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1. INTRODUCTION
The purpose of this paper is twofold:

• to introduce a framework for classical electromagnetism in which the basic
ingredients are the electromagnetic potential, gauge invariance, an appropriate
version of the second law, and constitutive equations that define particular
classes of materials;
• to develop a theory of superconductivity based on this framework supplemen-
ted by a complex wavefunction ty and complex microforces that are work-
conjugate to temporal changes in ty.1

a. Electromagnetic theory
I frame the theory using nonstandard notions of work and energy. The

energy transferred to a control volume is classically characterized by the Poyn-
ting vector E*H, an identification based on an integral balance derived from
Maxwell's equations and linear constitutive relations. I begin instead with a
concept of energy-transfer based on experience with theories of deformation and
diffusion in which temporal changes in the energy of a control volume P are
brought about by the transport of material and by the work of forces associated
with changes in state. Work and transport are typically represented by terms of
the form

jTn*u\ -J|ij*n (n * outward unit normal to dP) (1.1)
dP dP

* Wherever possible I scale out unnecessary constants. 1 take the speed of light equal to
one. In discussing superconductivity, the electromagnetic potential • • (A.-C) (and hence
also the magnetic induction B and the electric field E) are taken to be e/ft times their
standard counterparts, while the free velocity v of superconducting electrons is taken to
be m/ft times its standard counterpart, so that v » V e - A rather than m v - J i V e - e A repre-
sents the classical relation between v, e( and A. Here e and m denote an (effective) charge
and mass for superconducting electrons, while n is Planck's constant.
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with T a stress, u a displacement, \i a chemical potential, and j a mass flux
vector.

In electromagnetism it is the potential

fi « (A,-<£) (A * magnetic potential, 3> « electric potential)

that is basic, and I believe that the proper analogies between electromagnetism
and theories of deformation and diffusion are between u and fi, as each charac-
terizes the underlying kinematical state, and between [l and $, as each charac-
terizes the transport of energy. Further, although the setting is nonrelativistic,
I find it convenient to frame the theory in spacetime2 R3xlR, and for that
reason I use action rather than energy, although

what I call ''action" is the negative of
what is usually referred to as "action"* (1.2)

Guided by (1.1), I introduce two gauge-invariant fields, a 4-vector J, the
charge-current, and a 4-tensor T, the electromagnetic stress;4 and I use these
fields to define the action flux

J{Tn-B# - $J-n} (n « outward unit normal to 3P) (1.3)
dP

into arbitrary spacetime control volumes P. Here Jdp Tn«O* is viewed as work
associated with temporal changes in the electromagnetic field, § as an
(electro)chemical potential for current flow, and - Jdp 3>J-FD as energy carried into
P by the charge-current.

As my main result I show that

Maxwell's equations are both necessary and suffi-
cient for the action flux (1.3) to be gauge invariant;*

that is, (1.3) is gauge invariant if and only if T has the form

^Regarding notation: boldface lowercase sansserif letters t , f l , J , . . . denote 4-vectors;
boldface uppercase sansserif letters T , fl , V , . . . denote 4-tensors as well as regions in
spacetime; standard boldface letters denote 3-vectors; lightface letters denote scalars.
^"Action" then has the same sign as "free energy", which is convenient.
^T should not be confused with the stress tensors of Maxwell and Lorentz (cf. eqts.
(33.13) and (33.32) of Wang [1979]).
^Analogous to the continuum mechanical result:

Galilean invariance of power «+ balance of forces.



Hx D
T =

-DT 0

with curlH = D#+j, divD = q, J«(j ,q) . 6 I further establish consistency with

classical electromagnetism by relating (1.3) to the more standard flow of energy

represented by the Poynting vector.

I next introduce a scalar field, the action density Q, and consider a mecha-

nical version of the second law which asserts that the temporal change in Q

across P be not greater than the action flux into P:

JQntim€ < P(P) (1.4)
dp

with ntim€ the temporal component of n. Note that, for P = Px[tOlti] with P a re-

gion in IR3, the left side of (1.4) is the value of Jp Q at t=tx minus its value at

t-t0.
Finally, I use the second law (1.4) to develop a suitable constitutive theory.

b. Superconductivity

I extend the ideas described above to develop a theory of superconductivity

that is consistent with, but more general than, the Ginzburg-Landau theory.

What distinguishes the treatment presented here from other macroscopic theo-

ries7 of superconductivity are the separation of basic physical laws from con-

stitutive equations and the introduction of a balance law for complex micro-

forces. Here I continue an approach8 based on the belief that fundamental

physical laws involving energy should account for the v/ork associated with each

kinematical process. In the Ginzburg-Landau theory the macroscopic manifesta-

tion of the kinematics of superelectrons is the wavefunction \\>. In accord with

As for the remaining Maxwell equations: divj • -q* holds automatically; curl E « -B *
and divB « 0 are consequences of the definitions E«-(A**V$) and B • curl A.

I.e., the Ginzburg-Landau theories (cf., Cyrot [1970], Chapman, Howison, and Ockendon
[1992]), which are variational, or the work of Zhou and Miya [1991], Maugin [1992], Zhou
[1991], and Yeh and Chen [1993], who utilize thermodynamics, but do not postulate a
microforce balance and are therefore compelled to lay down constitutive equations relating
fields already endowed with constitutive prescriptions (e.g., (20) of Maugin [1992]).
8Begun in collaboration with Fried [1993,1994]. The introduction of ancillary force
systems consistent with their own balance is apparently due to E. and F. Cosserat (1907)
(cf. Truesdell and Noll [1965], §98 for the early history of such theories), although the
development here is more closely allied to the work of Ericksen [1991] on liquid crystals
and the more general treatment of Podio-Guidugli and Capriz [1983] and Capriz [1989].



this I assume that forces on superelectrons are characterized macroscopically by
a complex microforce system that performs work when ^ undergoes changes.
What is most important, I require that this system be consistent with a com-
plex microforce balance, a hypothesis at least partially motivated by the follo-
wing arguments:
(i) Equilibrium is, in part, described by an Euler-Lagrange equation correspon-
ding to the vanishing of the free energy with respect to variations in \\>. This
Euler-Lagrange equation represents a statical version of the complex microforce
balance. In dynamics with general forms of dissipation there is no such variatio-
nal principle; the use of a complex microforce balance is an attempt to extend to
dynamics an essential feature of statical theories.
(ii) Standard forces in continua are associated with macroscopic length scales,
while complex microforces here describe forces associated with microscopic con-
figurations of electrons. The need for a separate balance for microforces seems a
necessary consequence of the disparite length scales involved.



2. NOTATION
Although I work within a nonrelativistic setting,9 it is useful to consider

both euclidean space, identified with IR3, and four-dimensional spacetime,
IR'xIR, with both K3 and !R3x[R endowed with the standard euclidean inner
product, denoted by a "dot". To avoid ambiguities I write:

3-vector * vector in IR3,
3-tensor « linear transformation of IR3 into IR3,
4-vector « vector in IR3xIR,
4-tensor = linear transformation of IR3*1R into 1R3*1R.

Let B be a 4-vector. Then

B = (8space,Btime), (2.1)

with Bspac€, a 3-vector, and B t imc, a scalar, the spatial and temporal compo-
nents of 0. Every 4-tensor M admits the representation

M m
n = (2.2)

where M is a three-tensor viewed as a 3^3 matrix, m and |i are 3-vectors
viewed as 3x1 matrices, and ML is a scalar.10

If W is a skew 3-tensor, then there is a unique 3-vector w, the axial
vector of W, such that Wa«wxa for all 3-vectors a; more succintly

W = wx (2.3)

For W a skew 4-tensor there are 3-vectors w and a such that:

'For consistency, as I wish to formulate superconductivity within that framework; the
extension of my treatment of electromagnetic theory to a (special) relativistic setting
involves only minor changes.
1 0 M T denotes the transpose of a matrix M. For M square: trM is the trace of M; M is
symmetric or skew according as M « M T , M - - M T ; symM and skwM are the symmetric
and skew parts of M . The inner product of n*m matrices M and P is defined by
M-P- tr (M T P) .



W = (2.4)
-aT 0 .

I use the following terminology and notation:

field = function on R3xIR;
X* (x,t), an event, is a generic point of R3x|R;
()• denotes the time derivative;
V, div, curl, and A denote the spatial gradient, div, curl, and Laplacian;
V4 and div4 denote the spacetime gradient and divergence.

For fi « (a,a) a 4-vector field,

Va a*
v4e = (2.5)

VocT or ,

div4B = diva + oc\ (2.6)

and for H a 4-tensor field, represented as in (2.2),11

div^M = (divM+ rcr,div|i+u#). (2.7)

The following identities, for 3-vector fields a and b, will be useful:

div(axb) « b-curla - a-curlb,

curl curl a « Vdiva - Aa,
(2.8)

skw(Va) $ ( l )

div (ax) * -curia.

A spatial control volume is a region P in K3; a spacetime control
volume is a region P in R3xR; the outward unit normal vectors for dP and QP
will be denoted by n and II, respectively. The following identities, for a a scalar
field, follow fronn the divergence theorem:

" F o r a 3-tensor field M, divM is the 3-vector field-with components Zj dMjj/dxj, where i
is the row index and j is summed from 1 to 3.



Jex\ (2.9)
P SP P

Analogous results hold for 3-vector and 3-tensor fields.
I will often use spacetime control volumes of the form P • P*[to,t]; in this

case SP is the union of 6>Px(to,t), P*{t0), and Px{t}, and

n, ntime » 0 on dPx(to.t),

0, lltime - - 1 on Px{t0}, (2.10)

"space • 0, lltime = 1 On Px{t}.



A. ELECTROMAGNETIC THEORY
3. ELECTROMAGNETIC POTENTIALS. ACTION. GAUGE TRANSFORMATIONS
a. The electromagnetic field. Action

A path in 1R3*1R is a smooth curve

C - (X(t) = (x(t),t) : to<t<ta }

parametrized by the time t.

