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REGULARITY RESULTS FOR ANISOTROPIC
IMAGE SEGMENTATION MODELS

Irene Fonseca l and Nicola Fusco 2

A b s t r a c t - Models involving bulk and interfacial energies have been used to describe phe-

nomena in fracture mechanics, phase transitions, and image segmentation. One of the main math-

ematical questions involved concerns the regularity of the crack site, or discontinuity set 5U , for

local minimizers u of energy functionals of the type

The existence of a classical solution in the case where F(£):=\£\p ,p>l, w a s Proven recently by

means of compactness results in a somewhat large functional space, followed by a thorough regularity

analysis of the jump set Su of a local minimizer u of Q thus obtained. Here these regularity properties

are extended to a class of anisotropic, non homogeneous densities F, with p-growth.

1991 Mathematics subject classification (Amer. Math. Soc.) :35J20, 49Q20,
49J45, 49N60
Key Words : quasiconvexity, quasi-minimizer, recession function, regularity,
bounded variation

1. Introduction

Models involving bulk and interfacial energies have been used to describe phe-
nomena in fracture mechanics, phase transitions, and image segmentation (see
[BZ], [DGCL], [FF], [MS]). From a simplistic point of view, quasi-static equilib-
ria correspond to minima of an energy functional

G(u) := / F(Vu)dx + a [ \u-g\«dx + 0HN'x(Su 0Q),
Jn Jn

where i? C 1RN is an open, bounded domain, g € L°°(/2;IRd), a,(3 > 0, H1*"1

stands for the N — 1-dimensional Hausdorff measure, u € BV(lRN;lRd)1 Su is
the jump set of u, i.e. the complement of the set of Lebesgue points of u, and
the distributional derivative Du is represented by Du = VuCN -f (u+ — tx") 0

-I [SU + C(u), with v being the normal to Su.
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Foundation through the Center for Nonlinear Analysis, and by the National Science
Foundation under Grants No. DMS-9201215 and DMS-9500531.
2 Research supported by MURST, Gruppo Nazionale 40%, and partially supported
by the Army Research Office and the National Science Foundation through the Center
for Nonlinear Analysis.
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Within a fracture mechanics framework, u stands for the deformation, and
Su represents the crack site. Earlier work by Ambrosio and De Giorgi (see [Al],
[A2], [DGA]) guarantees the existence of minima, under appropriate bounded-
ness constraints (see [FF]); however, regularity properties of the macroscopic
discontinuities, being the next obvious step towards the understanding of the
interaction between fracture and damage, cannot be obtained from existing
regularity results (see [AFP], [AP], [CL], [DS], [DGCL]), as these apply only to
energy densities F of the form F(£) = |£|p.

In Mumford-Shah model for image segmentation, the energy is a functional
of the type (see [BZ], [DMMS], [DGCL], [MS])

G(K,v):= I F{Dv)dx + a f \v - g\« dx
Jn\K Jn\K
I f
n\K Jn\K

where q > 1, a,/? > 0, K is a closed set, t; e W^(f2 \K), g €
and the main goal is to show the existence of a minimizing pair (AT, u) for
the functional Q. Once again, this can be achieved by means of Ambrosio's
existence results (see [Al], [A2]), followed by a regularity analysis of the jump
set of the minimizer thus obtained. Here g(x) is a real number representing the
"brightness" or "grey level" of the image at a point x (digital image), and K
represents the discontinuity set, or "edges" of g.

In this paper we will prove regularity for the jump set Su of a local minimizer
of G, corresponding to a class of anisotropic, non-homogeneous, densities F
with p-growth, namely, HN"1((SU \ Su) n Q) = 0, which is a first step towards
obtaining ClfQ regularity, as it was previously obtained in [AP], [AFP] for scalar-
valued functions, and when F(f) = |f |2 (see also regularity results in [CL] for
the vector-valued case, and F(£) = |f |p). Our proofs are based essentially on the
L°° gradient estimate obtained in Theorem 2.2 for local minimizers of certain
energies corresponding to strictly convex, non-homogeneous, density functions.

2. Preliminary Results

In the sequel fi denotes a bounded open set of IRN, BR(XO) is the ball {x
TRN : \x — xo| < -R}, and if / is an integrable function we define

BR(xo) U>NR" JBR(XO)

where L>N is the Lebesgue measure of the iV-dimensional unit ball. We write
simply BR in place of BR(XO) when no confusion may arise, Q\ stands for the
unit cube (0,1)N, and we use Einstein's convention for repeated indices. Also,
£ N denotes the Lebesgue measure in 1RN, and c is a generic constant that may
vary from line to line.

Let F : JRN —> [0, +oo) be a continuous function, 1 < p < + oo, and consider
the energy functional

,F(t/;A):= f F(Dv)dx
JA
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for v € WliP(fi) and every open set Ac Q.

Definition 2.1. We say that u € Wl*({2) is a W^-local minimizer of T if

JF(u; BR(x0)) = min [f(v; BR(x0)) : t; € ti +

for all balls BR(x0) C fi.

Now we state the main theorem of this section, which extends regularity
results well known in the literature (see [DB], [GM], [M]), but does not seem to
have been treated under the general assumptions considered here.

Theorem 2.2. Let F : IRN —> [0, +oo) be a continuous function such that

(0 (M2 + \z\2f2 < F(z) < S ?Y'2

for all z € IRN, where p > l , 0 < / z < l , and L > 0. Suppose, in addition, that
F satisfies the following inequality

(iiii) f F(z + D<p)dx> f
JQ1 JQ,

for every z € IRN, if € C&{Qi), and for some 0<v<l.Ifu€ Whp(f2) is
a local minimizer of the functional T then u is locally Lipschitz, and for every
BR(xo) C Q

sup (/x2 + \Du\2)p/2 < CJ (/i2 + \Du\2)p/2dx

where C depends only on 7V,p, L,t/.

To prove this theorem we give first a precise sup estimate for the gradient
Du of a local minimizer for T in the case where F is smooth and satisfies the
usual ellipticity assumptions, and then we carry out this estimate to the general
case, by means of an approximation argument.

Lemma 2.3. Let G : IRN -> [0, +00) be a C2 function such that

(1) 0 < G{z):

(2) \&G(z)\{p )

(3) DijG(z)wiwj > u(fi2 + \z\2)*?\w\2,

for every z,w € IR*, where L,A,n,i/ > 0, p > 1. If u € Wl*((2) is a local
minimizer of
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G(v]A) := / G{Dv)dx, A open, A C J?,
JA

then there exists a constant C = C(JV,p,L,i/), independent of n,A, such that

sup + \Du\2)p/2 < c l (M2 + |i?u|2)p/2dx (2.1)
JBR(X0)

for every BR(X0) C f2.

