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I. Fonseca and N. Fusco 1

REGULARITY RESULTS FOR ANISOTROPIC
IMAGE SEGMENTATION MODELS

" Irene Fonseca ! and Nicola Fusco 2

Abstract - Models involving bulk and interfacial energies have been used to describe phe-
nomena in fracture mechanics, phase transitions, and image segmentation. One of the main math-
ematical questions involved concerns the regularity of the crack site, or discontinuity set S, for

local minimizers u of energy functionals of the type
S(v):= fn F(Vv)dz+HN-1(S,nN).

The existence of a classical solution in the case where F(¢):=|¢|?,p>1, was proven recently by
means of compactness results in a somewhat large functional space, followed by a thorough regularity
analysis of the jump set S, of a local minimizer u of ¢ thus obtained. Here these regularity properties

are extended to a class of anisotropic, non homogeneous densities F, with p-growth.

1991 Mathematics subject classification (Amer. Math. Soc.) :35J20, 49Q20,
49J45, 49N60

Key Words : quasiconvexity, quasi-minimizer, recession function, regularity,
bounded variation

1. Introduction

Models involving bulk and interfacial energies have been used to describe phe-
nomena in fracture mechanics, phase transitions, and image segmentation (see
[BZ], [DGCL), [FF], [MS]). From a simplistic point of view, quasi-static equilib-
ria correspond to minima of an energy functional

G(u) :=/ﬂF(Vu)dx+a/n|u—g|qdz+ﬁHN"1(S.,nQ),

where 2 C IR" is an open, bounded domain, g € L®(2;R%), a,8 > 0, HN-1
stands for the N — 1-dimensional Hausdorff measure, u € BV(]RN ;IRd), Sy is
the jump set of u, i.e. the complement of the set of Lebesgue points of u, and
the distributional derivative Du is represented by Du = Vu LN + (ut —u~) ®
vHy_1|S, + C(u), with v being the normal to S,.
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2 1. Fonseca and N. Fusco

Within a fracture mechanics framework, u stands for the deformation, and
S, represents the crack site. Earlier work by Ambrosio and De Giorgi (see [A1],
[A2], [DGA]) guarantees the existence of minima, under appropriate bounded-
ness constraints (see [FF]); however, regularity properties of the macroscopic
discontinuities, being the next obvious step towards the understanding of the
interaction between fracture and damage, cannot be obtained from existing
regularity results (see [AFP], [AP], [CL], [DS], [DGCL)), as these apply only to
energy densities F of the form F(§) = |¢|P.

In Mumford-Shah model for image segmentation, the energy is a functional
of the type (see [BZ], [DMMS], [DGCL], [MS])

G(K,v) = / F(Dv)dz + a/ lv— g9 dz + BHN-1(K N 02),
2\K 2\K

where ¢ > 1, ,8 > 0, K is a closed set, v € W'P(2 \ K), g € L*®(N),
and the main goal is to show the existence of a minimizing pair (K,u) for
the functional G. Once again, this can be achieved by means of Ambrosio’s
existence results (see [Al], [A2]), followed by a regularity analysis of the jump
set of the minimizer thus obtained. Here g(z) is a real number representing the
”brightness” or "grey level” of the image at a point z (digital image), and K
represents the discontinuity set, or "edges” of g.

In this paper we will prove regularity for the jump set S, of a local minimizer
of G, corresponding to a class of anisotropic, non-homogeneous, densities F
with p-growth, namely, HV-1((S, \ S,) N 2) = 0, which is a first step towards
obtaining C!'* regularity, as it was previously obtained in [AP], [AFP)] for scalar-
valued functions, and when F(¢) = |£|? (see also regularity results in [CL] for
the vector-valued case, and F'(§) = |€|P). Our proofs are based essentially on the
L gradient estimate obtained in Theorem 2.2 for local minimizers of certain
energies corresponding to strictly convex, non-homogeneous, density functions.

2. Preliminary Results

In the sequel £2 denotes a bounded open set of RN, Br(zo) is the ball {z €
RY : |z — zo| < R}, and if f is an integrable function we define

1
f @by JA @

where wy is the Lebesgue measure of the N-dimensional unit ball. We write
simply Bp in place of Br(zo) when no confusion may arise, Q; stands for the
unit cube (0,1)", and we use Einstein’s convention for repeated indices. Also,
LN denotes the Lebesgue measure in IR", and c is a generic constant that may
vary from line to line.

Let F : IR — [0,+00) be a continuous function, 1 < p < +00, and consider
the energy functional

Fv; A) = /A F(Dv)dz
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for v € WHP(£2) and every open set A C £2.
Definition 2.1. We say that u € W1?(2) is @ WlP-local minimizer of F if
F(u; Br(z0)) = min { F(v; Br(z0)) : v € u+Wg*(Br(zo))}
for all balls Br(zp) C 0.

Now we state the main theorem of this section, which extends regularity
results well known in the literature (see [DB], [GM], [M]), but does not seem to
have been treated under the general assumptions considered here.

Theorem 2.2. Let F: RN — [0, 4+00) be a continuous function such that
(i) (u? +12)" < F(2) < L(? + |2%)""

for all z € RY, where p>1,0<u<1, and L > 0. Suppose, in addition, that
F satisfies the following inequality

() [ FG+Dgyde> [ [Fle)+v(u?+1e + Do) % 1Dgl"]

for every z € RN, ¢ € CA(Q)), and for some 0 < v < 1. Ifu € WLP(2) is
a local minimizer of the functional F then u is locally Lipschitz, and for every
Br(zo) C £2

sup (W2 + |Dul2)‘°/2 <C (W + |Du|2)p/2dx
BRrya(zo) Br(zo)

where C depends only on N,p,L,v.

To prove this theorem we give first a precise sup estimate for the gradient
Du of a local minimizer for F in the case where F is smooth and satisfies the
usual ellipticity assumptions, and then we carry out this estimate to the general
case, by means of an approximation argument.

Lemma 2.3. Let G : RN — [0, +00) be a C? function such that

1) 0 < G(2) < L(? +|22)?,
@) ID*G(2)] < A(? + |2) T,
(3) Dy;G(2)wiw; > v(u? + |2?) T wl?,

for every z,w € RY, where L Auwv>0p>1 Ifue WhP(2) is a local
minimizer of
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G(v; A) := / G(Dv)dz, Aopen,AC 02,
A

then there exists a constant C = C(N,p, L,v), independent of u, A, such that

sup (u%+ 1Du|2)’r’/2 < C][ (v + |Du]2)p/2dx (2.1)
Bpry2(%0) Br(zo)

for every Br(zo) C £2.

Proof. It follows from standard regularity theory (see [DB], [GM], [M]) that
u is a CY® N W22 function, and the estimate (2.1) holds for some constant

loc

C=C(N,p,L,v,u,A) . We claim that C does not depend on u or A.
Replacing u(z) by the function 4(y) := (1/R)u(zo + Ry), it is clear that @ is
a local minimizer of G in (1/R)(f2 — z). Hence, it is not restrictive to suppose
that R=1, o = 0.
In the Euler equation for G,

DiG(Du)Diédz = 0,
B

set ¢ := n?D,y), where s = 1,..., N, n € C}(B1),0 £ n <1, and ¢ € C*(B,),
to obtain

; D;G(Du)D,(Dsyp)ndz = -2 /B nD;G(Du)D,yD;indz.
Integrating by parts the first integral, we have
/B D,;G(Du)D;(D,u)(D;y)n?* dx
1
= 2/3 nD;G(Du)D,yDindzx — 2/3 nD;G(Du)DypDyndzx
1 1

for all functions ¢y € W12(B,;). Note that ¥ := VAD,u, where V(z) :=
u? +|Du|?, B > 0, is an admissible test function. Therefore, inserting this func-
tion in the equation above and noting that (1) and (3) imply that [DG(z)| <
-1
c(N,p)L(p? + |z|2)a’_, we obtain
/ D;;G(Du)D;(D,u)D;(Dyu)VPn? dz
B,
+8 / D;;G(Du)D;j(D,u)D,uD;(|Duf?)V?~1n? dz
B
<c,p,L) [ V5 0iDa|[VA|D*l + BV~ DulD( Dul?)] da.
B,