The electromagnetic potential is a 4-vector field

(3.1)

with A the magnetic potential and $ the electric potential. The influence of

the electromagnetic potential on a particle of charge e traversing a path C is

characterized by the integral

G(B,C) = ejB-tiK;
C

indeed a basic physical premise is that the actual path of the particle between

given initial and terminal events renders

Qtot(B,C) = Q(B,C) + J^mv-dx (3.2)
C

stationary. Here v(t) (= x#(t)) is the velocity of the particle, while m is its mass. I

will not use this principle explicitly; I introduce it only to motivate the notion of

gauge invariance. To this end I refer to a path C as realizable if C renders

Qtot(B,C) stationary when compared to all other paths whose initial and terminal

events coincide with those of C.

b. Gauge invariance. Electric field and magnetic induction. Faraday's law

Given a scalar field %, G(V4%,C) depends on C only through its endpoints.

The gauge transformation defined by

6 — 6 + V4% (A - • A + V%, $ — $ - x-) (3.3)

therefore leaves invariant all realizable particle paths. Such transformations

will be central to what follows.



Gauge-Invariant Fields. The field skw(V4B) is gauge invar iant (in-
variant under gauge transformations 6 -+ B+V4% ) as are the electric field E
and the magnetic induction B defined by

E « -(A-+V$), B * curlA. (3.4)

Moreover,

Bx -E

skw(V4B) = \ (3.5)
ET 0 .

Proof. Since the second gradient is symmetric, skw[V4(B+V4%)] = skw(V4fi);

hence skw(V4i) is gauge invariant. The gauge invariance of E and B follows from

(3.3). Finally, since

VA A-

V4B =

(3.5) is a consequence of (2.8)3. D

The next step will be to show that functions of the electromagnetic potential
and its gradient may be expressed in terms of E and B. With a view toward
proving this assertion, consider the functional relation

q(X) * Q(B(X),V4B(X)) (3.6)

giving the value at any X of a field Q when the electromagnetic potential B(X)
and its gradient V4B(X) are known at X. Functions Q of this type will be referred
to as local functions and relations such as (3.6) will be written succintly as

Q « Q(B,V4B).

By (3.1), Q may be expressed as a local function % of the electric and magnetic
potentials and their derivatives,
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Q ( B , V 4 B ) = 9(Af$,VAfv$fA
#,8-).

Also, by definition, Q is gauge invariant if, for any electromagnetic potential 6,

Q(fi,V4fi) « Q(B + V4X,V4(B+V4X)) for all scalar fields %. (37)

Gauge-Invariant Functions. Q is gauge invariant if and only if Q(B,V4B)

is independent of 6 and depends on V4fi at most through its skew part;

equivalently, there is a local function K such that

Q(fi,V4fi) = H(E,B). (3.8)

Proof. As is clear from the theorem on gauge-invariant fields; functions of

skw(V4B) are gauge invariant, as are functions of (E,B). To verify the converse

assertion, let Q be gauge invariant. Choose a potential field 6 and an event H,

and choose % in (3.7) with V4%(K)--•(«), V4V4X(X) = -sym{V4B(K)}; then

Q(B(«),V4B(W)) = Q(0,skw{V4B(W)}).

Thus Q(B(«),V4B(W)) must reduce to a function of skw{V4B(«)}, and, by (3.5), any

function of skw{V4B(H)} may be expressed as a function of (E,B). D

Direct consequences of (3.4) are the first two Maxwell equations:

curlE = -B-, (3.9)

divB = 0; (3.10)

(3.9) is usually referred to as Faraday's law.
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4. SECOND LAW. MAXWELL'S EQUATIONS AS A CONSEQUENCE OF GAUGE
INVARIANCE

In this section I postulate a version of the second law that I believe appro-
priate for electromagnetic theory in the absence of thermal effects, and I show
that the remaining Maxwell equations are consequences of the requirement that
this version of the second law be invariant under gauge transformations.

a. Mechanical version of the second law in terms of. action
I associate with the electromagnetic potential B two fields, a 4-vector field J,

the charge-current, and a 4-tensor field T, the electromagnetic stress; and
I use these fields to define the action flux

P(P) = J{Tn-r - $J-n} (4.1)

into arbitrary spacetime control volumes P. In what follows I will relate (4.1) to
the more standard flow of energy represented by the Poynting vector.

Throughout classical continuum mechanics "flows" of power and energy are
reckoned across boundaries of spatial control volumes, but spacetime regions P
are more natural to electromagnetic theory; in this regard note that for space-
time control volumes of the form P*Px[to,t], (4.1) includes flows across the
portions P*{t0} and P*{t} of 3P. Further, the integral over 3P includes an inte-
gral over the time interval [to,t], so that, for example, the first term in (4.1)
represents work done in distorting the field.

Next, I introduce a scalar field Q, the action density,12 and consider the
second law to be the assertion that the temporal change in Q across space-
time control volumes P be not greater than the action flux into P:

jQn t i m € < F(P) for all spacetime control volumes P. (4.2)
dP

b. Consequences of gauge invariance
I assume that the electromagnetic stress T, the charge-current J, and the

action density Q are gauge invariant, and I write P(P,B) to make explicit the
dependence of the action flux on the potential field B. Further, I use the phrase
"all P and X" as shorthand for "all spacetime control volumes P and all scalar
fields %." :

1 2 Cf. (1.2). Q differs from the free energy by a Legendre transformation (cf. (5.11)-
( 5 . 1 5 ) ) .
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Theorem. The following assertions are equivalent:
(i) The second law is gauge invariant:

jQn t i m € < P(P,B+V4X) for all P and %. (4.3)
ap

(ii) The action flux is gauge invariant:

P(P,B) = P(P,B + V4X) for all P and %. (4.4)

(iii) Gauge transformations involve no action flux:

P(P,V4X) - 0 for all P and %. (4.5)

(iv) T is skew and

div4T + J = 0, div4j = 0. (4.6)

Proof. Note first that

+ v4x) - P(P,e) + P(P,v4x); (47)

thus (iii)=»(ii). Also, (ii)=*(i) (granted (4.2), which is tacit). Further, (i)-»(iii), for
otherwise v/e could replace X by «X and choose oc sufficiently large and of the
right sign to violate (i). Thus (i), (ii), and (iii) are equivalent.

The final step will be to show that (iii)^(iv). By (3.1) and (4.1), (iii) holds if
and only if

J{Tn-v4%- + J-nx-} = o

for all P and X, or equivalently, by the divergence theorem, if and only if

J{T-V4V4X# + [div4T + J]-V4X
# • [div4J]%0 - 0

ap

for all P and X- Thus (iii) holds if and only if

T-V4V4X' + Idiv4T + J]-V4X
# + ldiv4J]X- - 0 (4.8)
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for all scalar fields %.
Since V4V4%

# is symmetric, (4.8) is satisfied if T is skew and (4.6) hold. Con-

versely, assume that (4.8) is satisfied. Then, given any event K, we can always

choose % such that V4V4%
#(*) is an arbitrary symmetric 4-tensor, V4%

#(K) is an

arbitrary 4-vector, and X#(X) is an arbitrary scalar. Thus and by (4.8), T must

be skew and consistent with (4.6). D

The next theorem represents the central result of this formulation of

classical electromagnetic theory.

Maxwell's Equations. A consequence of the invariance of the second lav/

(or of the action flux) under gauge transformations is the existence of vector

fields H, D, and j and a scalar field q such that

J « ( j , q ) , (4.9)

Hx D

T = (4.10)

-DT 0 ,

and

curlH = D' + j , (4.11)

divD = q, (4.12)

divj = - q \ (4.13)

Conversely, if T and J are given by (4.9) and (4.10) with H, D, j , and q
consistent with (4.11) - (4.13), then the second law and the action flux are
invariant under gauge transformations.

Proof. The invariance of the second law is equivalent to (iv) of the last
theorem. Further, T is skew if and only if it has the form (4.10) (cf. (2.4)) and
granted (4.9) and (4.10), (4.11)-(4.13) are equivalent to (4.6). D

Here H is the magnetic field, D is the electric displacement, j is the
current, and q is the charge (density). Further, (3.9), (3.10), and (4.11) - (4.13)
are Maxwell's equations, with (4.11) the Ampire-Maxwell law and (4.13)
balance of charge; as is well known, (4.13) is implied by (4.11) and (4.12). The
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equations (4.6) represent a spacetime version of the Maxwell equations (4.11)-
(4.13).13

To avoid repeated assumptions, I lay down the following

Hypothesis. The second law is invariant under gauge transformations; equiva-
lently, Maxwell's equations are satisfied.

1 3 In this context (4.6) are equivalent to the more standard formulation of (4.11)^(4.13) as
differential forms in spacetime (cf. Wang [1979], pp. 272-273).
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5. ALTERNATIVE FORMS FOR THE SECOND LAW AND FOR THE ACTION FLUX

a. Action flux
As a consequence of (4.1), (4.6), and the divergence theorem,

P(P) s /{T.V4B- - J.(r+V4»)}. (5.1)

P

and, by (3.5), (4.10), and the identity (bx).(c<)= 2b-c,

T-V<B- = H-B* - D-E\ (5.2)

Thus and by (3.1), (3.4), and (5.1),

F(P) « J{H-B* - D-E' + j-E}. (5.3)
P

The term T-V^B* represents power expended internally in distorting the field;
(5.2) relates this term to more classical fields and shows that H and D are
conjugate, in the sense of internal power, to B' and -E*. The result (5.3) asserts
that P(P) is balanced by the integral over P of the Joule heating j-E and
H-B*-D-E', the power expended, per unit volume, in temporal variations of the
field.

Next, by (2.8)!, (3.9), and (4.11),

-div(ExH) = H-B* + E-D' + j-E; (5.4)

therefore

H-B* - D-E- - -div(ExH) - (D-E)* - j-E - -div<p - j-E,

where

P - (ExH.D-E).

Thus (5.3) and the divergence theorem yield the following result in which n,pace

and fltime, defined in (2.1), are the spatial and temporal components of II.

Poynting Vector. For every spacetime control volume P,

TP(P) - - J{(E*H).nspace
 + (D-E)n t ime), (5.5)

dP
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P(P) = -Jp-n, (5.6)
SP

The field ExH is usually referred to as the Poynting vector. In classical
electromagnetic theory the net flow of energy into a spatial control volume P is
defined to be -Jap(ExH)-n; the additional term D*E in (5.5) reflects the space-
time structure and represents a temporal flow of energy.