Proof. It follows from standard regularity theory (see [DB], [GM], [M]) that
u is a C1>Q n W^2'2 function, and the estimate (2.1) holds for some constant
C = C(N,p, L, V, n, A) . We claim that C does not depend on /i or A.

Replacing u(x) by the function u(y) := (l/R)u(xo -f Jty), it is clear that u is
a local minimizer of Q in (1/R)(f2 - xo). Hence, it is not restrictive to suppose
that R = 1, xo = 0.

In the Euler equation for Q,

f
JB
f
B1

set <p := t]2D8rp, where s = 1 , . . . ,iV, rj £ C<J(£i),0 < rj < 1, and ^ € C 2 ( B i ) ,
to obtain

/ DiG(Du)D8{Ditp)r}2 dx = - 2 / riDiG{Du)D8'ipDi'qdx.
JBi JBi

Integrating by parts the first integral, we have

= 2 / T)DiG(Du)D8xpDir)dx-2 I rjDiG{Du)DitpD87]dx
JBi JBi

for all functions V € W1'2(Bi). Note that rp := V0D8u, where V(x) :=
/x2 -f |-Du|2, /3 > 0, is an admissible test function. Therefore, inserting this func-
tion in the equation above and noting that (1) and (3) imply that \DG(z)\ <

c(N,p)L(ti2 + l*!2)1^"*, we obtain

+ 0 I DijGiD^DjiD^D.uDiUDu^V^Wdx
JBX

<c{N,p,L) ( V^n\Drl\[Vt\D2u\ + pV*-l\Du\D{\Du\2))dx.
JBX

Summing up this inequality from s = 1 to 5 = N and using (3), we obtain
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v I V0+2T1\D2u\2T)2dx + — f Vfi-1+*r\D(\Du\2)\2r?dx
JBt 2 JBl

<c(N,p,L) f

o,L)P f
J B\

Applying Holder and Young inequalities to the right hand side of the latter
formula yields

2 JB

and, since

BX

we conclude that

Setting 7 := | + f > f, the above inequality becomes

Using Poincare inequality and Sobolev imbedding theorem we deduce that

WT}\\L7HBI) < c(N,p,L,vh\\V>DV\\LHBl)

where \ := j ^ ^ if N > 3, or any number > 1 if N = 2. Now consider the
sequence of radii r{ := ? -f ^r, and for every i = 1 , . . . , apply the inequality
above to 7 = 7* := f X*" olid r\ € Co(Bri) such that 77 = 1 on i?r i + 1 , 0 < 77 < 1,
I P I 0 2^ We obtain

for every t = 1 , . . . , and iterating the above formula we have

where we used the fact that 271 = | . Letting t —• +00, and remarking that
7i —• +00, B± C Bri for all i, the result will follow once we show that the

sequence < i7 (c(7V,p,L,i/)2-777)^ > is bounded. Indeed,
w"1 J »=i
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In [h (c(N^L^^ = £ - - In

which is a converging series because \ > 1- D

Next, we present a simple approximation result.

Lemma 2.4. Let F satisfy the assumptions of Theorem 2.2. There exist a
sequence {Gh} ofC2(TRN) functions and a constant c = c(N,p) such that

/ I \ p / 2 / I \ p / 2

(2) 2 ^ 2 ^ 2 )

p-2

(3) DijGh(z)wiwi > c^v L2 + ̂  + |z|2) M2

/or even/ z,ty € IRN, and
^ G/t —• F uniformly on compact sets.

Proof
Step 1. We show that we may assume, without loss of generality, that F is a C2

function satisfying (i) and

DijF(z)wiwj>c-l^ + \zf)e^\w\2 (2.2)

for some \x strictly greater than zero. Let p(z) = p{\z\) be a positive, radially
symmetric mollifier, with support equal to J3i(0), JB p(z)dz = 1, p(z) > 0 if
\z\ < 1, and for every e > 0 define

= / p(w)F{z + ew)dw,
JB1

where pe(w) := -prp (^ J. By (ii) F is a convex function, and so Fe is a C2

convex function, Fe —> F uniformly on compact sets, and we claim that

for some c > 0. In fact, using assumption (i) the estimate from above follows
immediately, while
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f ( 2 2 , ,2 | ,2 o

J B\

J (Bi\B1/2)n{<z,w>>0} \ ^ / (2.3)

_ ! / £2 2 y / 2 y

p/2

p/2 r
/

J\B1/3

Also, if z € H N and <p € Co(Qi), using assumption (ii) on F we have

c(z + D<p(x))dx>Fc(z)

1u f (/
(2.4)

because

p{w){n2 + \z + ew\2 + \D<p{x)\2)*T- dw > c-l(j? + e2 + \z\2/
B1

(2.5)
Indeed, if p > 2, (2.5) follows by virtue of the same argument used to prove
(2.3), while, if 1 < p < 2, then

> / p(w)(fi2 + 2\z\2 + 2e2\w\2 + \D<p(x)\2)Er dw
JB1

> 2 ^ ( / i 2 + e2 -f |z|2 2 ***

It is easy to show that (2.4) implies (2.2), i.e.,

DijF
£(z)wiwj > c"1!/^2 + e2 +

. Define

:= (1 - Vk(z))F(z) + rjh(z)(

for /i = 1 , . . . , where rjh(z) := 7 7 ^ ) , rj(t) € Cg(lR), i/(t) = 0 if t < 1, i;(t) = 1 if
t > 2. It is clear that Fh satisfies (i). Denoting by F£*(z) the convex envelope
of Fh(z), it follows that

^ • W = (f2 + WT / 2 tfW>2fc. (2.6)
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We want to show that there exist M > 2 and ho depending only on 7V,p,L,
such that, for every h > ho,

Fr(z) = F(z) if|*l<|£. (2-7)

Notice that, by (i), Fh{z) < F(z) for all z € JRN, and so

Fr(z)<F(z).

Conversely, it suffices to show that if \z\ < jj and if w € TRN then

< DF(z),w - z > +F(z) < Fh(w).