Summing up this inequality from s = 1 to s = N and using (3), we obtain
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v Vﬁ+&i-’w?u|2n2dx+52é / VA-14252| D(| Du?)|*n? dz
B, B,

<e(N,p,L) / VA+25 1 D] | Dy
B,
+c(N,p,L)B / v5-4+22 | D(|Duf?)|n| Dr) dz.
B

Applying Hélder and Young inequalities to the right hand side of the latter
formula yields

z / VB+‘3-’|D2u|2n2dx+K£ / VvA-1+22 | D(|Duf?)|*n? dz
B, B,
< 82D g) [ votiDyas,
v B
and, since

V'B—1+L§3|D(|Du|2)|2n2dz < C(N)/ VB+E’-_2ID2UI2172 dz,
31 B!

we conclude that

/ yo-1+252 |D(|Du|2)|2172 dr < ——C(N”f’ D / Vv5+%|Dn|? dz.
Bl v Bl
Setting v := £ + g > 2, the above inequality becomes

[ 1D de < e¥ip L [ V¥IDRR .
B] Bl
Using Poincaré inequality and Sobolev imbedding theorem we deduce that

IVYnllL2x(B,) < e(N,p, L,v)7|[VYD1l|L2(8,)

where x := -NNTz if N > 3, or any number > 1 if N = 2. Now consider the

sequence of radii r; := ] + 3, and for every i = 1,..., apply the inequality

abovetoy = «; := Ex“?and n € C4(Br,)suchthatp=1on B,,,,,0<n<1,
|Dn| < ¢2'. We obtain

L\
Vligswsaa,,, ) < (C(N,P,L, V)2"7z') " VliLaws,,)
for every i = 1,..., and iterating the above formula we have
i S
IVliLswa s, ,) =5 (c(N,p, L,v)27%;) %5 ||Vl or3s,)s

where we used the fact that 2y, = . Letting ¢ — +o00, and remarking that
v — +00, Bi C B,, for all i, the result will follow once we show that the

. [+ <]
sequence { ﬂl (e(N,p, L, V)2J"y_,-)"15} is bounded. Indeed,
J=

=1
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‘ i\ " 4x 1 e(N,p, L,v)p\ | .
1n(fz o(N,p, L, )2 ): _.__[m(____ +7In(2
I (c(N.p,L,v)2';) ; v o 7ln(2x)
which is a converging series because x > 1. 0

Next, we present a simple approximation result.

Lemma 2.4. Let F satisfy the assumptions of Theorem 2.2. There exist a
sequence {Gr} of C2(RY) functions and a constant ¢ = ¢(N,p) such that

1 p/2 p/2
1 ! (;ﬁ Fop+ |z|2) <Gh(z) <cL (;ﬁ tor 4 |z|'~’) :

-2
1 5
@ DG (2) < A (42 + 55 +12)
-2
1 =
3) Di;iGh(2)wiw; 2 c (u2 + 2z + |Z|2> |w|2

for every z,w € RY, and
(4) Gr. — F uniformly on compact sets.

Proof.
Step 1. We show that we may assume, without loss of generality, that F is a C?
function satisfying (i) and

—2
D;F(z)w;w; > ¢~ tw(p? + |z)2)Lrlw|2 (2:2)

for some u strictly greater than zero. Let p(z) = p(|z|) be a positive, radially
symmetric mollifier, with support equal to B;(0), [ B, P(2)dz =1, p(z) > 0 if
|z] < 1, and for every € > 0 define

F(z) = (pe * F)(2)
= / p(w)F(z + ew) dw,

B

where pe(w) := Jp 1‘:—') . By (ii) F is a convex function, and so F* is a C?
convex function, F* — F uniformly on compact sets, and we claim that

C—l(u2+62+|2|2)p/2 < Fe(z) SCL(#2+52+IZ|2)p/2

for some ¢ > 0. In fact, using assumption (i) the estimate from above follows
immediately, while
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Fe(z) > / p(w)(p? + 2w + 2> + 2 < z,w >)p/2 dw
B,

v

&2 p/2
/ (u2 + =+ |z|2) p(w)dw
(B1\Bj /2)N{<z,w>>0} 4

1 6.2 p/2
== ( 2-l-—--i-lzlz> / p(w) dw
4 Bi\By/2

> (pr+ %+ lzl’)p/z.

(2.3)

N

Also,ifze RN and p € C3(Q1), using assumption (ii) on F we have
[ Fe(z+ Dola)) dz > F(2)
(221
4 [ Do { [ pw)? +1z-+ cul + Do) dv} dz
Q1 B

> Fé(z) + ¢l / (12 + €2 + |22 + | Dy(z)2) 22 | Dop(z) P dz,
Q1
(2.4)
because
/ p(w) (12 + |2+ w]? + | Dp(@) )52 dw > ¢ (12 + €2 + |22 + | Do(z) 2) 222
By

(2.5)
Indeed, if p > 2, (2.5) follows by virtue of the same argument used to prove
(2.3), while, if 1 < p < 2, then

/ p(w)(1? + |2 + w[*+|Dep() ) 7 duw

B,
2 [ plw)(u? + 21z + 26wl + |De(@)?)F du
> 2"7 (17 + € + |2 + | Dp() )7
It is easy to show that (2.4) implies (2.2), i.e.,
Dy Fe(2)wiw; > ¢~ tw(p? + €% + Izlz)zi_2 |w|?.
Step 2. Define
Fa(2) = (1 = ma(2))F(2) + mn(2) (u® + 121%)""
for h=1,..., where n,(z2) := 17(]{-[), n(t) € C{(R), n(t) =0ift <1, n(t) =1if

t > 2. It is clear that F}, satisfies (i). Denoting by Fj*(z) the convex envelope
of Fy(z2), it follows that

Fpr(2) = (W +122)™*  if|2] > 2h. (2.6)
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We want to show that there exist M > 2 and ho depending only on N, p, L,
such that, for every h > hy,

Fr*(z2)=F(z) if]e] < % (2.7)

Notice that, by (i), Fr(2) < F(z) for all z € IRY, and so
Fp*(2) S F(2).

Conversely, it suffices to show that if |z| < 2—;} and if w € RN then

< DF(z),w — z > +F(2) < Fp(w).
This is always true if |w] < h, since

< DF(z),w — 2> +F(2) £ F(w) = Fy(w),

while, if |w| > h, and using the fact that convexity and hypothesis (i) imply

IDF(2)| < C(N,p)L(? + 127,
we have
< DF(z),w - z >+ F(z) — Fp(w)

< (N, PIL (2 + 1) T [+ ] +1el] = (2 + fwl?)®”?

h 2 2\p/2
o fol + 7| = 62+ wP)

)
<¢(N,p)L (ﬂ2 + ——) = [b+2lw|] - (W2 + lez)’”/2
)

0 + wl?) 2 = (1 + lw)??

provided M = M(N,p,L) > 2 and h > hg = ho(N, p, L, M) are such that
¢(N,p) (#2 + A’}—Z) <p? +|wf?
for |w| > h. Finally, define
0 if 2] < 4
=Y (w2 4 1a) - (“2 + ﬁ;)pm if 2] > 45

Fi(2) := F}*(2) + Ru(2)

and
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Gh(z) == F}/™2) = / p(w)Fy, (z + —lﬁw) dw = (pn * Fr)(2).