For a spacetime control volume of the form

P - P*[to,t]

(2.10) may be used to express (5.5) as

t t

P(P) = -J J(E*H).n - J(D.E)| . (5.7)
t0 dP P t o

The derivative P(P)* of (5.7) with respect to t depends on P only through P, and
I write

P-(P) := P(P)- (5.8)

to make this dependence explicit. I will refer to P#(P) as the electromagnetic
power expended on P. Differentiating (5.3) and (5.7) with respect to time yields
the

Power-Expenditure Theorem. The electromagnetic power expended on a
spatial control volume P is given by

P'(P) - -J(E*H)-n - J(D-E)-, (5.9)
dP P

P*(P) - J{H-B- - D-E- + j-E}. (5.10)
P

b. The second law
In what follows the assertions "for all spacetime P" and "for all spatial PM,

respectively, will signify "for all spacetime control volumes P" and "for all spatial
control volume P".

Let
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p

0

< p*(P)

< -J(E*H)-n
ap
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5 = Q + D-E, • -(E*HIS); (5.11)

$ will be referred to as the free energy.

Alternative Forms for the Second Law. The second law (4.2) is equi-
valent to each of the following assertions:

J$n t i m € < -J{(ExH)-nspacc for all spacetime P; (5.12)
9P SP

for all spacetime P; (5.13)

for all spatial P; (5.14)

for all spatial P. (5.15)

Proof. That (4.2)^(5.12)^ (5.13) is clear from (5.5). By (5.9) and (5.11),
(5.14)«*(5.15). To complete the proof it suffices to show that (4.2)^(5.14). By
(5.10), (4.2) is equivalent to the assertion that

J{Q- - H-B* + D-E' - j-E} < 0 for all spatial P, (5.16)
P

and, by (2.9)2 and (5.3), (4.2) is equivalent to the assertion that

J{Q# - H-B- + D-E* - j-E} < 0 for all spatial P. (5.17)

P

Since (5.16)^(5.17), it follows that (4.2)**(5.14). D

Consequences of (5.15)-(5.17) are the

Local Forms of the Second Law. Each of the following inequalities is
equivalent to the second law (4.2):

$# < -div(ExH), (5.18)

$# < H-B- + E-D- + j -E, (5.19)
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Q- < H-B- - D-E# + j-E. (5.20)

Standard treatments of electromagnetic theory are iased on (5.15) and use
the identity (5.4) to establish (5.19).
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6. CONSTITUTIVE RELATIONS
a. Constitutive relations

I consider constitutive equations giving the action density Q, the magnetic
field H, the electric displacement D, and the current j as gauge invariant local
functions of the electromagnetic potential and its gradient, or equivalently, by
(3.8), as local functions of the electric field E and the magnetic induction B:

Q = Q(E,B),

H = H(E,B),
(6.1)

D = D(E,B),

j = j(E,B).

b. Consequences of the second law14

The second law in the form (5.20) is used to restrict the constitutive rela-
tions. Precisely, compatibility with thermodynamics is the requirement
that given any choice of the electromagnetic potential (field) B, if E, B, Q, H, D,
and j are determined through (3.4) and (6.1), then the resulting fields are
consistent with (5.20).

Thermodynamic Restrictions. The constitutive relations are compatible

"with thermodynamics if and only if:

(i) the action density determines the magnetic field and electric displacement

through:1^

H(E,B) « QB(E,B), D(E,B) « - QE(E,B); (6.2)

(ii) the Joule-heating inequality

j(E,B)-E > 0 (6.3)

is satisfied.

Proof. The proof is standard. By (5.20) and (6.1), necessary and sufficient
1 4 This part is standard and included only for completeness. The general method used
here for restricting constitutive equations is due to Coleman and Noll [1963]. (Cf. Coleman
and Dill [1971] for an application to electromagnetic materials with memory.)
*5The partial derivative of a function 8(a,b,c,... ,d) (of n scalar, vector, or tensor vari-
ables) with respect to b, say, is written $b(a,b,c, . . . ,d).
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that the constitutive relations be compatible with thermodynamics is that, for
any choice of the field B,

(QB(E,B) - H(E,B)}-B- + (QE(E,B) + D(EfB)}-E' - j(E,B)-E < 0,

and the desired results follow; indeed, given any (x,t), we can always choose
B = (A,-3>) such that E, B, E \ and B* have arbitrarily prescribed values at some
(x,t), say (x,t) = (0,0). To verify this, let Eo, E l f Bo, and BX denote arbitrarily
chosen 3-vectors, and take

6 = (A,0), A(x,t) « -Eot - JE^2 + £(B0 + B^Jxx. (6.4)

Then

E - E o , E ' - E i , B « B 0 , B - « B i at (0,0) D

Immediate consequences of (6.2) and (6.3) are the "Gibbs relations11

3f - H-B# + E-D#, Q# = H-B* - D-E\ (6.5)

and, by (5.10), strengthened versions of (5.14) and (5.15), namely

{JOY = p-(P) - Jj-E. (6.6)
P P

{/$}• = -J(ExH)-n - Jj-E, (6.7)
P dP P

in which the the Joule heating j*E is identified as the energy dissipated, per
unit volume.
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B. SUPERCONDUCTIVITY
7. INTRODUCTORY REMARKS

Superconductivity was discovered by Kamerlingh Onnes [1911],1 6 who
observed that the electrical resistance of certain metals is essentially zero below
a critical temperature characteristic of the material. An attempt to describe
these and related experiments led to the phenomenological theories of E. and F.
London [1935] and Ginzburg and Landau [1950], and to the quantum mechanical
theory of Bardeen, Cooper, and Schrieffer [1957].17

The Ginzburg-Landau theory of superconductivity is based on a complex
order-parameter \\> in conjunction with a free energy, per unit volume, of the
form

f(qs) + ia(X+).(X+) f X « V - iA,

with oc>0. Here \\> represents a wavefunction for superelectrons with qs«l4j|2«v|;v|/
their charge density, while f(qs) is a coarse-grain free-energy with an absolute
minimum at a critical value that defines the superconducting state. The
Ginzburg-Landau theory, first limited to steady-state phenomena and later
generalized to time-dependent behavior by Schmid [1966] and Gor'kov and
E'liashberg [1968] (cf. Weller [1968]), leads to the complex PDE

2 + T « ()# + i$, (7.1)

where p > 0 is a kinetic modulus.
The PDE (7.1) is coupled to Maxwell's equations through the magnetic and

electric potentials A and $, and through the current j , which is the sum

j - Jn + Js (7.2)

of a normal current j n , given by Ohm's law j n * aE, and a superconducting
current

j s * -JaidfX+ - v|>X )̂. (7.3)

The standard derivation of the Ginzburg-Landau equation begins with a free
energy that is the sum of an energy due solely to the electromagnetic field and
16Cf. Cyrot 119703; Chapman. Howison, and Ockendon (1992).
17Cf. Gor'kov [1959], who establishes the consistency of the Ginzburg-Landau theory
with that of Bardeen, Cooper, and Schrieffer.
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an energy

J{ li;} (7.4)

for the superelectrons, where R is the region of space occupied by the supercon-

ductor. The formal variation

(7.5)

with respect to fields \\> that vanish on 3R yields the expression

^ j) (7.6)

for the variational derivative with respect to tj). Steady-state behavior is cha-

racterized by the vanishing of 6E/84/; the hypothesis underlying the standard

derivation is that relaxation toward equilibrium be governed by a parameter

p > 0 through a relation

pT+ - -6E/64), (7.7)

where the kinetics is presumed characterized by Ti|> rather than by \\>* to ensure

compatibility with gauge invariance. A consequence of (7.6) and (7.7) is the

Ginzburg-Landau equation (7.1).

Although this derivation of the Ginzburg-Landau equation is simple, elegant,

and physically sound, I have three objections:

• the derivation limits the manner in which rate terms enter the equations;

• the derivation requires a-priori specification of constitutive equations;

• it is not clear how this derivation is to be generalized in the presence of

processes such as deformation and heat transfer.

The major advances in nonlinear continuum mechanics over the past thirty

years are based on the separation of balance laws, which are general and hold

for large classes of materials, from constitutive equations, which delineate speci-

fic classes of material behavior. In the derivations presented above there is no

such separation, and it is not clear whether or not there is an underlying

balance law that can form a basis for more general theories. My view is that

while derivations of the form (7.4)-(7.7) are useful and important, they should

not be regarded as basic, but rather as precursors of more complete theories.
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While variational derivations often point the way toward a correct statement of

basic laws, to me such derivations obscure the fundamental nature of balance

lav/s in any general framework that includes dissipation.

What distinguishes the development presented here from the Ginzburg-

Landau treatment is not only the separation of balance laws from constitutive

equations, but also the introduction of a balance law for complex microforces,

defined operationally as forces whose working accompanies changes in \\>.
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8. PRELIMINARIES

Let F(z) be a real function of the complex variable z. The "partial deriva-

tives" Fz and Fg, when they exist, may be uniquely defined through the chain

rule

(d/d-r)F(z(T)) = F2(z(T))(dz/dT) + Fz(z(T))(dz/dT), (8.1)

and it follows that

Fz - Fz , (8.2)

since the left side of (8.1) equals its complex conjugate. The definition (8.1) yields

the standard formal rules of differentiation; for example, if F(z) = zz, then F2= z,

Fz-2.
Complex vectors p = u + ivcCn (u,vc!Rn) will also be considered; the dot

product of two such vectors p = u + iv and p' = u' + iv' is defined by

p*p* = (u + ivMu' + iv1) = u-u' - v»v' + i(u*v' + u'-v).

This dot product, although not an inner product, has the important property:

for p € Cn ,

p*q + cc > 0 for all qcCn •* p = 0. (8.3)

Here and in what follows "cc" denotes the complex conjugate of the preceding

terms:

A + cc = A + A. (8.4)

The partial derivatives Fp and Fp= Fp of a real function F(p) of p € Cn are

defined as in (8.1).