This is always true if |tu| < A, since

< DF(z),w - z > +F(z) < F(w) = Fh(w),

while, if \w\ > fc, and using the fact that convexity and hypothesis (i) imply

we have

< DF(z), w-z> + F(z) - Fh(w)

< c(N,p)L(n2 + \z\2)^[n + \w\ + \z\] - {n2 + \w\2f2

H

^ ) [n + 2\w\] -

( ^ ) (M2 + M 2 ) 1 / 2 - (M2 + M 2 ) p / 2

< 0

provided M = M(N,p, L) > 2 and ft > /i0 = ho(N,p, L, M) are such that

for \w\> h. Finally, define

0

and
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Gh(z) := Fl
h

/h{z) = J p(w)Fh [z + ±ti;) dti; =

Step 3. Now we show that Gh verifies (1), (2), (3) and (4).
By (2.7), Fh(z) = F(z) if |z| < ^ , and so G* -+ F uniformly on compact

sets, proving (4). F!rom (2.6), we have

p / 2

w

if \z\ > 2h -I- ̂ , and we deduce that

\D2Gh(z)\<c(N,p)J^ p{

If p > 2 then (2) follows immediately from this inequality. If 1 < p < 2, since
|z| > 2ft + £ then

dw.

Since / ) , satisfies (i), by (2.3) we have that G/, verifies (1). Finally, by (2.7) and

* M < # - *.then

Gh(z) = ph* F(z) + ph* Rh{z),

and so, since Rh is convex and by (2.2) and (2.5),

DtjGhWwiWj >ph* C - X J I 2 + |z|2)^|u)|2

p-2

^ ) H2-

If \z\ > $ - i then, using (2.5),

DijGh{z)wiwj = (ph * DijF") (z)wiwj

l

In order to prove Theorem 2.2 we need the following convexity property of
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Proposition 2.5. If F satisfies

for all z € R N , where p > 1, 0 < /i < 1, and L > 0, and i/

f f \
(%%) I F(z 4* -D^) dx 2> / -^X^) *̂~ " ( M "̂" 1̂ 1 ~̂* l-^^l

/or every z € IRN, ^ € C£(Qi), and /or some 0 < v < 1, t/ien F is convex and

whenever 6 € (0,1), zi,Z2 € IR^, z\-£ z2.

Proof Fix zi, z2 € IRN, 0 € (0,1), with z\ - z2 ^ 0, and set z$ := (1 - ff)zx +
6z2,^ := Z2 — z\. Let x be the characteristic function of the interval (0,0),
extended periodically to IR with period 1. Then

(1 - 0)F(zi) 4- #F(z2) = lim / J

= lim / F(zo + Dun{x))dx,

where

x):=t; n (x) - / vn{y)dy, Vf|(x) := ill / * (
JQi n Jo

Since

Dun(x) = f x ( nx-17T) ~ eJ t "" °» in L°° - ti;*,

we have that un —* 0 in Wl'°° — ti;*, and using the growth condition (i'),
after extracting a subsequence if necessary, we may find cut-off functions ipn €
Cg°(Qi;[0,l]), <pn(x) = l i f x € ( ? n , ^ ( Q i \ Q n ) - ^ 0 , such that

jQl\Qn

Hence, using (i') we deduce that

lim / F(z$ -f Dun(x)) dx > lim sup / F(z$ 4- D(<pnun)(x)) dx,

and by (ii) we conclude that

i/liminf
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Since, by (2.8), if g > l

lim / \Dun(x)\qdx= lim / \Dun{x)\q dx
n-»oo jQn n-*oo JQ^

\Zl-z2\
qdx= lim

= 6(1 - 0) [09"1 + (1 - 6)q"1] \zi - Z2\",

when p > 2 we have

(1 - 6)F(z\) 4- 0F(z2) > F(zg) + c(p)i/ lim / (/z2 + |^|2)^5" |-Dun|
2 dx

+ c(p)i/ lim / |Dun|pdx

= F(z*) + c(p)i/(

+ (i - ey~1} \Zl -

> F(ze),

while, if 1 < p < 2, since |-Dun| < \z\ — 221 we conclude that

> F(ze).

D

We are now in position to give the proof of Theorem 2.2.
Proof of Theorem 2.2. Fix BR(XQ) and for any h denote by Uh the solution

of the problem

mini / Gh(Dv)dx : v €u + WZ*{BR(x0))\,
[JBR(X0) J

where {Gh} is the approximating sequence of C2 convex functions provided
by Lemma 2.4. From Lemma 2.3 we have that the sequence {ti/J is bounded
in W1IP(BR), and is locally bounded in Wli0O(Bp). Hence, we may suppose,
passing possibly to a subsequence, that Uh —k UQO in W1|0° — t/;* locally in BR.
Then, using the fact Gh —> F uniformly on compact sets, the convexity of F,
and the minimality of u^, we deduce that, for every 0 < p < R,
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/ F(Duoo)dx<liminf / F(Duh)dx
JBP

 h JBP

= liminf / Gh{Duh)dxh JBP

/ Gh(Du)dx
JBR

F(Du)dx.

<liminf /
h JBR

Letting p | «R, since u is a local minimizer for J7, and u = UQO on OBR, we
conclude that

/ F(Duoo)dx= [ F(Du)dx.
JBR JBR

We claim that u = UQO. Indeed, if tz ^ UQO choose 0 € (0,1) and set v =
0tioo + (1 — 0)u, so that by Proposition 2.5 we have

F(Dv) dx<6 I F(Duoo) + (1 - 0) I F(Du) dx
BR JBR JBR

= f F(Du)dx,

contradicting the minimality of u. Applying Lemma 2.3 to Uh, using the min-
imality of Uht the growth assumption on F, and the growth estimates on G&,
we have

sup (/x2 + \Du\2)p/2 < liminf sup (/x2 + \Duh\
2)p/2

B h &

( 1
(/x2 + T *
V ^

R/2 h

f ( 1 V
<climinff (/x2 + T* + |J5u^|2 ) dx

<climinf/ Gh(D
h JBR

< c lim inf / G^ (JDu) dx

and this completes the proof of the theorem. D

Definition 2.6. The p-recession function of a function F : 1RN —> [0, +oo),
p > 1, is defined by

Fp(z):= lim sup
t-»+oo

/or
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Remark 2.7. It is clear that Fp is positively homogeneous of degree p, and if
F is convex, then Fp is also convex. Moreover, if

then
j\z\'<Fp{z)<L\z\*.

The next lemma establishes strict quasiconvexity of Fpi provided F is strictly
quasiconvex and verifies appropriate growth conditions.