B

Step 3. Now we show that G}, verifies (1), (2), (3) and (4).
By (2.7), Fr(z) = F(2) if |2| < %, and so G, — F uniformly on compact

sets, proving (4). From (2.6), we have

2\ P/2 h2 \P/2
Ghr(z =2/ w(2+ z+—u—)) dw—(u2+—)
s@) =2 [ pw)(w+[e+ 3] 3

if |2| > 2h + #, and we deduce that

|D*Gh(2)| < e(N,p) /Bl p(w) (u’ + |z + %‘2) = dw.

If p > 2 then (2) follows immediately from this inequality. If 1 < p < 2, since
|z| > 2h + ¢ then

-2

ID%Gh@)] < eV,p) [ plw) (#2 + (11~ %)2) 7w

1
<) (42 + I+ 3 )
Since F}, satisfies (i), by (2.3) we have that G}, verifies (1). Finally, by (2.7) and
if |z| < % - %, then
Gh(z) = pp * F(2) + pn * Ri(2),

and so, since R}, is convex and by (2.2) and (2.5),

-2
Dy;Gr(z)wiw; > pr*c v (p? + |z|2)£=—|w‘2

1 2=
>c (p2 + ¥ + |z[2) [w|?.
If |z| > 2—1"; - % then, using (2.5),
D;;Gr(z)wiw; = (pn * Dy Fy*) (2)wsw;
2
+ (ph * Dy (U + |z|2)p/ ) (2)wiw;

2 (Ph * D;; (ﬂ2 + |Z|2)p/2) (2)wiw;

—2
1 B
>c (p2 +tzt |z|2) lw]?.

m]

In order to prove Theorem 2.2 we need the following convexity property of
F.
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Proposition 2.5. If F satisfies
(@) 0< F(z) < L(? +|2?)"*
forallzelRN, wherep>1,0< u<1, and L >0, and if

—2
G) [ Pe+Doydaz [ [FG)+u(u2 +12P +1Dp) T Dol da
Q1 (#31
for every z e RN, v € C}(Q:), and for some 0 < v < 1, then F is convez and
F((1-8)z; +622) < (1 —60)F(z) + 6F(22)
whenever 6 € (0,1),21,22 € RV, 2, # 2.
Proof. Fix z;,2zo € RN, 6 € (0,1), with z; — z5 # 0, and set 2zg := (1 — 0)z; +

022, := z3 — z;. Let x be the characteristic function of the interval (0, #6),
extended periodically to IR with period 1. Then

_ = i £
(1-6)F(z1) +6F(22) = J_l_{l;o o, F (21 + X (nx.m) E) dr
= lim F(2¢ + Duy,(z))dz,
n—Joy
where
gl [r=ta
un(@)i= (@)= [ onddr vale)= B [T (x(e) - 01
Since

Du,(z) = (x (nz.%) - 0) £—0, in L® — wx,

we have that u, — 0 in W1 — wx, and using the growth condition (i’),
after extracting a subsequence if necessary, we may find cut-off functions ¢,, €
Cs°(Q1;[0,1)), wn(z) = 1ifz € Qn, LN(Q1\ Qn) — 0, such that

[ IDen@)Plunta)iP de 0. (2.8)
1 n
Hence, using (i’) we deduce that

lim F(zg + Duyn(z))dz > limsup F(29 + D(pnuyn)(z)) dz,

n-—0o0 Ql =00 Ql
and by (ii) we conclude that
(1-6)F(z1) + 6F(z2)
> Fles) +viimint | (2 + 2o + 1D (pntn) @) 5 D(gnsn) @) do

> Feo)+ vliminf | (42 + 120l + IDun(@)) 7 IDun(a)] de.



I. Fonseca and N. Fusco

Since, by (2.8),if ¢ > 1

lim |Dun(z)|9dz = lim / |Dun(z)|? dz
Qn

=n~w/q,l ('“ lel) -

=0(1—-0) 0"‘ +(1-6)7" 1]'21—22|q

q
|2y — z2|%dx

when p > 2 we have
(1= 6)F(z1) + 6F(z2) > F(z) + c(p)v lim [ (12 + |26[*) 2 | Dun[? dz
n—=0 JQn

+c(p)v lim / |Dun|P do
n—oo Qn

= F(2p) + c(p)v(i? + |26[2) 72 6(1 — 6) |21 — 2o
+c(p)v8(1 — 6)[0P71 + (1 — 6)P~ |21 — zof?
> F(Ze),

while, if 1 < p < 2, since |Du,| < |21 — 22| we conclude that

(1= 6)F(21)+6F(z2)
> F(zg) +v linéo/ (12 + |26)° + |21 — zglz)';i‘leunl2 dr
n—oJQ.

= F(29) + c(p)V(i? + |20]2 + |21 — 22]) T 6(1 — 6) 21 — 22
> F(zg).

We are now in position to give the proof of Theorem 2.2.

Proof of Theorem 2.2. Fix Br(zo) and for any h denote by u, the solution

of the problem

min{ / Gh(Dv)dz:veu+ W(}"’(BR(:co))},
Br(zo)

where {G}} is the approximating sequence of C2? convex functions provided
by Lemma 2.4. From Lemma 2.3 we have that the sequence {u} is bounded
in WLP(Bg), and is locally bounded in W1 (Bpg). Hence, we may suppose,
passing possibly to a subsequence, that up — uy in W2 — wx locally in Bpg.
Then, using the fact G, — F uniformly on compact sets, the convexity of F,

and the minimality of u,, we deduce that, for every 0 < p < R,

11
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/ F(Duy)dz Sliminf/ F(Dup)dz
B, h Js,

=liminf [ Gi(Duy)dz
h s,

<liminf [ Gn(Du)dz
h Br

= /B F(Du) dz.

Letting p T R, since u is a local minimizer for F, and ©u = uy on dBpg, we
conclude that

/;R F(Duw)d:c=/BR F(Du)dxz.

We claim that u = ue. Indeed, if ¥ # ux choose 8 € (0,1) and set v =
fu + (1 — 6)u, so that by Proposition 2.5 we have

/BR F(Dv)dz < e/BR F(Duo) + (1 - 6) /BR F(Du)dz

= F(Du)dz,
Bp

contradicting the minimality of u. Applying Lemma 2.3 to u, using the min-
imality of up, the growth assumption on F, and the growth estimates on G,
we have

sup (u? + lDu|2)p/2 < limhinf sup (p? + lDuhlz)P/i’
B

R/2 R/2

- 2, 1 2\"?
_<_chn}‘mf (u +F2-+|Duh|> dr

Br

S climinf Gh(Duh) dx
h Br

< climinf Ghr(Du)dz
b JBg

=c F(Du)
Br

<c ][ (4% + |Duf?)?dz,
Br
and this completes the proof of the theorem. ]

Definition 2.6. The p-recession function of a function F : RY — [0, +00),
p > 1, is defined by '
. F(tz)
Fp(2) := limsup ——
t—too tP

forzG]RN.
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Remark 2.7. It is clear that F}, is positively homogeneous of degree p, and if
F is convex, then Fj is also convex. Moreover, if

e — L F() S LA+ 12P),

then 1
AR Fp(2) < LjzlP.

The next lemma establishes strict quasiconvéxity of Fy, provided F is strictly
quasiconvex and verifies appropriate growth conditions.

Lemma 2.8. Let F : RN — [0,+00) be a continuous function satisfying, for
p>1,
0 < F(z) < L(1 + |2[P),

and

F(z+ Dy)dz > / [F(2) + v(u? + |22 + |Dpl?) T |Dyl?] dz

Q (23}

for every z € RN, ¢ € C4(Q,) and some 0 < v < 1 and u > 0. In addition,
assume that there ezist to > 0 and 0 < m < p such that

F(tz) o

S

Fp(2) = ——

for everyt > to and all z € SN, Then

/; Fy(z+ Dy)dz > / [Fo(2) + v(|z1* + | Dy|?) = |Dy|?] dz (2.9)

A

for every z € RY and all ¢ € CA(Qy).