Finally, I will use the terminology:

complex 3-vector = vector in C3,

complex 4-vector • vector in C3x(D.
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9. THE WAVEFUNCTION
a. The wavefunction

To discuss superconductivity I introduce a complex field18

(9.1)

called the wavefunction, where e and cp are scalar fields with e the phase
angle and cp the amplitude, and with tyty = cp2 generally viewed as an effective

density of superelectrons (electron pairs). The field \\> and the electromagnetic

potential

G = (A.-5) (3.1bis)

form the basis of the theory, with the gauge transformation

G -* 0 + VA% (A -> A + VX, 5 -• $ - X#) (3.3bis)

augmented by19

q, _• ^e 1 *, (9.2)

or equivalently

cp -> tp, e -> O + %. (9.3)

b. Quantum-mechanical transformations

The transformation (9.2) is ubiquitous to the theory; for that reason I say
that a complex scalar- or vector-field U transforms quantum mechanically
x oThe assumption 4**0 is made for convenience; by continuity many of the final results
are valid also for 4>*0, where the phase angle e is not defined. Sets on which 4>«0 are
referred to as "vortices" and represent an important physical phenomenon. Cf. Neu [1990],
E 11994], Pismen and Rubinstein [1995].
**This transformation may be motivated as follows (cf. Feynman [1965], §21). The
Lagrangian for a charged particle in an electromagnetic field is the integrand £*£(v ,A,$)
when (3.2) is written in the form j£dt , and this yields the generalized momentum
p • dL/dv « m v + e A . The quantum mechanical counterpart of this momentum is p « fiVe,
and so fiVe * mv + eA; since v represents a particle velocity, v should be gauge invariant.
Thus and by (3.3), e should transform as in (9.3), granted a suitable rescaling and a choice
of signs with e>0. On the other hand, since cp2 represents the density of particles, cp should
be gauge invariant.
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if

U — Ue1* (9.4)

under a change in gauge.20 Then for U and V complex scalar fields,

U, V transform quantum mechanically •» UV is gauge invariant, (9.5)

and similarly for complex vector fields, but with UV replaced by U«V.

By (3.3), (9.3), and (9.5),

cp = CvpZp) *, v = Ve - A, and X * -(e# + $) are gauge invariant. (9.6)

I will refer to v as the free velocity21 (of superelectrons), to X as the London

potential.22

The fields

= eie[Vcp + icpVe], i|T = eie[<p# + icpe#] (9.7)

are not gauge invariant, nor do they transform quantum mechanically; for that

reason it is convenient to define an operator

H = V4 - iB, (9.8)

so that

K = (X,T), X « V - iA. T - ()• + if, (9.9)

and

X^, X\\>, and Tip transform quantum mechanically. (9.10)

Further,

2^According to Park [1990], Pauli refers to such transformations as "gauge transforma-
tions of the first kind."
2 *I use this term as, modulo a rescaling, v • Ve - A represents the velocity of a single
electron in an electromagnetic field (cf. Footnote ??).
2 2 X is formally equivalent to a potential -a introduced by the Londons [1935]. In the
Londons1 treatment j is the supercurrent (the normal current vanishes), and j and v
essentially coincide. Further, eqt. (7) of the Londons is j*«E-Vu, and, by (9.6) with j * v , this
yields Vu*V($ + e#); hence, modulo a spatially constant field, X«-|i.
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and subtracting the second of these from the first yields, with the aid of (2.8)^

V4(T«|>) - (X«|>r = i($V44> + • + • ) - i4<E. (9-11)

Also

eie[V<p + icp(Ve - A)] - eieVcp + i^v, (9.12)

eie[cp* + icp(e* + $)] - eie(p* - iv̂ X, (9.13)

i p + i(p(V4e - B)), (9.14)

and

2Vcp - e" i eX+ + e i e X ^ , (9.15)

2<p2v * i [+Xlp- +X+], (9.16)

2tp* = e" i eTt + e i e T^, (9.17)

2(p2X - i[$T«|> - +TIJJ]. (9.18)
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10. GAUGE INVARIANT FUNCTIONS. FUNCTIONS THAT TRANSFORM QUANTUM
MECHANICALLY
Let Z denote a list of fields that transforms according to

under a gauge transformation; e.g., for Z « (B,V4B,V|;,V4I|J),

Zx = (i+V4X,V4(B + V4X)le
i'X'^,ei^(V4vp + iv|iV4%)). (10.1)

Then a local function F(Z) is gauge invariant if, for all Z and %,

F(Z) = F(ZX); (10.2)

F(Z) transforms quantum mechanically if, for all Z and X,

ei%F(Z) = F(ZX). (10.3)

Gauge-Invariant Functions. Let a local function F(B,V4B,4>,V4^) be given.
Then the following are equivalent:
(i) F(B,V4B,^,V4^) is gauge invariant;

(ii) There is a gauge-invariant local function H such that

(iii) There is a local function J such that

F(B,V4fi,+,V4ij0 = J(E,B,cp,Vcp,(p#,v,X). (10.4)

Proof. Since the arguments of J are gauge invariant, (iii)=»(i). Assume next
that (i) holds. Choose a potential field 6, a wavefunction \\>t and an event X, and
choose % in (10.1) with %(X) - 0, V4%(K) « - • (* ) , V4V4X(X) - -sym{V4B(X)}; then

F(B(«),V4B(K),vl;(K),V4v};(«)) « F(0,skw{V4B(K)},v|;,K+).

Thus (ii) follows, since by (3.5) any function of skw{V4fi(X)} may be expressed as
a function of (E,B). Therefore (i)**(ii). Finally, suppose that (ii) holds. Then, since

(X+,Tip), (9.12) and (9.13) yield (iii), but with J a function that depends on e
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as well as (E,B,cp,Vcp,cp\v,X) = 0. But 6 is gauge invariant, while e-*e + X; hence J

cannot depend on e. Thus (ii)=»(iii). D

By (iii) above, a gauge-invariant local function can depend on the phase
angle e at most through a dependence on the free velocity v and the London
potential X.

Quantum-Mechanical Functions. Let a local function F(8,V4B,v|;,V440 be
given. Then the following are equivalent:

(i) F(B,V4B,4>,V44>) transforms quantum mechanically.
(ii) There is a local function H that transforms quantum mechanically such

that

F(B,V4B^,V4+) = H(E,B.+.Ki|0.

(iii) There is a local function J such that

,V4^) = eieJ(ElB,cp,Vcp,cp->v,X).

I omit the proof, which is similar to that of the theorem on gauge-invariant
functions.

Let

6 - K+ = (g,tf), g - Xv|if if « TI|J.

Lemma 10.1. Let F(vp,fl) be a real, gauge invariant, local function. Then:
(i) Fx and Fg transform quantum mechanically;
(ii) vpF̂  + B-Fj is real

Proof. Assertion (i) follows upon differentiating

e i^B)- (10.5)

with respect to \\> and Q. On the other hand, differentiating (10.5) with respect to
% at X « 0 yields

4>F+ " ^ + B-FB - fl-F| = 0, (10.6)

so that v̂ F̂  + B«FB equals its complex conjugate. This verifies (ii). D
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When discussing constitutive equations I will consider gauge invariant local
functions of the form

H(EfB.*J) - H(EfB.+.g.JT).

By the theorem on gauge-invariant functions, such functions can also be
written as functions of (E,B,cp,Vcp,cp#,v,X), so that the partial derivatives Hv, Hx,
H<p, HV(p, and H .̂ are well defined. In fact,

Hv = i(i|>Hg - 4iH|), (10.7)

Hx = -i(+Hy - ipHF), (10.8)

i(V4e - B)-Hfi] + cc« *|>H+ + B-HB - eieHB*V4(p + cc, (10.9)

4)Hg, (10.10)

(10.11)

To verify the first of (10.7), vary v by letting V = V(T) in the list of variables
(E,B,cp,Vcp,(p\v,X), but hold the remaining variables fixed. Then, by (9.12),

dg/dx = i^dv/dx.

Thus, by the vector analog of (8.1), differentiating H(E,B,^,g(x),y) with respect to
x yields

(Hv)-(dv/dx) = (Hg)-(dg/dx) + (Hg)-(dg/dx)
= (Hg)-(i^dv/dx) - (Hg)-(updv/dT)f

which implies (10.7), since dv/dx may be arbitrarily chosen. The verification of
(10.8M10.11) is similar.
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11. COMPLEX MICROFORCE BALANCE
a. Complex microforce balance

I consider a system of complex microforces consisting of a complex 4-vector
field tt, the complex microstress, and a complex scalar field TT, the complex
internal microforce. Given any spacetime control volume P:23

• t*n represents complex microforces exerted across 3P on the superelectrons
within P;

• TT represents complex microforces exerted on the superelectrons within P by
the electromagnetic field, by the normal electrons, and by the lattice.

This force system is presumed consistent with the complex microforce ba-
lance

JMI + JTT = 0 (11.1)
3P P

for every spacetime control volume P.
I assume that TT has the explicit form

TT = TT + tC*e (11.2)

with TI a complex scalar and k a complex 4-vector, and that

4, k, and TT transform quantum mechanically. (11.3)

Gauge invariance places an important restriction on the complex microforces. By
(11.1)-(11.3) and (3.3), gauge invariance for the complex microforce balance is
the requirement that

J e i * { > n } + J e ^ O + k-(B + V4%)} * 0 for all P and X, (11.4)
SP P

or equivalently,

div4t + i(V4*M + TT + k-(a + V4%) * 0 (11.5)

for all X, so that t and k must be related through

fc • - i t : (11.6)

microforces arc complex scalar fields as they expend power over the complex
scalar field 4/*. . *
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Conversely, (11.6) is sufficient that the complex microforce balance be gauge

invariant.

I assume henceforth that (11.6) is satisfied. The complex microforce balance

then has the local form

div4t - iB-t + TT = 0, (11.7)

or equivalently,

K«t + TT = 0. (11.8)

b. Alternative form for the complex microforce balance

Since

tt = ^div4tt - iv̂ B-tt * div4(vj;tl) -

(11.8) can be written as

div4(^ft) - t-K^ + 4?TT = 0. (11.9)

Hence the definitions

Js = i(T^ - t^ ) , (11.10)

• « e~ie« + e i e l (11.11)

yield the follov/ing equations for the real and imaginary parts of (11.9):

div4(cpi) - {J-E^ - ZpTT H- cc} * 0, (11.12)

rrif) + cc} * 0. . (11.13)

Granted \\> * 0, the real equations (11.12) and (11.13) are together equivalent to

the complex microforce balance (11.8). Note that

Js and • are real and gauge invariant (11.14)
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and related to t through

2 + t = tpl + i j s . (11.15)
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12. SECOND LAW. EXPENDED POWER

a. Second law

To formulate a mechanical version of the second law appropriate to super-

conductivity I consider, in addition to the electromagnetic stress T and the

action density Q, a (real) 4-vector field Jn, the normal charge-current, with

T, Q, and Jn gauge invariant fields. (As before, T is a real 4-tensor field and Q is

a real scalar field.)