Lemma 2.8. Let F : TRN —> [0, +oo) be a continuous function satisfying, for

0 < F(z) <

and

[ F(z + D<p)dx> (
JQI JQI

for every z € TRN, <p € CQ(Q\) and some 0 < v < 1 and n > 0. In addition,
assume that there exist to > 0 and 0 <m < p such that

,^ ntz)

for every t > t0 and all z e 5 N ~ 1 . Then

f Fp(z + Dp)dx> f [Fp(z) + i,
JQ1 JQ1

for every z 6 IRN and all <p

(2.9)

Proof Fix A > 1 and notice that for t > toX and z such that A"1 < \z\ < A,
we have

FP{z)-
F{tz) coA"-

tm (2.10)

In fact,

±^-F(t\t\-jL

tm
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To prove (2.9), fix 2 € IRN, ip € CQ(QI), and take a sequence th T 00 such that
Fp{z) = limfc £ ^ i . Fix A > max{l, \z\ + Halloo}. Then, if ^ > to\, from
(2.10) and by virtue of the strict quasiconvexity of F, we have

Fp{z + Dip)dx> I Fp(z + D<p)dx

thD<p)dx-

-4/

lh

The result follows by letting h go to +00 and then A go to +00. D

3. Regularity Results - The Scalar Case

In order to state the main regularity result of this paper, Theorem 3.5, we recall
some notations and properties of BV and SBV functions that will be of later
use.

Given a set E C 1RN, we denote by HN~l(E) its (N - l)-dimensional
Hausdorff measure. If u : i? —> IR is a Borel function, x € 1?, we say that
u(x) € IR U {00} is the approximate limit of u at x, u(x) = aplimy_x n(y), if

9(u{y))dy
X)

for every function g e C(1R U {00}). With this definition, the set

5U := {x € 1? : aplimtt(y) does not exist}

is a Borel set with zero Lebesgue measure. BV(Q) stands for the space of
functions with bounded variation in !?, and if u € BV(Q) one can show that
the jump set Su is countably (N - 1)- rectifiable (see [DG] or [F]). Moreover,
HN'x({x € f2 : u(x) = 00}) = 0 (see [F]). It is also well known that if u €
BV(Q) then the distributional derivative Du can be decomposed as Du =
VuCN -f -D«ti, where Vu is the density of Du with respect to the Lebesgue
N-dimensional measure CN, and D8u is the singular part of Du with respect to
£N. Finally, we recall that the space of special functions of bounded variation.
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SBV(Q), introduced in [DGA], consists of all functions in BV(Q) such that
D8u is supported in Su, i.e.

\D9u\{t2\Su) = 0.

For the study of the main properties of SBV functions, we refer to [Al], [A2],
[DGA], and we select the following SBV compactness theorem (see [Al]).

Theorem 3.1. Let f : [0, oo) —• IR and <p : (0, oo] —• IR be convex and concave
respectively, nondecreasing, and satisfying

lim ^ -^ = oo, <£>(oo) = lim <p(t), lim ^ - ^ = oo.

Let {un} be a sequence of functions in SBV(f2;1Rd) nL°°(i?;IRd) such that
supjlitnlloo < +oo and

sup j / /(|Vttn|)dx+ / V(\v£-uZ\)dHN-l\ < oo.
n [Jn Jsun J

Then there exists a subsequence Unk and a function u € 5BV(J?,IRd) such that

unk ->u in L\ Vun. — Vu inL1 andHN'l(Su) < Uminf HN-x(SUn ).
fc>oo k

Notice that if u € SBV({2), then clearly u € Whl(Q \ 5u). Conversely, it
follows from a modified version of Lemma 2.3 in [DGCL] that

Lemma 3.2. Ifu e L°°(fi), and ifK cTRN is a closed set such that HN~l(nr\
K) < oo and u € W 1 ' 1 ^ \ K)< then u € 5B^(/?) and Su C iT.

Density properties of u € BV at points x € Su have been obtained in
[DGCL]. In particular, the following result follows from Lemma 2.6 and Theorem
3.6 in [DGCL].

Theorem 3.3. Let u € SBV{fi) be such that

Vu\*dx + HN~l(Su n O) < +oo

for some p > 1. Then

(i) lim-rrn" / \Vu\pdx + HN~l(Sur\B£(x)) =0Jim ̂  | j ^

forHN~la.e.xen\Su\
(ii) if

_ _ _ _ - i V — 1 ' ' i - - i - — % - • • • - — * % — # # i U
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then x £ Su.

The next theorem can be found in [CL], Theorem 2.6 (see also [DGCL],
Remark 3.2 and Theorem 3.5) in a slightly different form, and it is proven by
means of a suitable version of Sobolev-Poincare inequality for SBV functions.

Theorem 3.4. If {uh} C SBV(BR), p > 1, and if

sup / \Vuh\
pdx < oo, KmHN-l(SUh nB R ) = 0,

h JBR
 h

then there exist a subsequence {uhk}, a sequence {m*} C IR, and a function
Uoo € Wl*(BR) such that

uhk{x) -mk-+ Uoo(x) a.e. in BR

and

[ G(Vuoc)dx<Uminf / G(Vuhk)dx
JBR *-«> JBR

for every nonnegative convex function G, with G(0) = 0. In addition, there exist
constants a ^ , ^ such that, setting

uhk ^maxlmin^^afc},^},

then
u>hk - mk —• tioo in Lp (3.1)

and
CN{{uhk ± uhk}C\BR) < C(N) [H^^SiuH^DBR)]7^. (3.2)

In the sequel we denote by F a convex function on IRN satisfying the fol-
lowing assumptions:

(HI) \z\*<F(z)<L(l + \zn P>1,

(H2) f F(z + Dv)dx> f
JQI JQ

for every z € IRN, for all <p € Co(Qi), and for some v > 0, \i > 0. Moreover we
will assume that

(JST3) FP(z)~
F(tz)

for every t > to > 0, for all z e S N ~ J , and some 0 < m < p, where Fp is
the p-recession function of F (see Definition 2.6). Our main goal, Theorem 3.5
below, is to show the existence of a minimizing pair (K, u) for the functional
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G(K,v):= f F(Dv) dx + a f \v-g\qdx + pHN~l (K D G)
Jn\K Jn\K

where q > 1, a, 0 > 0, K is a closed set and v € Wl*(n \K),g€ L°°{Q). In
order to obtain this result, and following [DGCL], we introduce the functional

G(v):= f F(Vv)dx + a f \v - g\q dx + 0HN'l{
Ja Jn

defined for v € SBV(t2).
Now we state our regularity and existence theorem.