Proof. Fix A > 1 and notice that for ¢ > oA and 2 such that A~! < |z| < A,
we have

Fp(2) - (tz) < °°’::m (2.10)
In fact,
_ F(tz)
Fy2) = 1aP|Fy () - F (1l /ity
colz[?
= @
< QAT

tm
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To prove (2.9), fix z € RY, ¢ € C}(Q1), and take a sequence ¢, T 0o such that
Fy(z) = limy ﬂ;‘f—l Fix A > max{1,|z| + ||D¢|lec}. Then, if t5 > to}, from
(2.10) and by virtue of the strict quasiconvexity of F, we have
/ Fy(z+ Dy)dzr > / F,(z+ Dy)dz
Q Qin{A~1<|z+Dyl}

1 CoAP—™

> - F(thz + thnDy)dz —
ti Q1N{A-1<|z+Dypl} ( (P) tzl
1 CoAP~™

2 - F(thz + thDyp)dz — —
179 Q1 ty

L
th Jain{lz+Dol<a-1)

2 =2 p—m
> [ (G k(b 1o+ 1D6l7) 7 10417 a2 - 23
Q: th 74

th
L £

The result follows by letting h go to +0o0 and then A go to +o00. 0

(1+ |thz + tpDyp|?) dz

3. Regularity Results - The Scalar Case

In order to state the main regularity result of this paper, Theorem 3.5, we recall
some notations and properties of BV and SBV functions that will be of later
use.

Given a set E ¢ IRY, we denote by H¥N-1(E) its (N — 1)-dimensional
Hausdorff measure. If u : 2 — IR is a Borel function, z € {2, we say that
4(z) € RU {oo} is the approzimate limit of u at z, () = aplim,_,, u(y), if

sa@) = lmf oty

for every function g € C(IR U {o0}). With this definition, the set

Sy :={z € 2:aplimu(y) does not exist}

y—z
is a Borel set with zero Lebesgue measure. BV ({2) stands for the space of
functions with bounded variation in 2, and if u € BV (2) one can show that
the jump set S, is countably (N — 1)- rectifiable (see [DG] or [F]). Moreover,
HN-1({z € 22 : 4(z) = o0}) = 0 (see [F]). It is also well known that if u €
BV(2) then the distributional derivative Du can be decomposed as Du =
Vu LN + D,u, where Vu is the density of Du with respect to the Lebesgue
N-dimensional measure £V, and D,u is the singular part of Du with respect to
LN . Finally, we recall that the space of spectal functions of bounded variation,
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SBV(£2), introduced in [DGA], consists of all functions in BV (§2) such that
D,u is supported in S,, i.e.
|Dsul(£2\ Sy) = 0.

For the study of the main properties of SBV functions, we refer to [A1], [A2],
[DGA], and we select the following SBV compactness theorem (see [Al]).

Theorem 3.1. Let f : [0,00) = IR and ¢ : (0,00] — IR be convez and concave
respectively, nondecreasing, and satisfying

limM

t—oc ¢t

Let {u,} be a sequence of functions in SBV (£2;IR?) n L°(£2;R?) such that
sup,, ||tn|lec < +00 and

sup {/n f(IVunI)dr+/su

Then there etists a subsequence u,, and a function u € SBV(2,1R%) such that

Up, = u in L', Vu,, — Vu inL' and HN-1(S,) < likmianN"l(Suuk).
—00

hmfm=oo.

mw e =m0, Jim G

o(lut - u;[)dHN'l} < o0.

n

Notice that if u € SBV(2), then clearly u € W11(2\S,). Conversely, it
follows from a modified version of Lemma 2.3 in [DGCL)] that

Lemma 3.2. Ifu € L®(2), andif K C R" isa closed set such that HN-1(2n
K) < o0 andu € WH(2\ K). thenu € SBV() and S, C K.

Density properties of u € BV at points £ € S, have been obtained in
[DGCL). In particular, the following result follows from Lemma 2.6 and Theorem
3.6 in [DGCLJ.

Theorem 3.3. Let u € SBV(§2) be such that
/ |VulPdz + HV-1(S, N N2) < +00
fo’

for some p > 1. Then

. -
; M —— P N-1 =
(%) }1_{% p [/B.(z) |VulPdz + HY (S, ﬂBe(z))J =0
for HN-1lg.e.z € 2\ Sy;
(i) if
1
ch—l-ltl) eN-1

U |VulPdz + H¥-}(S, N B.(z))| =0
B(z)
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thenz ¢ S,.

The next theorem can be found in [CL], Theorem 2.6 (see also [DGCL],
Remark 3.2 and Theorem 3.5) in a slightly different form, and it is proven. by
means of a suitable version of Sobolev-Poincaré inequality for SBV functions.

Theorem 3.4. If {uy} C SBV(Bgr), p > 1, and if
sup/ |Vup|Pdz < oo, lim HN'I(S,‘,. N Bg) =0,
h JBgr h

then there erist a subsequence {us,}, a sequence {mix} C IR, and a function
Uoo € WHP(BR) such that

up, () — Mk — U (z) a.e. in B

and
G(Vue) dz < liminf G(Vup,)dz
Br

Br k—o0

for every nonnegative convez function G, with G(0) = 0. In addition, there exist
constants ay, By such that, setting

Up, = max{min{us,,ax}, Bk},
then
Gp, — Mk — U in LP (3.1)

and

LN ({un, # @n,} N Br) < C(N) [HN-}(S(un,) N BR)] ™. (3.2)

In the sequel we denote by F a convex function on IRV satisfying the fol-
lowing assumptions:

(H1) |2l < F(2) < L(1+|z), p>1,

(H2) _/Q F(z+ Dy)dz > /Q [F(z) + u(p2 + 2% + |D¢|2)L;_2|Dgo|2] dz

for every z € RV, for all p € C¢(Q,), and for some v > 0, u > 0. Moreover we
will assume that

F(tz) <%
t?

(H3) Fp(2) - Sim

for every t > tg > 0, for all z € SN-1, and some 0 < m < p, where F, is
the p-recession function of F' (see Definition 2.6). Our main goal, Theorem 3.5
below, is to show the existence of a minimizing pair (K, u) for the functional
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G(K,v) :=/ F(Dv)dz+a/ lv - g|%dz + BHN"Y(K N N)
2\K 2\K

where ¢ > 1, a,8 > 0, K is a closed set and v € WIP(2\ K), g € L®(2). In
order to obtain this result, and following [DGCL], we introduce the functional

G(v) :=/ﬂF(Vv)dx-&-a‘/r;lv—-glqd:c+ﬁHN'1(SuﬂQ)

defined for v € SBV(12).
Now we state our regularity and existence theorem.

Theorem 3.5. Let F : RY — IR be a conver function such that F(0) =
min F(2) and verifying (H1),(H2),(HS), 1 < p < 00, g € L®, o, > 0. There
ezists a minimizer of G(v), u € SBV(R2), such that (S,,u) is a minimizer of
G(K,v) among all pairs (K,v), where K is a closed set and v € W1P(2\ K).
Moreover .
Q(u) = g(Suau)
and
HYY S\ S.)n2) =0.

The existence of minimizers for G(v) follows from compactness and lower
semicontinuity results of [Al]. Indeed, the hypothesis F(0) = min F(z) allows
us to truncate minimizing sequences in order to apply Theorem 3.1, yielding
the following result.

Theorem 3.6. If F : RY — IR is a conver function such that F(0) = min F(z)
and verifying (H1),1 <p < oo, g € L*, a, 8 > 0, then there ezists a minimizer
u in SBV(£2) N L*>°(12) for the functional G(v).