Given an arbitrary spacetime control volume P, I assume that the action

flux into P has the form

P(P) = J{Tn-e# - $Jn-n} + J{(t-n)4T + cc}, (12.1)
3P 3P

where

r - 5jn-n) (12.2)
dP

represents both work associated with temporal changes in the electromagnetic

field and energy carried into P by the flow of normal electrons, while

J{(t.n)+- + cc} (12.3)
SP

represents work associated with temporal changes in the wavefunction. The

complex internal microforce TT does not appear in (12.3), as it acts internally to

the control volume P. (In (12.1)-(12.3), P is considered as a control volume for

the entire system consisting of the lattice, the field, and the superelectrons, but

in (11.1) P is considered as a control volume for the superelectrons only.) Note

that (12.2) differs from (4.1) only through the appearance of the normal charge-

current Jn rather than the total charge-current J.

As before, I write the second law in the form

jQn t i rne £ F(P) for all spacetime control volumes P. (12.4)
SP

b. Consequences of gauge invariance

Modulo appropriate modifications of the definitions and arguments of Sub-

section 4b, gauge invariance for the second law is equivalent to gauge invariance

of the action flux. I now turn to an investigation of this latter requirement.

The action flux can be written in the form
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P(P) = J{Tn-B- - $[Jn - i ( t$ - t+)]-n} + J{tTvp + tTi|i}-n. (12.5)
SP SP

By (9.5), the second integral is gauge invariant, as is the term Js defined by
(11.10). Thus if we define J to be the gauge-invariant field

then

P(P) = J{Tn.B- - $ J-n} + J{(t-n)Tq; + cc} (12.7)
SP SP

and, since the first integral is gauge invariant, the results of Subsections 4b and
4c yield the existence of vector fields H, D, and j and a scalar field q consistent
with (4.9) and (4.10) such that

Maxwell's equations (4.11)-(4.13) are satisfied.

This allows the identification of J with the total charge-current and Js with
the super charge-current.

c. Alternative forms of the action flux
Arguing as in Section 5, the action flux can be written in the form

P(P) = -J{(ExH)-n$pacc + (D-E)ntime) + J{(t-n)Ti|» + cc}, (12.8)

dP SP

Further, by (9.13), (11.10), and (11.11),

*T+ + Tl> - t<p* - Xjs; (12.9)

hence
P(P) - - J{(E*H)-n$pace + (D-E)ntim.} + J{(i-n)(p* - x(J,-n)}. (12.10)

3P SP

an expression giving the superconductive contribution to P(P) as the working of
a mechanical stress t conjugate to ip* plus a transport of energy by the charge-
current Js -with X as corresponding electrochemical potential.
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Also, by (12.8), for P = P*[to,t] and P*(P):« P(P)*, (5.9) and (5.10) have the
counterparts

P*(P) - J{-div(E*H) - (D-E)* + div4(tfif+ cc)}
P

- - D-E- + j-E + div4(tT> + cc)} . (12.11)
P

d. Local form of the second law
For control volumes of the form Px[to,t] the second lav/ (4.2) reduces to

* < P*(P); (12.12)

P

as I shall now show, this leads to the local dissipation inequality

Q* < H-B* - D-E* + jn-E + (t-(BqIr - Tt(T«f) - i»t-(]l+) + cc} ( (12.13)

where the normal and superconducting currents and charges are defined by
Jn - Un.qn). is - (Js.qs)- (12.14)

The inequality (12.13) will be essential in restricting constitutive equations.
To verify (12.13), note that, by (9.11), (11.7), and (11.10),

t«V4(Tvj>) + (div4t)(TijJ) + cc

Bif*) + iipE} - n(T»jJ) + iB-t(T^) + cc

cc}; (12.15)

then, since Js-E = js-E, (12.6), (12.11), (12.12), and (12.15) yield (12.13).
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13. CONSTITUTIVE RELATIONS

a. Constitutive relations

I now generalize (6.1) to allow for superconductivity; in particular, guided by

(12.13), I let

Q = X+

and consider constitutive relations of the form

n = Q(E,B,i[>,0),

H * H(E.B.+.O).

D = D(E,B.«|»,0).
(13.1)

j n = jn(E,B.v|».O),

n = it(E,B,«|'.B).

where Q, H, D, and j n gauge-invariant local functions, while \ and TI are local

functions that transform quantum mechanically.

b. Consequences of the second law

Compatibility with thermodynamics is now the requirement that given

any choice of the fields I and v̂ , if E, B, Q, H, D, j n , ft, and TC are determined

through (3.4) and (13.1), then the resulting fields are consistent with (12.13).

Thermodynamic Restrictions. The constitutive relations are compatible

with thermodynamics if and only if:

(i) the action density determines the magnetic field, the electric displacement,

and the complex microstress through:

H = fiB, D - - Q E , t « Qg; (13.2)

(ii) the residual dissipation inequality

jn(E,B,vp,B)-E - {[n(E,B,^B) + a$Q(E,B,^8)](T;jO •+ cc} > 0 (13.3)

is satisfied.
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The proof of this theorem is given in Appendix A. I assume henceforth that
the constitutive relations are compatible with thermodynamics.

The complex internal microforce TT admits the decomposition

TC « TTcq + TTdis

into equilibrium and dissipative parts

rreq « -Q?(E fB.+.B). (13.4).

.+J) + Q;p(E,B.i|>.B), (13.5)

with only TTdis entering the residual dissipation inequality:

jn(E,B,+>B)-E - { ^ ( E ^ i ^ a H T ^ ) + cc} > 0. (13.6)

By (13.2)3, and (13.5), the complex microforce balance (11.8) takes the form

^ , v p , B ) - 0 (13.7)

with Tidis consistent with (13.6); this is the most general PDE for superconducti-
vity consistent with the constitutive relations (13.1) and the second law (12.13).

The definition (13.4) and the restrictions (i) yield the Gibbs relation

Q* = H-B* - D-E* + (t*(Svji)' - TTeq4T + cc}.

Also, (i) and Lemma lO.l(ii) imply that

i{ft*B " Tteq^} + CC * 0, (13.8)

and the last two relations, (9.9)3, anc* (12.15) yield a strengthened version of the
second law:

{ J Q } # = P#(P) - JD(P) (13.9)
P

with

J(Jn-E - Trd»(T40 - Trdis(T+)} > 0. (13.10)
P



39

D(P), the total dissipation, is here a consequence of Joule heating by normal

electrons and working of dissipative internal microforces.24

Let g and y denote the components of Q •

G - (g,y), g - Xv|i, if « T+. (13.11)

Then, since J s« (j s ,q s) , (11.10) and (13.2)3 yield

j s = i(v|iQg - + Q S ) . qs - i ( * Q y " ^ * ) ; (13.12)

a consequence of the second relation is the following

Theorem. A nonvanishing charge-density for superelectrons requires a

constitutive dependence of the action density Q on the gauge-invariant time-

derivative TIJJ.25

c. Constitutive equations in terms of the free velocity and London potential

The thermodynamically restricted constitutive equations take on physically

meaningful forms when expressed in terms of the partial derivatives Qv , Qx,

&y> V̂tp» ĉp- t h a t result when (E,B>cp,V<p,(p#,v,X) are the indendent constitutive

variables (cf (10.4)). In this case the important dependent variables are j s , qs,

and the 4-vector field C, which is defined in (11.11) and which I now write in

the form

• - (s,-p). (13.13)

Implied Constitutive Relations.

j s = Qv(E,B,<p,V<p,<p\v,X), qs « - nx(E,B,cp,Vcp,cp#,v,X),
(13 14)

s * QVcp(E,B,<p,V<p,cp\v,X), p * -Qv.(E,B.<p.V<pf<p\vfX).

Proof. By (11.11) and (13.2)3,

24Cf. Cyrot [1970], S7.2, who attributes to Tinkham [1964] the remark that the dissipa-
tion should include a contribution due to the relaxation of superelectrons.
2 5 In the Ginzburg-Landau theory the energy is independent of TiJ> and the resulting
charge balance does not contain the contribution (q s)\ an omission consistent with the
underlying assumption of quasi-static conditions.
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<pl = ^QB + cc, (13.15)

and, since fl« (g,tf), the results (13.14) are consequences of (10.10) and (10.11). D

d. An additional hypothesis

To this point the wave function \\> is essentially arbitrary; the next assump-

tion, which restricts \\>, is basic to the Ginzburg-Landau theory.

Charge hypothesis: ip represents the superelectron charge-density; that is,

^ (p2. (13.16)

/ assume throughout the remainder of the paper that the charge hypothesis is

sa tisfied.

By (13.14)2 and (13.16), the constitutive equation for the action density can

be written

Q = Q(E,B,tp,V(p,cp\v) - Aq>2. (13.17)

If, in addition, Q is independent of cp#,

Qr
 = 0. (13.18)

then

Q = Q(E,B,cp,Vcp,v) - Xcp2. (13.19)

Further, by (9.13) and (13.16),

J T Z + cc = -Xqs, (13.20)

and, by (9.12), C2(E,B,cp,Vcp,v) can be written as a gauge-invariant function

(which I also denote by Q) of (E,B,̂ ,Xvp). Thus

Q - Q(E,B,vp,Xi|>) + ii(v^T+ - ^Tv )̂, (13.21)

provided (13.18) is satisfied. I will generally not require satisfaction of (13.18).

e. Weak coupling

Theories of superconductivity are often based on two assumptions: (1) that
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the free energy consist of uncoupled electromagnetic and superconductive con-

tributions, with the former dependent only on E and B, the latter only on \\> and

0 = X+; (2) that the normal current depend only on E and B (actually, E). Within

the current framework and granted the thermodynamic restrictions and the

additional requirement that TT depend only on \\> and Q, these assumptions yield

the constitutive relations

Q = QC(E,B) + fis(v|>,B),

H = H(E,B), D = D(E,B), j n = jn(E,B), (13.22)

with2 6

H = 3BQe, D = -3EQ€ , t = 3 |Q s , (13.23)

and with the residual dissipation inequality replaced by individual inequalities

jn(E,B)-E > 0, (13.24)

TCdisf + .BMT*) + cc < 0, W ^ G ) - TT(+,O) + 54,QS(^>|), (13.25)

which follow from (13.6) upon taking T^=0 and then E=0. I will refer to the

constitutive equations (13.22)-(13.24) as weakly coupled. For such constitutive

equations the general PDE (13.7) has the simple form

A ^ ) - 0 (13.26)

and is coupled to the electromagnetic field through the operators X and T. Fur-

ther, the presence of the total current j (and hence of the supercurrent j s ) in

the field equation curlH*D#+j couples the field to the flow of superelectrons.