Theorem 3.5. Let F : IRN -+ IR be a convex function such that F(0) =
minF(z) and verifying (Hi)\(H2),(H3), 1 < p < oo, gjE L°°, a,/3 > 0. There
exists a minimizer of 6{v), u € SBV{fi)1 such that (Su,u) is a minimizer of
G(K,v) among all pairs (K, v), where K is a closed set and v € W1>p(l? \ K).
Moreover

and

The existence of minimizers for G{v) follows from compactness and lower
semicontinuity results of [Al]. Indeed, the hypothesis F(0) = minF(z) allows
us to truncate minimizing sequences in order to apply Theorem 3.1, yielding
the following result.

Theorem 3.6. If F : IR^ -> IR is a convex function such that F(0) = min F(z)
and verifying (Hi), 1 < p < oo, g e L°°, a, /? > 0, then there exists a minimizer
u in SBV(fi) n L°°(J?) for the functional §(v).

In order to prove Theorem 3.5 we must show that the pair (Su> ̂ ), where u is
a minimizer provided by Theorem 3.6, is indeed a minimizer for the functional
G(K,v). Following [DGCL], we introduce some useful quantities.

Definition 3.7. Let Fp be the p-recession function ofF,ue SBV(Q), c> 0,
and let A CC i? be an open} strongly Lipschitz domain,. We define

{u,c,A):= f F(Vu)
JA

(u,c,^):= f Fp(Vu
JA

#p( t i ,c ,A) := inf {Tp{v,c,A):ve SBV(O),v = uinf2\A},

and, t/$p(u, c,A) < oo, we set

tfp(tt, c, A) := ^>(u, c, A) - *p(tx, c, A).



18 I. Fonseca and N. Fusco

Remark 3.8. If u e SBV(f2) D JL°°(#) then, by Theorem 3.1, #p is always
attained.

Notice that if in the definition of Tv we take HN~l(Su D A) instead of
HN'1(SU D~A) then we get $ p identically equal to zero.

Also, if u € SBV(BR(X0)), p < R, we set up(y) := p'^u^xo + pyY for
y e BR/p(0), to obtain up € SBV(BR/p), and

The next lemma is proved exactly as Lemma 4.6 in [DGCL].

Lemma 3.9. Letu,v € SBV(BR), c> 0 andO < p < R. ^^^{
0 = HN-l(SvndBp), then

|#p(u,c,Bp) - #p(t;,c,Bp)| < cHN^({u * v) DdBp).

The following two results are straightforward generalizations of Lemma 4.7
and Theorem 4.8 in [DGCL]. For completeness we include their proofs.

Lemma 3.10. Let u,v € SBV(BR), 0 < p < p1 < R, c> 0. Then

*p(u,c,Bp.) < *p(v,c,Bp) + c{L,p)Fp{u,c,Bp. \ Wp)

BP,\BP

Proof. Define

(p(x) := i

0

\x\-p
p'-p

. 1

\x

P

o1

\<p

< \x\ < P1

<R.

Fix e > 0 and consider w € 5BVr(Bij) such that w = t; on BR \ TTP and

J>(u;, c, Bp) < <Pp(v, c, Bp) + e.

Set 2 := <pu 4- (1 — >̂)w. By Remark 2.7 we have
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< / Fp(Vw) dx + c{L,p) I |Vu|p dx + c{L,p) f |Vv|p dx
JBP JBP,\BP JBP,\BP

/ p

BP,\BP

"-1^ n(Sp\ Bp)) + cH"-1^ n (Bj, \ Bp))
, c, Bp) + s + c(L, j>)/p(u, c, BP' \ Bp) + c(I,p)Tp{v, c, Bp. \ B~p)

\u-vrix.

The conclusion follows letting e —• 0. D

In the following theorem we use the notation introduced in Theorem 3.4.

Theorem 3.11. Let F : JRN —*1R be a convex function satisfying (Hi), {UH} C
SBV(f2), ch > 0, Uoo € W£({2), BR(x) CC 12,

lim en = +oo,
h

]imTp{uh,ch,Bp{x)) = Km4>p(uh,ck,Bp(x)) =: a(p) < +00 /or a.e. p < R,
n n

and
\im\uh - mh) = tXoo a.e. in BR{X).

h
Then the function u ^ is a local minimizer of the functional

v>-> / Fp(Vv)dx
JBR(x)

and for C1 a.e. p < R

a(p)= I
JBP{X)

Proof. Since Ch —• -I-00 we have

sup
h

/ \Vuh\pdx < +00 and HN"\SUhnBp) - 0
JBP

for £ x a.e. p < R. Hence, by Theorem 3.4 we may find a subsequence (not
relabelled), a function UQC € WI£{BR), and constants m^ such that

a.e. in

In addition, since Fp is a convex function (see Remark 2.7) and Fp(0) = 0, by
Theorem 3.4 we have



20 I. Fonseca and N. Fusco

<liminf / Fp{Vuh)dx
h JBO

\ih,ch,Bp) =a(p)

for Cl a.e. p < R. It suffices to prove that, for Cl a.e. p < R and for all
t; € W^(BR) such that v = UQO on BR \ Bpi one has

L Fp(Vv)dx>a(p).

Consider the bounded sequence of finite Radon measures /x̂  := \Vuk\pCN +
ChHN~l [SUh. After extracting a (not relabelled) subsequence, we may suppose
that Hh —* V>, for some finite Radon measure p. Fix 0 < p < R. By (3.2), using
the facts that the sequence {chHN~l(SUh C\Br)} is bounded for a.e. r < /Z, and
that Ch —• -foo, we obtain

chCN({uh ? uh} DBR)= f CHH^UU
Jo

<C(N)ch[HN'l(SUhnBR)]:

= C(N) [chHN'\SUh n BR)] WTT cj^ - • 0;

hence, and after extracting a (not relabelled) subsequence, we conclude that

chHN-\{uh * Uh} n dBp) -+ 0 (3.3)

for C1 a.e. p < R.
Suppose that there exist 0 < p < R for which (3.3) holds, e > 0, v €

W^P(BP), v = Uoo on d.Bp, such that HN'l{SUhf\dBp) = 0 for all h, v>(dBp) = 0
and

/ Fp(Vv)dx <a{p)-e. (3.4)
JBP

Fixing p1 > 0 such that 0 < p < p' < R, by virtue of Lemma 3.10 we have

$p{uh,Ch,Bp>) < QpiuooTCh,Bp) + c(L,p)?p{uh,Ch,Bp> \BP)

fBP,\BP

< I Fp(Vv)dx + c(L,p)iJLh(B^\Bp) + c(L,p) f
JBP JBP,\BP

IBP,\BP

Letting h —• +oo, and using (3.1) and (3.4), we obtain
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Kmsup$p(uh,ch,Bp>) < a{p) - e + c(
h

+ c{L,p) I

JBP,\P

and letting p' —• p + we conclude that

limsuplimsup^p^/^c/^jBp') < a(p) — e. (3.5)

On the other hand, (3.3) and Lemma 3.9 yield

for Cla.e.p' > p which, given that a(-) is an increasing function, is in contra-
diction with (3.5). D

At this point, and as in [DGCL], using the regularity result provided by
Theorem 2.2 we can prove an energy decay estimate for the minimizers of the
functional PP(U,C,BR).