In order to prove Theorem 3.5 we must show that the pair (S, u), where u is
a minimizer provided by Theorem 3.6, is indeed a minimizer for the functional

G(K,v). Following [DGCL)], we introduce some useful quantities.

Definition 3.7. Let F,, be the p-recession function of F, u € SBV(£2), ¢ > 0,
and let A CC 2 be an open, strongly Lipschitz domain.. We define

F(u,c, A) :=/F(Vu)da:+cHN’1(Suﬂ7f),
A

Folurc, A) = / Fy(Vu)dz + cHN-1(S, nF),
A

®p(u,c, A) == inf {Fp(v,c, A) : v € SBV(2),v = uin 2\ 4},

and, if Pp(u,c, A) < oo, we set

Y, (u,c, A) := Fp(u,c, A) — Pp(u,c, A).
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Remark 3.8. If u € SBV(£2) N L*>®($2) then, by Theorem 3.1, &, is always
attained.

Notice that if in the definition of F, we take HN~1(S, N A) instead of
HN-1(S, Nn'A) then we get &, identically equal to zero.

Also, if u € SBV(BRr(z0)), p < R, we set u,(y) := p'L;‘lu(zo + py) for
y € Bg/,(0), to obtain u, € SBV(Bg/,), and

fp(upvc, Bl) = pl—N}-p(u’ c, Bp(IO))a
¢p(up1 C, Bl) = pl—N¢P(u1 C, BP(:CO))'

The next lemma is proved exactly as Lemma 4.6 in [DGCL).

Lemma 3.9. Let u,v € SBV(Bg),c>0and0< p< R. IfHN-(S,ndB,) =
0= HN-(S,N8B,), then

|®,(u,c, B,) — S,(v,¢,B,)| < cHN"({ii # 9} N 8B,).
The following two results are straightforward generalizations of Lemma 4.7

and Theorem 4.8 in [DGCL]. For completeness we include their proofs.

Lemma 3.10. Let u,v € SBV(Bg),0< p<p'<R,c>0. Then

&,(u,c, By) < Sp(v, ¢, By) + ¢(L,p)Fp(u,c, By \ B,)

n C(Lyp) /
+¢(L,p)Fp(v,¢, By \ B,) + u—v|Pdz.
(L, p)Fp( o \ Bp) @ = o) B,/\B,,| I

Proof. Define
0 lz| < p
p(z) = J_I_e;_-p p<lz|<p

1 P <R

Fix € > 0 and consider w € SBV(Bg) such that w = v on Bg \ B, and
Fp(w,¢,B,) < Pp(v,c,Bp) + €.

Set z := pu + (1 — p)w. By Remark 2.7 we have
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&,(u,c, By) < Fp(2,¢,By)
< / Fp(Vw)dz + c(L,p)/ |VulPdz + ¢(L,p) / |Vv|? dz
B, B,\B,

B,\B,
(L, p)
(¥ - p)?
+cHN"Y(S, n (By \ By)) + cHN"}(S, N (By \ By))
< &,(v,¢,B,) + € + ¢(L,p)Fp(u,¢, By \ B,) + ¢(L,p)Fp(v,c, By \ B,)

c(L,p) /
+ ————— u-—v P dx_
(0" —p)* J,\B, | |

The conclusion follows letting € — 0. 4 O

+ / |u = v|Pdz + cHN-}(S, NB,)
B,\B,

In the following theorem we use the notation introduced in Theorem 3.4.

Theorem 3.11. Let F : RN — IR be a conver function satisfying (H1), {un} C
SBV(2), ci > 0, ue € WLP(2), Br(z) CC 02,

h’rlnch = +00,
li'r‘nfp(uh,ch,Bp(x)) = li'xlndip(uh,ch,B,,(a:)) =:a(p) < +o0  forae p<R,

and
li'xzn[uh —mp) = Ueo a.e. in Bg(z).

Then the function uy, is a local minimizer of the functional

v— F,(Vv)dz
Br(z)

and for L! a.e. p< R

a0 = [ PV

Proof. Since ¢, — +00 we have

sup/ |[Vup|Pdz < 400 and  HN-Y(S,, NB,) -0
h JB,

for £! a.e. p < R. Hence, by Theorem 3.4 we may find a subsequence (not
relabelled), a function us, € W,uP(Bg), and constants mj such that

li’xln[uh —mp)=u,  a.e. in Bg(z).

In addition, since F}, is a convex function (see Remark 2.7) and F,(0) = 0, by
Theorem 3.4 we have
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/ Fy(Vitos) dz < liminf / Fy(Vup)do
B, B,
< liminf Fp(un, ca, Bp) = a(p)

for £! a.e. p < R. It suffices to prove that, for £! a.e. p < R and for all
v € WLP(BR) such that v = us on Bg \ B,, one has

‘/; Fp(Vv)dz 2> a(p).

Consider the bounded sequence of finite Radon measures up, := |Vu,|P LV +
chHN-1|S,, . After extracting a (not relabelled) subsequence, we may suppose
that up — p, for some finite Radon measure p. Fix 0 < p < R. By (3.2), using
the facts that the sequence {cy HN=1(S,, N B,)} is bounded for a.e. r < R, and
that ¢, — +00, we obtain

cnl™ ({un # @} N Bg) = /01 chnHN "1 ({an # @ix} N 8B,)dp
< C(N)ew [HN=1(Sy, N Br)] L
= C(N) [chHV~1(Sy, N Br)] ™~ ,’,m —0;
hence, and after extracting a (not relabelled) subsequence, we conclude that
en HN = ({@in # 41} N8B,) — 0 (33)

for £! a.e. p< R.

Suppose that there exist 0 < p < R for which (3.3) holds, ¢ > 0, v
W1P(B,), v = uc on 8B,, such that HN~1(S,,, NdB,) = 0 for all h, u(8B,) =
and

/ Fo(Vv)dz < a(p) —¢. (3.4)
B,
Fixing p’ > 0 such that 0 < p < ¢’ < R, by virtue of Lemma 3.10 we have
/7 (Uh,Ch,Bp ) < ¢p Uooy Chy p) + C(Lsp)fp(ﬁh$chpr' \.B—P)
+e(L,p) / (Vur)

c(L,p)
(P = pP)* JB,\B,

< / F,(Vv)dz + (L, p)un(By \ B,) + c(L.p) / Fy(Viuoo) dz
B, B\

(L, p)
(¢ = p)? JB,\B,

|@h — mp — uo|P dz

|in — mp — uso|? dz.

Letting h — +o00, and using (3.1) and (3.4), we obtain
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lim sup @5(2h, ch, By) < alp) — € + e(L,p)u(By \ B,)
+c¢(L,p) / F,(Vuy) dz,
B, \B,

and letting p’ — p* we conclude that

lim sup lim sup $,(%h, ch, By) < a(p) —¢. (3.5)
p'—pt h

On the other hand, (3.3) and Lemma 3.9 yield
li'?lép(ﬁhv Ch, Bp’) = a(p’)

for Lla.e.p’ > p which, given that a(-) is an increasing function, is in contra-
diction with (3.5). u]

At this point, and as in [DGCL], using the regularity result provided by
Theorem 2.2 we can prove an energy decay estimate for the minimizers of the
functional F,(u,c, Bgr).