Finally, the relations (13.14) take the form

j s « avQs(cp,Vcp,(p-,v,X), qs * -SxQ5(cp,V<j),<p\v,X),
* (13 27)

« c dvip^V.Vcp^-.v.X), P * -VQs(cp,Vip,(p\v,X).

2 6 H e r e , to avoid repeated subscripts with conflicting meanings, I write, e.g., dB to denote
the partial derivative with respect to B.
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14. CHARGE BALANCE FOR SUPERELECTRONS. REAL MICROFORCE BALANCE
a. Charge balance for superelectrons

By (11.13), (13.2)3, (13.5), and Lemma lO.l(ii),

d iv 4 j s + i(+TTdis - ^Tidis) = 0, (14.1)

or equivalently, using (12.14),

(qs)
# « - d i v j s - m (14.2)

with

m = i(^TCdis - ^^dis)- (14.3)

Equation (14.2) represents a charge balance for supere lectrons with m a
mass supply that characterizes the conversion of normal electrons to super-
electrons.

b. Real microforce balance
By (13.2)3 and (13.5), the balance (11.12) can be written as

div4(cp8) - (B-6 B + 4>Q+ - +Tidls + cc} = 0, (14.4)

or equivalently, appealing to (10.9),

ipdiv4i + t-V4<P - cpQ^ - {eieQB-V4cp - vjmdis + cc} = 0. (14.5)

On the other hand, by (13.15), eieQB*V4cp + cc = i-V^V; the definitions

co « co € q + CA)dis, o>cq * -Qjp , CA)dis « e i e T i d i s + cc , (14.6)

therefore yield the real microforce balance

div4 l + co « 0. (14.7)

In terms of the components • = (s,-p), this balance can be written in the form

p* * divs + co. (14.8)
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The fields s, p, 00, and codis are real and gauge invariant (cf. (11.14)). I will refer

to s as the real microstress, to co as the real internal microforce, and to p

as the micromomentum. This identification of p with momentum seems

justified, not only by the conservation law (14.8), but also by the second of

(13.14), which gives p as the negative of the derivative of the action with

respect to <p\ and hence as the momentum corresponding to the "generalized

coordinate11 cp.27

Equivalence theorem. The charge balance (14.2) for superelectrons and

the real microforce balance (14.7) are together equivalent to the complex

microforce balance (11.8).

c. The second lav/ revisited
By (12.10), (12.14), and (13.13), the second law (12.12) can be written as

# * J{-(ExH)-n + (s-n)cp- - Xjs-n} (14.9)

P dP

with the total free energy $ (which includes kinetic energy) defined through

Q = $ - D-E - Xqs - pcp#, (14.10)

a relation giving the action density the status of a grand canonical potential.
Also, by (14.3), (14.6), and the identity (9.13), the residual dissipation ine-

quality (13.6) may be written as

jn-E - codis(p
# + mX > 0, (14.11)

with the left sides of (13.6) and (14.11) equal. The dissipation £(P), given by
(13.10) and here the left side of (14.9) minus the right, may therefore be written
with integrand (14.11); this yields the balance

-Xjs-n} + J{ j n -E-"duV + mX>. (14.12)
P dP P

Thus the classical electromagnetic energy-balance (6.7) is here augmented by
the additional terms:28

Cf. (1.2). I do not know if the micromomentum is important; it vanishes for action
densities that are independent of <p* and hence does not appear in the Ginzburg-Landau
theories.
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(i) scp*, which represents working of the real microstress;
(ii) -Ajs> which represents energy transported with the supercurrent;

(iii) -oodiscp\ which represents energy dissipated through the working of the real
internal microforces;

(iv) mX, which represents energy dissipated in the conversion of normal
electrons to superelectrons.
If the constitutive equations are weakly coupled, then for electromagnetic

and superconductive free energies defined through

$ e « Qe + D-E, $ s = Qs + Xqs + pcp#, (14.13)

with

Qe = Q«(E,B). Qs « Q^+.B), (14.14)

(13.2), (13.27), and (14.6) yield the Gibbs relations

5€- - H-B- + E-D-,
(14.15)

$s
# = js*v* + Xqs

# + mX + s*Vcp# - co€q(p
# + (p#p#

and these in turn yield the individual balances

( I * . ) ' - -J(ExH)-n - /j s-E - DC(P),
P dP P

(14.16)
{ J * s } * • J{(8.n)«p*-Xj,.n} + Jj,.E - JD,(P)

P dP P

with

J3.CP) --Jjn-E. D$(P) « J{-wd i stp- + mX}. (14.17)
P P

The relations (14.16), which are "coupled" through the terms with integrand
js«E, have the local forms

H) - j s - E - j n - E ,
(14 18)

," - div(sip" - Xjs) + js-E - codi$(p* + mX.

2® My use of the term "working" is ambiguous, as the working of the complex micro-
stress over Ti|> is, by (12.9), equal to the working of the real microstress plus the super-
conductive energy-transport.
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d. Simple constitutive equations for the dissipative fields

By (14.3) and (14.6),

= <poodis + im; (14.19)

thus, as \\>* 0, assigning a constitutive equation for Tidis is equivalent to assigning

constitutive equations for oodis and m, fields that may be amenable to physical

interpretation. Guided by (14.11), a simple constitutive choice consistent with

(14.11) (and with an assumption of weakly coupled constitutive relations) might

involve equations of the form

j n = ZE, codis « -pep-, m = KqsX (14.20)

with S a positive definite 3x3 matrix, the conductivity tensor, p>0 a con-

s t a n t k inet ic m o d u l u s , and K > 0 a supply modulus . The coefficient of X in t h e

relation for m is chosen proportional to qs, rather than constant, to ensure that

the supply vanish with the charge density. The first of (14.20), which is Ohm's

lav/, allows for anisotropy in the flow of normal electrons; when the material is

isotropic this relation reduces to

j n = oE (14.21)

with o> 0.

Note that (14.6) and (14.20)2 imply that

GO = - Q v - pcp\ (14.22)

Further, by (9.13) and (14.19), the constitutive relations for oodis and m are, for

p * K, equivalent to the simple relation

(14.23)

and this, with (13.5), implies that

Ti « ~ Q ^ - ipTvp. (14.24)

e. Configurational force balance

An identity important in the dynamical analysis of defects is the configura-
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tional force balance. In the present context and for weak coupling this balance
has the form29

div[Q s l - Vcp®s] + f = 0 . (14.25)

and may be considered as defining for f. For Qs independent of cp\ (13.27), (14.8),
(14.13)2, and (14.22) yield a specific form for this balance:

$ s l - VqXSs] = (Vv)Tjs + XVqs - pcp#V<p. (14.26)

^ 9 l denotes the unit tensor, ® the tensor product. A discussion of configurational forces
is beyond the scope of this paper (cf. Gurtin [19953 and Fried and Gurtin [1S95]).
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15. ISOTROPIC QUASILINEAR THEORY
a. Constitutive assumptions

I now consider a theory based on constitutive equations that are isotropic
and weakly coupled. I assume that the electromagnetic contribution to the ac-
tion has the classical form

Qe= K u - W - elEI2), (15.1)

but for the superconductive contribution I supplement the standard coarse-
grain free-energy f(qs) with a gradient energy that represents a broad generali-
zation of the gradient energy

JaXv^X^ « £a(|Vcp|2 + cp2lvl2) (15.2)

of the Ginzburg-Landau theory. Indeed, I see no compelling reason —other than
the beauty of the resulting complex PDE—to have the same constant oc govern
the term ^alVcpl2, which represents a gradient energy for the real "order-
parameter" <p, and the term

K = 2

which is generally interpreted as kinetic energy associated with the supercur-
rent. Also, I see no reason to rule out the possibility of an energetic coupling be-
tween V(p and v. I therefore replace (15.2) by

| (oc IVcpl2 + 2xcpV(p-v + vcp2|v|2) (15.3)

with constants OC,T,V real and such that (15.3) is positive-definite in (Vcp,cpv). In
addition, I allow for a microkinetic energy

with 6>0. Thus, in view of (13.17), I consider a constitutive equation for the
superconductive action-density of the form30

3 0 The kinetic energies K and k enter the action density with opposite sign. Indeed, the
momentum p corresponding to k is associated with a force balance that yields a Legendre
transformation converting total energy to action. But the momentum corresponding to K is
j s , and j s enters the theory through a charge balance with corresponding Legendre
transformation based not on momentum, but instead on the potential X (cf. (14.10)), as one
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+ 2TcpVcp-v + ucp2|v|2 - 6((p-)2] - Xcp2. (15.4)

By (13.2) and (13.27), consequences of the constitutive relations (15.1) and
(15.4) are

T(pV(p, (15.5)

Unlike the Ginzburg-Landau theory in which j s is proportional to q s v , j s here

involves a t erm TcpVcp and will generally not vanish wi th v . I believe this to not

contradict the physics: v represents the velocity of a single electron in an elec-

tromagnetic field, but here there is a s tream of superelectrons and one might

expect a correction term that contributes when the stream is nonuniform.