Lemma 3.12. [Decay Lemma] Let F : IRN —• IR be a convex function satisfy-
ing (HI), (H2) and (H3). There exist d = Ci(N,p,L,v),Rx = Rx(N,p,L,i/),
such that for every c > 0, R < Ri,0 <T < ±, there exists = £:(c,r), 6 = 6(c,r),
such that ifue SBV{Q), BR CC Q and

^p(u, c, BR) < eRN'1 , #p(u, c, BR) < 6Fp{u, c, BR),

then
?P{U,C,BTR) < C^^U^BR).

Proof. We argue by contradiction. Suppose the result is not true; then there
exist two sequences {eh}, {0/J, with lim^ Eh = lim/i Oh = 0, a sequence {uh} C
5BV(17), and a sequence of balls BRh(xh) CC i? such that

rp{uh,c,BRh(xh)) = ehR%-1 , &p(uh,c,BRh(xh)) = 6hFp(uh,c,BRh{xh)),

and
Fp{uh,c,BTRh{xh)) > C^F^u^^B^ixh)),

where C\ is a constant to be chosen later. Rescaling, we set for every h

(*>-*) . i
vh(y):=Rh

 p eh
puh(xh + Rhy), y€Bi(0).

FVom Remark 3.8 we obtain immediately

F^v^c/e^Bx) = 1 , 5Pp(^,c/£^,Bi) = 0h (3.6)

and
Fp{vh,c/eh,Br)>ClT

N. (3.7)
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Since lim^ c/eh = +00, then lim^ HN~l(SVh DBi) = 0, and so by Theorem 3.4,
passing possibly to a subsequence still denoted by {v&}, there exist a sequence
{mh} C IR and a function Voo € Wl>p(Bi) such that

Vh — ™>h —> t>oo a.e. in 2?i, and / K>(Vvoo) dx < liminf / FvC7vh) dx:
JBX

 P " h JBl
 PK

Notice that for any h the functions p —• ^{vhtC/sh^Bp) are increasing, and
from (3.6) we have also that fp(vh, c/eh, Bp) < 1 for every 0 < p < 1. Therefore,
upon extracting another subsequence, we may suppose that

limTp{vh,c/eh, Bp) < 1 for a.e. 0 < p < 1,
h

and since the functions p —» &p(vh,c/eh,Bp) are increasing, from (3.6) we have

hm^p{vh,c/eh,Bp) = 0 for allO < p < 1.

Now Theorem 3.11 implies that Uoo is a local minimizer of the functional

w>-+ Fp(Vw)dx,

and
= / for a.e. p.

Using Remark 2.7 and Lemma 2.8, we may apply Theorem 2.2 to the function
Fp to conclude that there exists a constant C2 = C2(AT,p,L,i/) such that

sup

Therefore
i,c/£:/ l,BT)= / Fp(Dvo

JBT

JBT

<LUNTN sup

which contradicts (3.7) if we choose C\ = C2L0JN + 1- D

Prom the latter lemma we proceed to obtaining a lower density estimate for
points on 5U, whenever u is a local minimizer of the functional G(v), and more
generally, when u is a quasi-minimizer.

Definition 3.13. We say that u e SBVloc(f2) is a quasi-minimizer forT{-,c, •)
if there exists a nondecreasing function u : (0,-hoc) —> [0,+oo[ such thatu(t) —•
0 as t —> 0 and
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J"(tt, c, Bp) < T(v, c, Bp) + pN-2u/(p)

whenever BPCCQ andv € SBVioc{n),v = uinQ\lTp.

Lemma 3.14. [ Density lower bound] Let F satisfy (HI), (H2) and (H3).
Ifu€ SBV(f2)r\L°°(n) is a quasi-minimizer o}T(',P, •), then there exist (k,
Ro, depending only on iV,p,L,i/,co,m,/3, such that if 0 < p < i2o, x € 5U,
Bp(x) CC i?, then

f \Vu\p + HN~l{Su n Bp) > 0OP*"1 (3.8).

A/oneover

Proof. Considering max{p,u;(p)}, it is clear that we may assume, without loss
of generality, that w(p) > p.

Step 1. Let us fix 0 < r < \ such that C\TN < r N "i , where Ci is the
constant appearing in Lemma 3.12, and r$u(l) < 1. We want to show that
there exist eo and R\ < r4 such that if 0 < p < R\ and

J'p^U, /?, tip) < 6oP (O.IUJ

then either
/3,Bp) (3.11)

or
Tv{u,$,Brp) < rpN-lu>i(p). (3.12)

If

fp(u,0,B$)<pN-lu>Hp) (3.13)

then

for 0 < p « 1, provided
o;*(p)<r. (3.14)

Suppose now that (3.13) fails, and, by virtue of Theorem 3.6 let u € SBV{Q)
be such that u = u in i? \ Bpi \\u\\oo < ||w||c»,

Given a > 0, using (HI), (H3), Holder and Young inequalities, and the fact that
u is a quasi-minimizer, we have
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(u,0,Bp) < f
Bpn{\Vu\>to}

<[ F{Vu)dx
JBP

I. Fonseca and N. Fusco

u)dx + 0HN~1(SunWp) + CpN

< (1 + a) f F{Vu) dx + 0HN~1(Su r\B~p) + C{a)pN

JBP

0, Bp) + C{a)pN + (1 + ^

, 0, Bp) + (1 + a) f [F(VG) dx

f
JB
f
Bpn{\Vfi\>t0}

U, 0, Bp) + C{a)pN

Using the failure of (3.13) and the fact that w(p) > p, we deduce that

fp(u,0,Bp) < (l+2<r)$p(u,0,Bp) + Fp(u,0,Bp)[C(a)pl

Thus

+ 2cr ^p(u, 0, Bp) < <Pp(u

with 0 < p < < 1 such that

+ (1 + <r)w*(p) < 1. (3.15)

Hence

(u, /J, Bp) = yp(u, /3,

(1 + (1 + 2a)