Lemma 3.12. [Decay Lemma) Let F : RY — IR be a conver function satisfy-
ing (H1), (H2) and (H3). There exist C, = C1(N,p,L,v), Ry = Ry(N,p, L,v),
such that for everyc >0, R< R;,0< 7 < %, there existe = ¢(c, 1), 6 = 6(c, 7),
such that if u € SBV(2), Bgp CC 2 and

Fp(u,c,Br) <eRN~' | W,(u,c,Bg) < 6F,(u,c, Br),

then
fp("’y c, BTR) < ClTpr(uy c, BR)

Proof. We argue by contradiction. Suppose the result is not true; then there
exist two sequences {ex}, {6n}, with lim, €, = lim,, 6, = 0, a sequence {uy} C
SBV(£2), and a sequence of balls Bg, (z,) CC {2 such that

Fp(un,c,Br, (zh)) = eaRy ™', Wp(un,c, Br,(zh)) = OaFp(un,c, Br,(zn)),

and
}-P(uh’ c, Bth (Z'h)) > CITNfP(uha c, BR}\ (zh))a

where C is a constant to be chosen later. Rescaling, we set for every h
-z 1
vr(y) := Rh Pogy Pup(zh + Rry), y € B1(0).
From Remark 3.8 we obtain immediately
fp(vh’c/eh)Bl) =1 ’ g’p(‘Uh,C/Eh,Bl) = eh (36)

and
Fp(vn,c/en, B;) > C1 V. 3.7
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Since limp, ¢/ep = +00, then limp HVN-1(S,, N B;) = 0, and so by Theorem 3.4,
passing possibly to a subsequence still denoted by {vs}, there exist a sequence
{m+} C R and a function ve, € W¥P(B;) such that

Vp — My — Vo &.€. in Bj, and Fp(Vue)dz < lin}linf/ F,(Vup)dz:
B, B,

Notice that for any h the functions p — F,(vp,c/en, B,) are increasing, and
from (3.6) we have also that Fp(vn,c/en, B,) < 1 for every 0 < p < 1. Therefore,
upon extracting another subsequence, we may suppose that

li'r.nf,,(vh,c/sh,Bp) <1 forae 0<p<1,
and since the functions p — W,(vp,c/en, B,) are increasing, from (3.6) we have

ﬁ}{rl!l'p(vh,c/eh,Bp) =0, forall0<p<l1.

Now Theorem 3.11 implies that v is a local minimizer of the functional
w— / F,(Vw)dz,
B

and
li'xlnfp(vh,c/eh,Bp) =/ Fp(Vuy)dz for a.e. p.

By(z
Using Remark 2.7 and Lemma 2.8, we may apply Theorem 2.2 to the function
F,, to conclude that there exists a constant Cz = C2(N, p, L,v) such that

sup |Dug|P < Cz/ |Dveo|Pdz < Co L.
B,

B,z
Therefore
h}{nf,(vh,c/eh,B,) = / Fp(Dvy) dz
B‘r
<[ IDucPds
B‘r
< Lwn7" sup |Due|P
By/2
< CyL?wn N
which contradicts (3.7) if we choose Cy; = CoLwy + 1. ]

From the latter lemma we proceed to obtaining a lower density estimate for
points on Sy, whenever u is a local minimizer of the functional G(v), and more
generally, when u is a quasi-minimizer.

Definition 3.13. We .éay that u € SBV,.(f2) ts a quasi-minimizer for F(-,c,-)
if there ezists a nondecreasing function w : (0, +00) — [0, +00[ such that w(t) —
0ast— 0 and
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F(u,c,B,) < F(v,¢,B,) + pV " 1w(p)
whenever B, CC 2 and v € SBV,(R2),v = u in 2\ B,.

Lemma 3.14. [ Density lower bound] Let F satisfy (H1), (H2) and (H3).
Ifu € SBV(£2) N L™(2) is a quasi-minimizer of F (-, 3,-), then there ezist 6o,
Ry, depending only on N,p,L,v,co,m,, such that if 0 < p < Rp, z € Sy,
B,(z) CC 02, then

/ |VulP + HN=1(S, N B,) > 6pp™ ? (3.8).
By(z)

Moreover
HN"Y((S N\ S)n2)=0. (3.9)

Proof. Considering max{p,w(p)}, it is clear that we may assume, without loss
of generality, that w(p) > p.

Step 1. Let us fix 0 < 7 < 1 such that Cy7V < 7N-% where C; is the
constant appearing in Lemma 3.12, and -riw(l) < 1. We want to show that
there exist €9 and R; < 74 such that if 0 < p < R; and

fp("ﬂﬁ, Bp) < EOPN_I (3.10)
then either
Fplu,B,B,,) < T™VN-4F(u,8,B,) (3.11)
or
Fp(u, 8, Brp) < 7oV 1w (p). (3.12)
If .
Fp(u,8,Bg) < PNt (p) (3.13)
then
fp(ui ﬂ’ B‘l’p) S }-P(uy ﬁv BS)
< pV 1w (p)
< 7" i (p)
for 0 < p << 1, provided
wi(p) <. (3.14)

Suppose now that (3.13) fails, and, by virtue of Theorem 3.6 let & € SBV(2)
be such that & = u in 2\ B,, ||@||wc < ||ulloo,

fp('—‘v B7Bp) = 45p(u, B, Bp)-

Given o > 0, using (H1), (H3), Hélder and Young inequalities, and the fact that
u is a quasi-minimizer, we have
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Fo(w.Bp) < [ Fy(Vu)dz + BHN-1(S, ' B,) + Cp"
BoN{|Vu|>to}

< / F(Vu)dz +C / [Vu[P~™ dz + BHN-1(S, N B;) + CpN
B, B, .

<(1+ a)/ F(Vu)dz + BHN-Y(S, nB,) + C(0)p"
B,

= (1+0)F(u,8,B,) + C(o)p"
<(1+0)F(@,B,B,) + C(o)p™ + (1 + 0)pNw(p)

= 1+ O)%(@A.B,) + W +0) [ [F(VE) - Fy(Va)] do

+C(0)p"N + (14 0)pV 1w (p)
< (14 0)Fp(8,8,B,) + C(0)p™ + (1+ 0)p" " w(p)

+(1+0) C(1+18)dz
B,N{|Va|<to}

+(1+0) C|VafP~™ dz
B,n{|Va|2to}
< (1+20)F,(@,B8,B,) + C(0)p™ + (1 + 0)pV " 1w(p)

= 120)8,(w8. ) + "k ) [Clo)f (40t (o).

Using the failure of (3.13) and the fact that w(p) > p, we deduce that
Fo(w, 8, By) < (1420)B5(u, B, By) + Fp(u, B, By)[C(0)p? + (1 + o)t (o))

Thus
1-[C(0)pt + (1 +a)wh(p)]

Fp(u, B, B,) < Sp(u, B, B,)

(1+20)
with 0 < p << 1 such that
Clo)pt + 1 +o)wi(p) < 1. (3.15)
Hence
Wp(uv ﬁv Bp) = fp(u, ﬁv Bp) - ¢P(uv ﬁa Bp)
1 C(o)p? + (1 + o)wi(p)
S [1 T (1+20) (1+20) ] Folw. 5. Be)
| 2 C(o)p? + (1 + o)wi(p)

Let 0 < /4, where 6 = 6(83, 7) is given by Lemma 3.12, and choose 0 < p << 1
such that 0
C(a)p* +(1+ o)w*(p) <3 (3.16)
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Setting €0 := min{e, 1}, with € = (8, 7) given by Lemma 3.12, and if R; is in
agreement with (3.14)-(3.16), then we have

Fp(u,8,B,) <ep" ™' and ¥(u,B,B,) < 6Fy(u,B,B,)

which, by virtue of Lemma 3.12 and because 71/2C) < 1, yields (3.11).
Step 2. Let 0 < p < Ry, and set p; := 7'p. We claim that if Fp(u,, B,) <
€0p™ ! then
Fo(u,8,By,) < €0p} 1. (3.17)

In fact, suppose that (3.17) holds for i. By Step 1 either (3.11) holds, in which
case ’
}-P(ua ﬁv BPH-I) S TN_* fp(ua ﬂ1 Bp.')

