) and the relaxed energy

f QW(Vg)dx.
Jn

By Theorem 3.2 and Lemma 2.18, if g £ Whl(ft,Rd) then I0(g,Vg) = h{g, Vg). Let I denote Ip.

Proposition 5.6 i) The function A € MdxN *-> HP(A,A) is quasiconvex and HP(A,A) < QW(A). In
particular, if g £ Wl>l(Q,Rd) then

,Vp,f2)= f Hp{Vg{x),Vg{x))dx< f QW(Vg(x))dx.
Jn Jn

ii) Let g € W1'1(Q,Rd). IfWis convex, or ifW is quasiconvex, has linear growth (i.e. for some constants
c, C c\A\ < W(A) < C\A\), and V(A, v) > W°°(X ® v), then

1(9^9)= I W{Vg{x))dx.

Hi) A € MdxN is such that W**(A) < QW(A) if and only if there exist a constant a € R such that

1(9^9) < j QW{Vg{x))dx,
Jn

where g(x) = Ax and xp(-) = a| • |.

Proof, i) By definition of Hp (see (2.16)) we have

HP(A,A) < inf | / W(Vu)dx : u = Ar + <̂ , <f> € W^°°\ = QW(A).

Therefore, if g € W1 '1^,!!*), then by Theorems 2.16 and 2.17 we obtain

= [ Hp(Vg,Vg)dx
Jn

< I QW(Vg(x))dx.
Jn
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In order to prove that A •-> HP(A,A) is a quasiconvex function, it suffices to apply Theorems 2.16 and 2.17
to Ip(g> V#), to conclude that

^9) = / Hp(g,Vg)dx + I kW9)*HN-1

Jn Js(G)nn

where we have used the lower semicontinuity property of Ip (see Proposition 5.1), and where Hp and hp are
associated to Hp and to h (or h\ if p = 1), through the formulas in Theorems 2.16 and 2.17. Thus

and, in particular,

HP(A,A) = HP(A,A)

< inf | / Hp{Vu, Vu) dx : u e WljP(Q, Rd), tx|aQ = Ax j

= QHP(A,A).

ii) For 0 € W1*1, h(g, <?,ft) = Io(g,G,ft), and hence it suffices to consider /p, p > 1. Suppose that W is
convex, and let un —• p, Vun -^ Vg. Then, using Jensen's inequality we conclude that

lim inf E(un) > lim inf / W(Vun) dx

> lim inf / W(Vg)dx.

Taking the infimum over all such sequences {un}, we obtain Jp(p, Vg) > Jn W(Vg) dx, and the result follows
by part i).

Next, assume that W is quasiconvex with linear growth, and that rp(\,v) > W°°(X 0 v). Take un —• g,
Vun -^ Vg. Then

liminf£(un) > liminf J / W(Vun)dx+ f W°°([un] ®vUn)dHN-11
n" to° n->o° [Jn Js(un) J

=: lim inf G(un).
n—*oo

By a result of Fonseca and Miiller (see [33]), G(un) is lower semi-continuous with respect to the L1 topology,
and so

UminfjB(un) > G(g)

= [w(Vg)dx.
Jn

This yields /(<?, Vg) > Jn W(Vg) dx, and the converse inequality follows from i).
iii) Let rp(-) = a\ • | and suppose that W**(A) < QW(A). Then there exist an A € MdxN and / €

such that

/ /(*) dx = 0, / W(A + /(x)) dx < QW(A) - c

for some 5 > 0. Let Qs :== Q(0,1-5), where 6 is chosen sufficiently small so that

W(A)CN(Q\Q6)<i.
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Set

C I
JQ\Q6

By Theorem 2.8, there exists <f> e SBV(Q6iR
d) such that V<f> = / , JQg <f> = 0, \\D<t>\\{Q6) < C| / |L i , and by

(2.5) we have
/

JdQ6

Define
f 0
<
[ <t>(x) + C6x

u(x) := Ax

Clearly U\SQ = Ax, and using the fact that / has zero average over Q, it follows that JQ Vudx = A. Thus,
by definition of HP(A, A) and by ( H )

HP(A,A) < ( W(Vu)dx + a f \[u]\dHN'x

JQ JS(U)
f

JQ JS(U)

W(A + f(x)) dx

Choosing a and 6 sufficiently small so that

we obtain

Conversely, if

then

HP(A,A)<QW(A)

and so

W**(A) = inf{ / W(A + f)dx:
JQ

= inflf W(A + f)dx: f

< inf ( / ^(Vu)cte-h / ^([ttl.i/JdH^-1 : u €
I JQ JS(U)HQ

, j /dx = 0,u|ag = Ar>= A-f / , j

QW(A).

We note that Corollary 5.4 has the interpretation that, for a given macroscopic deformation g €
»1(f2, Rd), the energy associated with the optimal microstructure is given by the relaxation of E(g) in the
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L1 topology (BV weak). Percisely, by Theorem 2.17, Proposition 5.3, and Corollary 5.4, we have

inf Jpfo,Gfn) = [ Q(WViP)(Vg)dx+ [ M W , ^ ) ^ " 1

= f Q(WV^)(Vg)dx.
Jn

Moreover, if we assume W to be coercive, the direct method of the calculus of variations can be implemented
to show that the infimum over all microstructures is achieved. Indeed, let

inf /„(.$,G,fi)= Urn Ip(g,Gnjtt).

For every n choose vn such that \g - t>n|i,p(n,Rd) < 1/n, and Ip(g,Gn,Q) > E(vn) - 1/n. Then {Vvn} is
bounded in IP, and, upon extracting a subsequence, we have Vi;n —* £ in L*, for some f € Lp(n,MpxJV).
Finally, by Proposition 4.3 we conclude that

Ip(g,t) < liminf/PK,Vt;n)

< \im\nfE(vn)
n—*oo

inf IJg,G,n).
G€LP(nMP^) PK* '

There are cases in which

for all G e L1(fi,MdxAr), e.g., if W is quasiconvex with linear growth and xp(X,iy) > W°°(X 0 v). Hence,
if variational principles are accepted for this model, we may interprete this result as evidence that for this
particular crystal it is energetically more costly to form defects. On the other hand, there are simple examples
in which

inf

Consider W(-) = | • | and ^(*^) = &\ • I- Using Corollary 5.4, Proposition 5.6 ii), and Theorem 2.14 in [7],
we have

[\Vg(x)\dx = JoG
Ja

> inf I0(9,G,Cl)

Hence, if a > 1 the above inequality is in fact an equality, and if a < 1 then the inequality is strict.
We end with the following conjecture. Fix p > 1. Then

for some functions Fi and JV Even though we are not able to prove this at the present time, we note that
it follows immediatly from its definition that

HP(A, B) < HP(B, B) + H(A-B),

where

H{C) := inf | / 1>([u],vu)dHN-1 : u € SBV(Q,Rd), Vu(x) = Oa.e., u\dQ = C x i .
[Js(u)nQ w J
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Proving this conjecture would confirm what was postulated in the introduction. Precisely, the energy
functional associated with a structured deformation of a crystal should involve a measure of the discrepancy
between the macroscopic and microscopic strains V<? , G, respectively. Such a result could motivate the use
of Hp as the total free (stored) energy in computing stress at equilibrium. Work in this direction has already
begun within the classical setting of Del Piero and Owen for structured deformations (see [36]).
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