Let <r < 6/4, where 0 = 0(/?, r) is given by Lemma 3.12, and choose 0 < p « 1
such that

* * - . (3.16)
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Setting £o := min{£:, 1}, with e = e(/3,r) given by Lemma 3.12, and if R\ is in
agreement with (3.14)-(3.16), then we have

Tp{u,0,Bp)<epN~l and *p(u,0,Bp) < 8Tp{u,p,Bp)

which, by virtue of Lemma 3.12 and because rl^2C\ < 1, yields (3.11).
Step 2. Let 0 < p< Ru and set pi := T*p. We claim that if Fp{u, /?, Bp) <

eop
N~l then

Tp{u,(3,BPi)<e<>p»-1. (3.17)

In fact, suppose that (3.17) holds for i. By Step 1 either (3.11) holds, in which
case

?p(u,0,BPi+1) < TN-lfp(u,0,BPi)

or (3.12) is satisfied, and then, using the fact that u is decreasing,

and it suffices to choose 0 < p « 1 so that

T - " + 2 u i ( p ) < £ 0 . (3.18)

Step 3. We claim that if fp(u,0,Bp) < eoP^"1 then for all i

By Steps 1 and 2 we have that either

or

In the latter case, and using the fact that u is decreasing, we have

= ( T V ) " " 1 «* ( T ' " V ) T " N + 2 «* (T«- V)

provided 0 < p << 1 is such that

r - N + 2 o ; i ( r i - V ) < l . (3.19)

In the first case, we denote by h(i) € {0 ,1 , . . . ,t - 1} the smallest integer such
that for all j € {h(i) + 1 , . . . , i}
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If h(i) = 0, iterating this inequality yields

and the claim follows because, since T%LJ{\) < 1 and €o < 1,

If 0 < h(i) < i, iterating and using (3.12), we obtain

= (TV)""1

<(rip)N-1

where 0 < p « 1 is such that

l. (3.20)

Thus

If h(i) - 1 > i j i then

If /i(i) - 1 < i j i then t - /i(i) > if1 and so

hence

We choose -Ro € (0,fli) to be in agreement with (3.18)-(3.20).
Step 4. From Step 3 we deduce that if fp(u> /?, Bp) < eopN~l then
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^ 6 r"-1
. - .oo p<r

Thus, if i 6 Su and if Tp{u, P, Bp) < top**'1 for some p < i?o, we have

= 0

which contradicts Theorem 3.3 (ii). In conclusion, if x € "S^ and p < Ro then
Tv{u,{5,Bp) > eopN~l and this implies (3.8) for some 0O = 00(L,/3). Finally,
(3.9) follows immediately from Theorem 3.3 (i). D

Proof of Theorem 8.5. As mentioned earlier, the existence of a minimizer
for G{-) is guaranteed by lower semicontinuity results of Ambrosio (see [Al]).
Moreover if u is a minimizer for Q(-) then u is a quasi-minimizer for ^*(-,/3, •)
with u(p) = c(a, g, ||p||oo)P- Then the last statement of the theorem is no more
than (3.9), which yields Q(u) = G{Su,u). To prove that (S^,u) is a minimizing
pair for GiK^v), consider an arbitrary pair (K,v) such that G{K,v) < oo, and
notice that from Lemma 3.2 it follows that v € SBV(f2) and that 5^ C K.
Therefore

and this concludes the proof. D

Remark 3.15. Following the arguments of Ambrosio and Pallara [AP], and
Ambrosio, Fusco and Pallara [AFP], we expect that, under the assumptions of
Theorem 3.5, 5^ is locally a C1'0 hypersurface, except for a set of HAr~1 zero
measure (see [AP], Remark 3.4).

4. The Vectorial Case

The regularity result obtained in Theorem 3.5 can be applied in all its generality
only to scalar valued functions. Carriero and Leaci [CL] have extended Theorem
3.5 to the vectorial case when F{£) = |f |p, precisely, the functional to minimize
is

Go{K,u):= f \Vu\*dx + a [ \u - g\* dx
JO\K Jn\K
f [
O\K Jn\K

q > l , p > l ,a, /3 > 0,p € L°°(Q\lRd). Here we show that lower order pertur-
bations of |f |p are also allowed. In what follows, JtAdxN stands for the vector
space oi d x N real valued matrices.

Theorem 4.1. Let h : MdxN —• [0,oo) be a continuous function such that
h(0 < C(l + |f |r) for some C > 0,p > r > 1, and ft(0 > h(?) if



28 I. Fonseca and N. Fusco

( 0 if i = to,j = l,...,AT
(4.1)

&j if i^i0

for allio = l,...,d. Define

G(K;u):= f [|Vu|* + /i(Vu)]dz + a / \u-g\qdx +0HN^(f2nK).
Ja\K Jn\K
f /
a\K Jn\K

There exists a minimizer ofQ{-, •) of the form (SZ,u\ u € SBV(ft,JRd), among
all pairs {K, v), K C Q closed, v € Wl*{Q \ K, Wf). Moreover,

As in Section 3, for v € SBV(i?;lRd) we define

Go(v):= I |Vv|pdx + a / \v - g]*dx + 0HN~l(Sv D Q),
Jn in

To{v,c,A):= f \Vv\*dx + cHN-l(SvnA),
JA

#o(v, c, A) := inf{^*o(^, c, A) : w € SBV(f2; TRd),w = t; in Q \ A},

and

:= f (|Vt;|p + /i(Vt;))dx + a / \v - g\qdx + (3HN'l(Sv O fi),

^(v,c,A) := / [\Vv\p + h{Vv)) dx + cHtt-^SvOA).
JA

We recall that Theorem 3.5 was obtained from Theorem 3.6 and Lemma
3.14. Similarly, Theorem 4.1 will follow from the two results below.

Theorem 4.2. Under the assumptions of Theorem 4>1, there exists a minimizer
of the functional £(•) in L°°(n,]Rd) n SBV{n,TRd).

Lemma 4.3. [ Density lower bound] Under the hypotheses of Theorem 4>1,
ifue SBV(n;TRd) n L°°(n;TRd) is a local minimizer ofG(-), then there exist
$0, J?o, depending only on AT,p,L,i/,g,co,m, Hujloo, ||0||oo>a»/3 such that if 0 <
p < RQ, x e SiT, Bp(x) CC i?, then

Bp(x)

As in Section 3, Lemma 4.3 together will Theorem 3.3 will entail
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Also, Theorem 4.2 follows from the compactness result for SBV due to Ambrosio
[Al], since (4.1) and the fact that g € L°° imply that there are minimizing
sequences bounded in L°°. Indeed, if {un} is a minimizing sequence, then it
suffices to truncate as follows:

fWi if \(Un)i\ <

Hfflloo if («» )*> Hfflloo(v>n)i :=

To prove Lemma 4.3, we will use the decay lemma obtained by Carriero and
Lead [CL], counterpart of Lemma 3.12.