<tV gy (rip)N-?
<é& (T‘.+1p)N—11
or (3.12) is satisfied, and then, using the fact that w is decreasing,
Folw, 8, Bpiry) S 70w (o)
< (Ti+1p)N—1 T—N+2w}(p)’
and it suffices to choose 0 < p << 1 so that
= N+2,%(p) < &o. (3.18)

Step 3. We claim that if Fp(u, 8, B,) < €0p™¥~?! then for all i
Fo(w,8,B,,) < pf T (rT).
By Steps 1 and 2 we have that either
Fo(w,8,B,) < ™V Fy(u, 6, B,,,)

or
Fo(u, 8, By,) < 7pl 7 wh(pi1).
In the latter case, and using the fact that w is decreasing, we have
Fp(u. B, By) < 75 wh(pica)
- (Tt‘p)N-l wt (Ti-lp) —N+2 4 (Ti—lp)
<ol twd (r7)
provided 0 < p << 1 is such that
rN+2,b (1) < 1. (3.19)

In the first case, we denote by h(i) € {0,1,...,7 — 1} the smallest integer such
that for all j € {h(i) +1,...,3}

Fp(u,B,By;) < TN-4 Fp(u, B, By,_,)-
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If h(i) = 0, iterating this inequality yields

Fp(u,8,Bp,) < T WN-Y £ (u,8,B,)
< 7_i(N-})Eo pN—l

T%EO

= (r'p)V 1wt (T'il) m,

and the claim follows because, since ‘riw(l) <landeg <1,

UL S P B Y
wt('r%‘l) w(-r%l)eow (r=)r
<egrt wl"*(ri?’)

<1l

If 0 < h(i) < 4, iterating and using (3.12), we obtain
Fp(u,8,Bp) S D £ (0, 6, B, )
< rU-RONN-1) T Pt w (on()-1)
= (rip)N-1 Ll T—N+2w}(m.h(¢)-1)
< (PN N2 () b (prh01),
where 0 < p << 1 is such that
NY2 b () < 1.

Thus

1—h(i .
Fp(u,8,Bp) < pY 17 wh(rh®-1),
If (i) — 1 > 31 then

i—-h(i

T w*(r"(i)'l) < w*('r%l).

If h(i) - 1 < 5} then i — k(i) > 3! and s0

hence -
Fp(u,B,B,,) < pN- 1wk (+ 7).

We choose Ry € (0, R;) to be in agreement with (3.18)-(3.20).
Step 4. From Step 3 we deduce that if Fp(u, 8, B,) < ggp™ ! then

(3.20)
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Fp(w.0,Bp) _ y, Folw BuBr)

lim
TN-1

1—00 P,- r—0

Thus, if z € S, and if Fp(u, 8, B,) < €op™ ! for some p < Ry, we have

lim rV-1 [/ Vup dz+ H¥}(S, 0 B,)] =0
B,

r—0

which contradicts Theorem 3.3 (ii). In conclusion, if £ € S, and p < Ry then
Fp(u,B,B,) > €op™~! and this implies (3.8) for some 6y = 6o(L, B). Fmally,
(3.9) follows immediately from Theorem 3.3 (i).

Proof of Theorem 8.5. As mentioned earlier, the existence of a minimizer
for G(-) is guaranteed by lower semicontinuity results of Ambrosio (see [Al]).
Moreover if u is a minimizer for G(-) then u is a quasi-minimizer for F(-,3,-)
with w(p) = ¢(a, g, ||gllcc)p- Then the last statement of the theorem is no more
than (3.9), which yields G(u) = G(S,,u). To prove that (S, ) is a minimizing
pair for G(K,v), consider an arbitrary pair (K,v) such that G(K,v) < oo, and
notice that from Lemma 3.2 it follows that v € SBV(f2) and that S, C K.
Therefore

G(Su,u) =G(u) < G(v) < G(K,v),

and this concludes the proof. ]

Remark 3.15. Following the arguments of Ambrosio and Pallara [AP], and
Ambrosio, Fusco and Pallara [AFP], we expect that, under the assumptions of
Theorem 3.5, S, is locally a C1@ hypersurface, except for a set of HV~1 zero
measure (see [AP], Remark 3.4).

4. The Vectorial Case

The regularity result obtained in Theorem 3.5 can be applied in all its generality
only to scalar valued functions. Carriero and Leaci [CL] have extended Theorem
3.5 to the vectorial case when F(§) = |€|P, precisely, the functional to minimize
is

Go(K,u) :=/ |Vu|”dx+a/ lu — g|?dz + BHN"} (2N K),
2\K 2\K
¢>1,p>1,0,8> 0,9 € L(£2;IR%). Here we show that lower order pertur-

bations of |¢|P are also allowed. In what follows, M?*N stands for the vector
space of d x N real valued matrices.

Theorem 4.1. Let h : M®*Y — [0,00) be a continuous function such that
h(€) < C(1 + [¢|") for some C > 0,p>r > 1, and h(§) > h(¢') if
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0 i i=19,j=1,...,.N
& if i#1

€= (41)

for allig =1,...,d. Define

G(K;u) := / (IVu® + h(Vu)] dz + a/ lu - g|?dz + BHN-1(2 N K).
2\K 2\K

There ezists a minimizer of G(-,-) of the form (S,,u), u € SBV(22,IR%), among
all pairs (K,v), K C 2 closed, v e W*?(22\ K,IR®). Moreover,

HYN"Y S\ S,)nN)=0.

As in Section 3, for v € SBV(£2;R?) we define

Go(v) :=/ |Vv|”d:t+a/ lv—g|?dz + BHN-1(S, N N),
fo) fo)

Folv,c, A) :=/ |Vv|Pdz + cHN (S, N A),
A
(v, ¢, A) := inf{Fo(w,c, A) : w € SBV(2;RY),w =vin 2\ 4},
Yo (v, ¢, A) := Fo(v,c, A) — Po(v, ¢, A),
G(v) := / (IVv|P + h(Vv)) dz + a/ |v—g|%dz + BHN (S, N N),
(7] N

and
Flv,c, A) = / (Vo] + h(V0)] dz + cHV-Y(S, ).
A

‘We recall that Theorem 3.5 was obtained from Theorem 3.6 and Lemma
3.14. Similarly, Theorem 4.1 will follow from the two results below.

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a minimizer
of the functional G(-) in L*(2;IR?) N SBV (12;RY).

Lemma 4.3. [ Density lower bound] Under the hypotheses of Theorem 4.1,
if u € SBV(2;1R?%) N L>®(2;1RY) is a local minimizer of G(-), then there exist
6o, Ro, depending only on N,p, L,v,q,co,m, ||t||oo, ||9]loc, @, B such that if 0 <
p < Ry, z€S,, By(z) CC £, then

/ |VulP dz + BHN-1(S, N B,) > 6oV 1.
B,(z)

As in Section 3, Lemma 4.3 together will Theorem 3.3 will entail
HN-Y((S,\S.,)n ) =0.
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Also, Theorem 4.2 follows from the compactness result for SBV due to Ambrosio
[A1], since (4.1) and the fact that g € L* imply that there are minimizing
sequences bounded in L. Indeed, if {u,} is a minimizing sequence, then it
suffices to truncate as follows:

(un): if  |(un)i < lglloo
(@n)i = ¢ ll9llo if (un)i > llglleo

"“9”00 if (un)i < _”g”oo

fori=1,...,d.
To prove Lemma 4.3, we will use the decay lemma obtained by Carriero and
Leaci [CL], counterpart of Lemma 3.12.