Also, note that by (14.13), the electromagnetic and superconduct ive free

energies have the respective forms

H -

q* •

s =

U" E

<P 2 .

ocVcp + TCpV,

D -

Js '

p -

eE,

8u>\

^ + elEI2],

f(cp2) + £[oc|Vcp|2 + 2xcpV(p-v + vcp2lv|2 + 8(cp#)2]. 1 5 ' 6

Finally, I restrict attention to Ohm's law (14.21) for j n and the relations

(14.20)2j3 for codis and m,

codis = -pcp#, m * Kcp2X, (15.7)

so that , by (14.22),

co « -2cpf((p2) - vy\v\2 - xVcp-v 4 2cpX - pcp#. (15.8)

For the special case

oc * v, p « K, T « 0, 5 * 0 , (15.9)

the superconductive action-density has the simple form

fls
 g f(vpvp) • iaXv^-X^ + Ji(v|^T^ - vpT )̂ (15.10)

would expect when modelling transport.
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(cf. (13.20)) and, by (13.23)3 and (14.24),

(15.11)

b. Basic system of PDEs
Substituting the constitutive equations (15.5)-(15.7) into the charge balance

(14.2) and the real microforce balance (14.7), and choosing the gauge such that

divA = 0, (15.12)

yields, by virtue of the definitions (9.6) of X and v , a hyperbolic PDE for the
amplitude <p coupled to a parabolic PDE for the phase angle B:

6cp" + pep* + 2cp(e# + S) « ocAcp + T(p Ae - vcplVe - Al2 - 2cpf((p2), (15.13)

-2(p# + Kcp(e# + $) « vcpAe + xAtp + 2vVcp*(Ve - A)] + TCp-MVcpl2. (15.14)

These are the basic PDEs of the theory. Note that the terms 2<p(e* + <S) and -2ip#,
which are consequences of the term - Xcp2 in (15.4), are nondissipative, as they
enter the equations skew-symmetrically.

The PDEs (15.13) and (15.14) may be written as a complex PDE; the result,
which I write only for the special case T = 8= 0, is

- 2qjfl(v|iv|i)

TTp] $ [ i e i e ] 2 = 0 (15.15)
with

oc+ = J(a + v), a
p.

The verification of (15.15) follows from (9.15)-(9.18), (15.5)-(15.8), and the com-
plex microforce balance in the form

2div4(vf t) - ••V4cp + (poo + im * 0

(cf. (11.9), (11.15), (14.2), and (14.7)).
For the restricted theory based on (15.9), a direct consequence of (15.11) and

the balance K*4 + TT = 0 is the complex PDE
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, (15.16)

The term -2iTvp follows from the last term in (15.10); if this term is neglected,
then (15.16) reduces to the complex time-dependent Ginzburg-Landau equation.
Granted (15.12), (15.16) is equivalent to the parabolic PDEs

pep- + 2cp(e- • ff) - oc[Aij> - cpiVe - Al2] - 2<pf(cp2), (15.17)

-2<p# + p(p(e"^») - oc[<pAe + 2V<p-(Ve-A)], (15.18)

which may be obtained by subjecting (15.13) and (15.14) to (15.9). If the terms
2cp(e# + $) and -2cp* in (15.17) and (15.18) are dropped, then these equations are
the time-dependent Ginzburg-Landau equations.

Returning to the more general theory unencumbered by (15.9), the basic
system of equations consists of (15.13) and (15.14), the electromagnetic equations

E = -(A-+V$), B = curlA, (3.4bis)

curlH = D' + j , (4.11bis)

H « ii^B, D = sE, (15.5bis)

and the current equations

j « Jn + Js. (15.19)

j n - aE, j s = <ucp2(Ve- A). (15.20)

(The Maxwell equation (4.12) can be considered as defining for q.)

c. Energy identities
The relations (14.18), when combined with (3.4), (9.6), (14.21), and (15.5)-

(15.7), result in an energy identity

Jtu-MBI2 + e|EI2]# * -divdi^ExB) - clA-+V5l2 - I (15.21)

for the electromagnetic field and an energy identity
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(f(cp2) + £[oc|Vcp|2 + 2T<pVcp.(Ve-A) + v<p2 |Ve-Al2 + 6(cp-)2]}# =

div{[aVcp + TCp(Ve-A)]cp- + (e# + $)[i>(p2(Ve - A) + TcpVcp]} +

$)2 + t, (15.22)

for the superconducting electrons, coupled through the field

{ « js.E = -[vcp2(Ve-A) + T(pV(p]-(A#+V$). (15.23)

For the standard Ginzburg-Landau theory restricted by (15.9), the second iden-
tity reduces to

(f((p2) + Ja[|Vcp|2 + cp2|Ve- Al 2 ] } ' =

adiv[(Vcp)cp- + cp2(0-+ $)(Ve - A)] + p[(cp*)2 + cp2(e- + 5)2] + I (15.24)

with

(15.25)

Also important is the configurational force balance (14.26), which, by (15.5)
and (15.6), and for the special case T = 6 = 0 , has the form

V[f(cp2) + $a|Vcp|2] - ocdiv (Vcp®Vcp) =

J 2 ] (15.26)

d. Momentum identity for the supercurrent
Assume that T = 0, so that j s * vq sv. Consider the quantity

(qsv)# + div( j s ®v). (15.27)

Since v ® j s = j s ® v , the charge balance (14.3) can be used to write (15.27) as

q s V + t;q s(Vv- VvT)v + -uqs(Vv)Tv - mv,

and hence, by (2.8)3, (3.4), and (9.6)3, as

qs(E + vvxB) • qsV[-X +JulVe- Al2] - mv.



52

This establishes the identity

(qsv)- + div(j s®v) = qs[E + ̂ vxB + V(-X + \v |Ve - Al2)] - mv. (15.28)

The operation ()• is not the time-derivative following the motion of super-
electrons, but rather the derivative with respect to t holding the spatial position
x fixed. Thus, modulo a multiplicative constant, the left side of (15.28) represents
the rate of change of momentum, per unit volume, following the superelectrons.
The identity (15.28) is therefore a momentum-balance for superelectrons with
E + v v * B a Lorentz-force, per unit charge, V(-X + \v IVe - Al2) a conservative
quantum-mechanical force, per unit charge, and - m v a supply of momentum
induced by the conversion of normal electrons to superelectrons.

It should be emphasized that (15.28) is not a separate field equation, but ra-
ther a consequence of the charge balance and the definitions of E, B, v, and X.

Note the presence of the "potential"

in both the configurational force balance (15.26) and the momentum balance
(15.28).
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16. ANISOTROPIC QUASILINEAR THEORY
I now consider a theory based on constitutive equations that are weakly

coupled, but anisotropic, with gradient energy of the form31

Hg) - Jg-Mg. g * X+, (16.D

where M is a complex 3x3 matrix. Because of (9.10), the energy (16.1) is gauge
invariant. Further, since F(g) is real, g*Mg«g*Mg, and M is Hermitian:

M = MT. (16-2)

The real and imaginary parts of M are therefore symmetric and skew, respecti-
vely, and M may be written in the form

M = K + ikx (16.3)

(cf. (2.3)) with K a real, symmetric 3x3 matrix and k a real 3-vector. Thus, by
(9.12) and (13.16),

T(g) - [̂Vcp-KVcp + qsv-Kv + v(kxVq s)] . (16.4)

For convenience, I do not allow for a microkinetic energy, and therefore write
the superconductive contribution to the action density in the form

Qs = f(cp2) + F(g) - X<p2 = f(qivp) + $X^-MXt + JityTlf - fTv|>). (16.5)

By (13.27), qs = (p2, p = 0, and

s « KVcp - cpkxv,

so that j s involves a term kxVcp that is present even when v vanishes. This
term yields a single fixed direction (that parallel to k) in which nonuniformity
in the supercharge does not affect the supercurrent. This specificity in the
coupling between j s and Vcp is misleading, as one could easily allow for more
general and possibly more appropriate forms of coupling through an anisotropic
generalization of (15.3). For that reason I set
3 1 1 could also modify (15.3) by replacing a, T, and v by real matrices. This would be more
general than (16.1), but (in contrast to the last section) my objective here is to give a
simple and direct anisotropic generalization of the Ginzburg-Landau theory.
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k = 0,

so that

j s * qsKv, s * KVcp. (16.6)

To these constitutive equations I adjoin the dissipative relations (14.20). The
analysis of the last section then yields the complex PDE

X-OCXijO - 24>f'(vH) (16.7)

and, if the gauge is chosen so that

div(KA) = 0, (16.8)

the corresponding real PDEs

' + $) = div(KVcp) - <p(Ve-A)-K(Ve- A) - 2cpf(cp2), (16.9)

' + $;) = cpdiv(KVe) + 2V<p.K(Ve-A). (16.10)

As before there are associated energy identities. The identity for the super-
conducting electrons follows from (14.18)! supplemented by (3.4), (9.6), (14.20),
(16.5), and (16.6); the result is

(f(cp2) + $[Vcp-KVcp + cp2(Ve- A)-K(Ve- A)]}# =

div{[cp-KVcp + (e-+$)<p2K(Ve- A)]} + p[(cp*)2 • cp2(e# + $)2] + { (16.11)

with

I - Js-E - -[cp2K(Ve-A)]-(A-+V$). (16.12)

I will not write the electromagnetic energy identity explicitly: granted a specifi-
cation of the constitutive relation Q - Q€(E,B), it follows directly from (14.18)!,
(13.2), (14.13), (14.20)!, and (16.12).

Finally, the steps used to derive the configurational balance (15.26) and the
momentum balance (15.28) here yield the respective identities
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V[f(<p2) + $Vcp-KV<p] - div[(KVcp)®Vcp] -

- [e - + $ + J(ve-A)-K(Ve-A)]Vq s - ptp'Vcp. (16.13)

and

j s * + d iv( j s ®v s ) =
qsK{(E + v5xB) + V[-X +J(Ve-A)-K(Ve-A)]} - mv s (16.14)

with v s « Kv, so that j s « qsvs.
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APPENDIX A. PROOF OF THE THEOREM ON THERMODYNAMIC RESTRICTIONS
Let

C = (E,B,vp,i). ' (AD

A necessary and sufficient condition for compatibility with thermodynamics
(CWT) is that, for any choice of the fields 6 and ip,

(QB(C) - H(C)}-B- + {QE(C) + D(C)}-E- +

(O - t ( c ) ] - r + cc} - 7(C) + 9 ( 0 * 0, (A2)

where

jn(C)-E - {[n(C) + Q$(C)](T+) + cc) ,

^(C) + t(c)-g} + cc. ( A 3 )

The remainder of the proof will precede as a series of assertions.