Lemma 4.4. [ Decay Lemma] For all 7 € (0,1) there exists r7 € (0,1) such
that for every r € ( 0 , T 7 ) and for every c > 0 there exist e = e{c, r, JV,p,7),
6 = «(c,r,A^,p,7), RQ = iio(c,r,iV,p,7), such that if 0 < p < Ro, and
if u € SBV((2;TRd) is such that T0(u,c,Bp) < e*>pN-x and &0(u,c,Bp) <
^ o ( u , c , B p ) , then

?o{u,c,BTp) < TN-^O(U,C,BP). (4.2)

Proof of Lemma 4.3. Fix x € Su.
Step 1. We want to show that there exist £0 > 0, Ri > 0 such that if

0 < p < Ri and if
J^{u,^Bp{x))<elpN'1 (4.3)

then either
T(u,(3,BTp(x))<TpN-t (4.4)

or
F{u,(3,BTp{x)) < r N - i ^ ( u , / ? , B p ( z ) ) , (4.5)

where, using the notation of Lemma 4.4,

Let £0 = xain{eo(0,T,Ntp,\)tl},8 = «(j9,T,JV,p,i)>fl0 = Ro(P,r,N,p,\).
Suppose that (4.3) holds and that

r(u,/3,BTp(x))<pN-i. (4.6)

Then (4.4) is satisfied, provided 0 < p « 1 is such that

p<r\ (4.7)

Suppose now that (4.6) fails. By virtue of Theorem 4.2, let u € SBV(BP; JRd) n
L°°(Bp;lR

d) be such that ||C||oo < ||u||ooi and u is a minimizer for Po{-,I3,BP)
among all v € SBV(ft;TRd),v = u o n / ? \ J3j, i.e.
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Fo(u,0,Bp)=$o(u,0,Bp).

Fix a € (0,1). Using the failure of (4.6), Holder and Young inequalities, and the
fact that u is a local minimizer for §{•), we have

?o(u,0,Bp)<G(u,0,Bp)
<G(u,0,Bp)

< f |Vu|pdx + / /i(Vu)di
JB, JB,

< f |Vu|pdx+ / |VtZ|r
JB, JB,

~ JB,
 U X °P

+ 1 f \Vu\pdx\

< [ IVu
JB,

<r)?0(u,l3,Bp)

Now
^(u, 0, Bp) = ^o(tt, 0, Bp) + / fc(Vu) dx

JB,

< ^o(«, 0, Bp) + cpN + c [ \Vu\r dx
JB,

< ^o(u, P, Bp) + cpN +a ( |Vu|p dx + c{<j)pN

JB,

<(l + <r)Fo{u,0,Bp) + cpN

< (1 + (T)TO(U, 0, Bp) + c(a)pi?(u, 0, Bp),

from which we deduce that

This inequality, together with (4.8), yields

, j9, Bp) <

+ c(<r
- c(p)
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hence
1 c(a)Pi

and we conclude that

#b(u, 0> Bp) = FQ(u, 0, Bp) - $0(u, P, Bp)

X I^v ' 1 - c(<r)pi

Fix a € (0,1) such that

1 + a 1 -

2 a n d

and (see (4.7)) choose 0 < p << 1 satisfying

p < r 4 , c ( a ) p i < l , v :r , , < -

It is clear that (4.9) reduces to

l-c(<r)p* 2'

u,0,Bp),

and by (4.3) and Lemma 4.4 we have

(4.9)

(4.10)

(4.11)

Finally, using Holder and Young inequalities we have

?{u, 0, BTP) = T0{u, 0, BTP) + / ft(Vu) dx
JBTp

< TN-i?(u, 0, Bp) + C(TP)N + C / |Vu|r dx

)N+«f \Vu\"dx + c(c)(rP)N

JBTp

a) + c(o) rN
 Pi]?(u, 0, Bp)

provided 0 < p « 1 is small enough so that (4.11) holds and

(4.12)
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We choose R\ accordingly.\ gy
Step 2. Now let 0 < p < Ro := mxn{Ri,elPT2N-4,T2N~3}, and for every

i = 0 ,1 , . . . , set pi := r{p. We claim that if F(u, /?, Bp) < eg pN'1 then

T{u,(3,BPi)<e*p»-1. (4.13)

In fact, if (4.13) holds for pi? then either (4.4) is verified, in which case

provided
p<el>>T™-\ (4.14)

or (4.5) is satisfied. In the latter case we have

proving (4.13).
Step 8, We show that if T{u, 0, Bp) <e%pN~l then

r{u,t3,BPi) < T^-Vp"-1. (4.15)

Indeed, by Step 1 and (4.13) we have that either

provided
p < T 2 " - 3 , (4.16)

or
F(u,0,BPi)<TN-l Hu,0,BPi_J.

In the latter case, denote by h(i) € {0 , . . . , i — 1} the smallest integer such that
for all j € {h(i) + 1, . . . , i}

F(u,l3,BPi)<TN-lr(u,l3,BPi_1). (4.17)

If h{i) = 0, iterating (4.17) yields

*"(», A BPi) < T « W - 4 ) ^(ti, /3,BP)

If 0 < /i(t) < i - 1, iterating (4.17), and using (4.4) and (4.15) we have
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The value of Re is choosen so as to satisfy (4.11), (4.12), (4.14), and (4.16).
Step 4. We claim that if x € Su and if 0 < p < Ro then

JV-1 (4.18)

Indeed, if F0{u, /?, Bp) < ^ ^ p*"1 , then, fixing 0 < a < 1,

^(u, (3, Bp) = ^o(«, P, Bp) + / h(Vu) dx

<Mu,P,Bp) + cpN+ f \Vu\rdx
JBP

< ^0(u, 0, Bp) + c(a)pN + a [ |Vu|p dx
JB

for p > 0 small enough so that

c(a)p< - .

In particular, by Step 3 it follows that

contradicting Theorem 3.3 (ii). We conclude that (4.18) holds.
Step 5. Finally, if x € Su then we may find z € Su and 0 < p < Ro such

that B(z,p/2) C B(x,p). Using (4.18), we obtain

2(1 + a)

N-1

and this concludes the proof of the density lower bound. D
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