Lemma 4.4. [ Decay Lemma) For all v € (0,1) there ezists 7, € (0,1) such
that for every 7 € (0,7,) and for every ¢ > 0 there ezist € = €(c,7,N,p,7),
6 = 6(c,7,N,p,v), Ro = Ro(c,7,N,p,7), such that if 0 < p < Ry, and
if u € SBV(2;R?) is such that Fo(u,c,B,) < ePpV~1 and ¥y(u,c,B,) <
0Fo(u,c, B,), then

Fo(u,c,B,p) < TN"’fo(u, ¢, B,). (4.2)

Proof of Lemma 4.8. Fixz € S,.
Step 1. We want to show that there exist ¢¢ > 0,R; > 0 such that if
0<p< R; and if

F(u,B,B,(z)) < eb pN? (4.3)
then either
F(u,B,B,,(z)) < 7pV? (4.4)
or
F(u, 8, Bry(x)) < V"4 F(u, 8, B,(2)), (4.5)
where, using the notation of Lemma 4.4,
TE (O,Ti) .

Let €0 = min{eo(B,7,N,p,%),1},6 = 6(8,7,N,p,§),Ro = Ro(B,7,N,p,3).
Suppose that (4.3) holds and that

F(u,B,Bry(z)) < pN-1. (4.6)
Then (4.4) is satisfied, provided 0 < p << 1 is such that
p< T 4.7)

Suppose now that (4.6) fails. By virtue of Theorem 4.2, let @ € SBV (B,; RN
L°°(B,,;1Rd) be such that ||ii||ec < ||u||eo, and & is & minimizer for Fo(-, 3, B,)
among all v € SBV(2;R%),v =uon 2 \B,, i.e.
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}.O(aa ﬂy Bp) = ¢O(u) ﬂ) BP)

Fix o0 € (0,1). Using the failure of (4.6), Hélder and Young inequalities, and the
fact that u is a local minimizer for G(-), we have

fO(us ﬁ9 Bp) < G(uy ﬁy BP)
5 g-(ﬁ's ﬁ1 BP)

< / |Val? dz + / h(Va)dz +cp™ + BHN (S NB,)
B, B,

< / |ValPdz + / |Va|" dz + cp™ + BHN-1(S; N B,)
B, B,

< / IValP dz + cp® + BHN=1(S; n B,)
B,

z

+ (/ IVﬁi”dx) ’ (cpN)l-§ (4.8)
B,
< / |ValP dz + co + BHN-1(S: N B,)
B,

+ o/ |ValP dz + c(o) "
B,

< (1 +0)Fo(@, B, B,) + c(a)p"
< (1+0)Fo(@, B, B,) + c(0)pt F(u, 8, Bs,)
< (14 0)Fo(8,B, B,) + c(0)pt F(u, 8, B,).

Now
F(u,B,B,) = Folu, 5, B,) + /B h(Vu) do

< Fo(u,B8,B,) +cp™ + c/ |Vu|"dz
B,

< Fo(w,B,B,) +co" +0 / VulP dz + ()™
B,

< (1+0)Fo(u, B, B,) + co™
< (14 0)Fo(u, B, B,) + c(0)p* F(u, B, B,),
from which we deduce that
1-c(0)p?
1+o
This inequality, together with (4.8), yields
Fo(u,,B,) < (1 +0)Fo(, 5, B,)

l1+o
1-¢(o)pt

f(u,ﬂ)Bp) S FO(uwﬂ’Bp)-

+¢(0) pi Fo(u, B, By);
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hence

[ 1 c(0)pt

140 1- C(U)P*] Fo(u, B, By) < o(u, B, By)

and we conclude that

WO(U) ﬂ, Bp) = fO(uw ﬁv Bp) - Q()(u'a ﬂ’ Bp)

1 c(o)pt
s [1 T 140 + 1- c(a)pi:I Fo(u, 5, Bp)

I A c(o)pt -
- 140 l—c(a)p%

} Fo(u, B, Bp).

Fix o € (0,1) such that

N-%

i <2 and (1+cr)'rN'*<T—,

1+0 2 2
and (see (4.7)) choose 0 < p << 1 satisfying
c(o)pt 0
<7, clo)pt<l, —2 _ 2.

It is clear that (4.9) reduces to
WYo(u, B, B,) < 6Fo(u, B, B,),
and by (4.3) and Lemma 4.4 we have
Folu, B, Brp) < TV Fy(u, 8, B,).

Finally, using Holder and Young inequalities we have
F(w,0,Br,) = Fo(w8.Brp) + [ h(Vude
B.p

< AF(w BBy + el +e [ Valrde

TP
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(4.9)

(4.10)

(4.11)

<Nt F(u,8,B,) + c(rp)N + 0/ (Vul? dz + (o) (7o)

e

< ™V"4F(u, 8, B,) + (o)(rp)"
<[PV +0) + olo) 7 p1)F(u, 8, B,)
<=7 (x,8,B,),

provided 0 < p << 1 is small enough so that (4.11) holds and

c(o) TV ot < T-Nz__i-

(4.12)
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We choose R; accordingly.
Step 2. Now let 0 < p < Rp := min{R;,eaPr2N=4,72N=3} and for every
i=0,1,..., set p; := 7'p. We claim that if F(u, B, B,) < €} p'~! then

F(u,B,B,,) <e§p) 1. (4:13)
In fact, if (4.13) holds for p;, then either (4.4) is verified, in which case

:F(u’ﬂ’BPdﬂ) < Tp?’_§

<ef (r*1p) "7,

provided
p < el N4 (4.14)

or (4.5) is satisfied. In the latter case we have
F(u, B, BP"+1) < TN-4 F(u, B, BP-')
Sefpl N4
<ef (r+ip)" 7,

proving (4.13).
Step 8. We show that if F(u, 8, B,) < €} pNV~! then

F(u,B,B,,) < TN=D pN-1, (4.15)
Indeed, by Step 1 and (4.13) we have that either
.7-'(u, ﬂ’ BP-‘) < Tpi]i_I%
< 7i(N-1) pN-1

provided
p< T3 (4.16)

or

F(u,B,B,,) <™ F(u,8,B,,_,).

In the latter case, denote by h(i) € {0,...,i — 1} the smallest integer such that
for all j € {h(3) +1,...,3}

f(u’ ﬂa BP:') s TN—% ]:(uvﬁv BP,'—!)‘ (4‘17)
If h(i) = 0, iterating (4.17) yields

'r(uv ﬁs BPi) S Ti(N-i)f(uv ﬂaBp)
< Ti(N—})egp -1
S Ti(N—})pN—l.

If 0 < h(3) < i—1, iterating (4.17), and using (4.4) and (4.15) we have
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F(u,8,B,,) < r-POWN-H x5 B, )

< TU=RON=1) 7 ;- )%1

< ,rs(N—})pN 1
The value of Ry is choosen so as to satisfy (4.11), (4.12), (4.14), and (4.16).
Step 4. We claim that if z € S, and if 0 < p < Ry then

Fo(u,B8,B,) > 2(15_: )p”“‘. (4.18)

Indeed, if Fo(u, 8, B,) < Wﬁ;’p’v 1 then, fixing 0 < 0 < 1,
F(u,B,B,) = Fo(u, B, B,) +/ h(Vu)dz
B,
< Fo(u, B, B,) + cp™ +/ |Vu|" dz
B,

< Fo(u,B8,B,) +c(o)p™ +0 / |Vul|P dz
B,
< (1+0)Fo(u,B,B,) + c(a)pN

_165 _
<P+ (o)l e

< EgpN_l

for p > 0 small enough so that
1
c(o)p < 3
In particular, by Step 3 it follows that

11!% N— 1-7:.0(“ IH’BF) =

contradicting Theorem 3.3 (ii). We conclude that (4.18) holds.

Step 5. Finally, if z € S, then we may find 2 € S, and 0 < p < Ry such
that B(z,p/2) C B(z,p). Using (4.18), we obtain

Fo(u, B, By(x)) 2 Fo(u, B, Byj2(2))
P p\N-1
2 50 40) (3)

2
= 00 PN_I,

and this concludes the proof of the density lower bound. ]
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subject of regularity within the context of SBV vector-valued fields and quasi-
convex bulk energy densities F.
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