Assertion 1. B and v|> can always be chosen such that E, B, E", B \ ^, Q - Kip,
and 0* have arbitrarily prescribed values at some point, say X = (x,t) = (O,O).

Choose arbitrary 3-vectors Eo, Elf Bo, and B l f an arbitrary complex scalar
field ipo*O» anc^ arbitrary complex 4-vector fields Qo and g1. Let T)(T) be a real
function on IR with

f (A4)

let B « (A,-$) be given by (6.4), and let

vp(x,t) * vp0 + Ti(X-(Bo + tOi)) -iTl(tx-Eovpo).

Then, by (A4), vp * 0, and, since A(0,0) = 0, A*(0,0) «-E0. and N O ,

E«E 0 , E ' - E l f B - B o . B - - B l f vp^+o. 8 - Co 0* - Ei at (0,0),

which establishes Assertion 1.

Assertion 2. (i) ** 9 ( 0 * 0.

Assume (i). The third of (13.2) implies that
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$ ( 0 - if(4»Qq;(c) + Qj(C)-B) + cc,

so that, by (10.6) and the fact that Q is gauge invariant,. § ( 0 • 0.

Assertion 3. (CWT) ** (i).

Assume (CWT). Since the list C does not include E*, B*. and £*, and since
these variables appear linearly in (A2), H(O • QB(O, D(O • -QE(O, and

{Q|(O - i(C)}-g* + cc = 0.

Thus and by (8.3), t(C)*Oj(C). Therefore (i) is satisfied.

Assertion 4. (CWT) ** (ii).

Assume (CWT). Then (A2) and (i) yield

7(C) - 9 ( 0 ^ 0 (A5)

for all C- Thus and by Assertion 2, the inequality (A5) reduces to (ii).

Assertion 5. (i), (ii) =* (CWT).

This follows from (A2) and Assertion 2. o
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APPENDIX B. ALTERNATIVE FORMULATION IN TERMS OF REAL FIELDS
The results established thus far should underline the importance of the

London potential X and the free velocity v. I now sketch an alternative formula-
tion in which these fields play a major role. The primitive concepts remain the
vector potential 8= (A,-$), the amplitude cp, and the phase angle e, but the
requirement that <p and e enter the theory through a complex wavefunction is
dropped.

I take as basic the following forms of the charge balance, the real microforce
balance, and the second law:

{Jq s } ' * - Jj,-n - Jm, {Jp} ' = Js-n + Jco, (Bl)
P SP P SP P P

< J{-(E*H)-n + (s-n)cp- - Xjs-n} (B2)

P dP

for all spatial control volumes P (cf. (14.2), (14.8), and (14.9)); equivalently,

(qs)- = - d i v j s - m, (B3)
p# = divs + OJ, (B4)
$# < div{-(ExH) + scp- - Xjs}. (B5)

These are to be augmented by the auxiliary equations

E = -(A*+V5)f B = curlA, (B6)

v = Ve - A, X - - ( e - + $), (B7)

which may be considered as defining (cf. (3.4), (9.6)), the current equation

j * Jn + Js (B8)

(cf. (12.6)), and the Maxwell equation

curlH = D# + j (B9)

(cf (4.11)). (B3)-(B9) then yield the local dissipation inequality

Q* < H-B# - D-E# - qsX- + jn-E + js-v* + mX + s-VqT - Cx)cp# - pep" (BIO)
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with the action density defined by

Q = $ - D-E - Xqs - pep- (BID

(cf. (14.10)).
Within this framework constitutive equations equivalent to (13.1) give

Q> H, j n , j s , qs, m, s, p, oo as functions of (E,B,v,X,cp,Vcp,cp#). (B12)

Compatibility with thermodynamics, defined as in Subsection 13b, but with
(BIO) as the underlying inequality, then yields the restrictions (13.2)12, (13.27),
and (14.11), and renders this formulation of the theory completely equivalent to
the complex formulation.
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APPENDIX C. RELATION TO THE LONDON THEORY
A gross simplification of the formulation discussed in Appendix B leads to a

minor modification of the London theory. The simplified formulation is quasi-
static and neglects real microforces as well as the influence of normal electrons.
Thus

s = 0, co « 0, p - 0, j n = 0, j * j s , m = 0, D- = 0, (qs)- = 0, (CD

and the second law (B5) takes the form

$• < -div{(ExH) + Xj}. (C2)

In addition, not all of the auxiliary equations (B6) and (B7) are needed. One sim-
ply notes that (B6) and (B7) yield the London equations52

E = V + VX, B - -curlv , (C3)

which I consider as defining for E and B. These and the Maxwell equation

curlH = j (C4)

are the basic equations of the theory, the charge balance

divj = 0 (C5)

being a consequence of (C4). By (C2)-(C5),

$• < H-B- + j - v \ (C6)

which replaces (B10) as the local dissipation inequality.
I consider constitutive equations giving

$, H, j as functions of (E,B,v,X). (C7)

Compatibility with thermodynamics with (C6) as the underlying inequality then
renders $, H, and j independent of E and X with

32Cf. eqts. (6) and (7) of the Londons (1935).
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, ) , H = I B ( B ' V ) ' J c 5v(B,v). (C8)

Note that, by (C6) and (C8), the dissipation inequality becomes an equality,

$• = H-B- + j - v \ (C9)

or equivalently,

{ / $ } • - J{-(ExH)-n - Xjs.n} (CIO)
P 3P

and the theory is dissipationless.
Finally, the free energy33

5 = id r^BI 2 * q|v|2), (Cll)

v/ith |i and q = qs strictly positive and constant yield

H = u^B, j = qv, (C12)

and, by (C3) and (C4) result in the field equation

AB « quB. (C13)

3 3 The Londons [1935] take $«...«• (const)j2 +(const)q2 and do not require that q\«0; but
since j * q v , a kinetic energy (const)j2 and a temporal dependence of q seem inconsistent.
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APPENDIX D. VIRTUAL FORCES AND SUPPLIES
The constitutive theories developed in this paper utilize the second law to

restrict constitutive relations, the premise being that for every choice of the
electromagnetic potential and wave function the resulting "constitutive pro-
cess"— as defined through the constitutive equations—must be consistent with
the local dissipation inequality (which is (5.20) for electromagnetism and (12.13)
for superconductivity). This method of restricting constitutive equations is gene-
rally referred to as the Coleman-Noll procedure (CNP).34 One might argue that
CNP, as applied here, is flawed, as the resulting constitutive processes will gene-
rally not satisfy the underlying balance laws. In fact, the rational application of
CNP requires virtual forces and virtual supplies that ensure satisfaction of the
underlying balance laws in all constitutive processes.^ I now discuss a modi-
fication of the basic framework that includes such virtual fields, and show that
the resulting constitutive restrictions are unchanged.

a. Electromagnetic theory
I allow for two virtual fields: a 4-vector field f, a force,36 and a scalar field

r, a supply of electrons, with f and r gauge invariant; and I use these fields to
rewrite the action flux (4.1) in the form

P(P) = J{Tn-G- - $J-n} + / { * • • • + $r} (Dl)
9P P

for all spacetime control volumes P. For the second law I retain (4.2), but with
this more general version of P(P).

The requirement that the second law be gauge invariant (or equivalently
that the action flux be gauge invariant) is then equivalent to the requirement
that T be skew and

div4T + J + f - 0, div4j - r. (D2)

Further, since T is skew, div4(div4T) = 0; hence

34Cf. Coleman and Noll [1963], where the application is thermoelasticity.
3 5This may seem artificial, but it is no more artificial than theories based on variational
principles, as these require arbitrary variations of the fields, even though such variations
are generally inconsistent with the resulting balance laws. CNP has the same goal as
variational procedures: to ensure a properly invariant theory consistent with basic physi-
cal laws under the widest possible set of circumstances.
3^ln the sense that f performs work.
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div4f + r = 0, (D3)

which I consider as defining for r. Further, using the explicit representations
(4.9) and (4.10) and writing f = (f ,g) , (D2) may be written as the generalized
Maxwell relations

curlH « D# + j + f, divD • q + g, divj « -q# + r, (D4)

where by (D3) the third equation is redundant.
The constitutive equations remain (6.1). The virtual field 1 is not specified by

a constitutive equation, but instead is allowed to be assignable in any w a y
compatible with the balance (D2), just as the body forces and the heat supply
are often left assignable in the more standard theories of mechanics and heat
conduction. The balance law (D2)x is then nonrestrictive: it simply gives the
virtual force tf needed to support any given constitutive process.

In localizing the second law one seeks to eliminate the virtual fields and
obtain an inequality involving only constitutive quantities. Here the elimination
of f and r yields the original dissipation inequality (5.20), so the resulting theory
remains unchanged.

b. Superconductivity
To treat superconductivity I augment the virtual force f with a real scalar

field rn, which represents a virtual supply of normal electrons, and a complex
scalar field C, which I interpret as a virtual microforce. I assume that f and r
are gauge invariant, while C transforms quantum mechanically.

I rewrite the complex microforce balance in the form

Jt-n + J(TT+C) - 0 (D5)
ap p

for every spacetime control volume P, and arguing as in Section 11, arrive at
the local balance

X-t + TC + c - 0 (D6)

with TI given by (11.2)
I consider the second law in the form (12.4), but with
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F(P) = J{Tn-e - - 8 J n n }
£>p p

J{(Ml)+- • cc} + J{c+# + cc}, " (D7)
3P P

for the action flux. Then

F(P)
£>P SP

J{(Ml)T + + cc} + J{cT^ -i- cc}, (D8)

3P P

with J given by (12.6) and

r - rn + rs, r8

Gauge invariance then yields (D2)-(D4), and, further, the local dissipation ine-

quality retains its past form (12.13).

As before, the virtual fields f, rn, and C are not included in the list of

constitutive equations, which remains (13.1). Given any constitutive process, the

fields IT, rn, and C are chosen to ensure satisfaction of the resulting balances,

which are (D2) and (D6), and, again, the resulting theory remains unchanged.
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