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1 Introduction
We present in this paper a collection of results concerning the asymptotic reg-
ularity and qualitative behavior of solutions of the Ginzburg-Landau system,

\ - Au€ + ~ ( | u c | 2 - l)uc = 0 in Rd x [0,T], (1-1)u\ - Au

ue € R2.

We also propose and study a class of equations which we believe are natural
generalizations of (1.1). These systems have the form

u€ e R*, k > 2

Here

( \ I **M I "*• jxr/ \ \XT( \ /I |2 i \2 {•% o \
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Of special interest is the case where p = k\ this is a direct generalization of

The Ginzburg-Landau system arises in a variety of contexts, including mod-
els of superconductivity and of systems of coupled oscillators near a bifurcation
point, see for example Kuramoto [27]. Recently the associated minimization
problem has been studied in great detail by Betheul, Brezis, and Helein [4], [5],
with refinements by Struwe [26], among others. Neu [19], Pismen and Rubinstein
[20], Rubinstein [21], E [9], and others have analysed (1.1) and the associated
Schroedinger-type equation using matched asymptotic expansions. A number
of results on the behavior of (1.1) in two space dimensions were obtained by Lin
[17], [18].

We view (1.2) as a natural generalization of (1.1) to energies with non-
quadratic growth in the gradient term. Given a solution u€ of (1.2) we define

E€(u€) = -ec(ix€)p/2. (1.4)
p

We think of E€ as a energy density for the generalized Ginzburg-Landau system.
This interpretation is motivated by the fact that

r£(u c)= f Ee(ue)dx

is formally a Lyapunov functional for (1.2). We remark that (1.2) is not an
equation for gradient flow for the functional P. However, it retains many of
the estimates satisfied by (1.1), estimates which are crucial to any analysis of
properties of solutions. (These estimates are chiefly presented in Section 2).



Also, in the same way that (1.1) is a kind of model problem for codimension
2 pattern formation, the generalized system (1.2) can serve as a model problem
for the study of higher codimension pattern formation. This view is supported
by the results we present in Section 3, which are discussed immediately below.

Our results fall into two classes. First, we characterize the qualitative behav-
ior of solutions of (1.2) in the limit as € —> 0, in the case where d> k = p. More
precisely, given a family of solutions u€ of (1.2) with appropriate initial data,
we define an associated family of measures v\, and we show that the support of
these measures, in the limit, forms exactly a (d — fc)-dimensional submanifold
which evolves via codimension k mean curvature flow, at least for short times.

This result, which occupies Section 3, confirms the formal computations of
Rubinstein [21], Pismen and Rubinstein [20], and E [9] for the usual Ginzburg-
Landau system (1.1) in three space dimensions, and also applies to more general
situations. It is closely related to a number of recent results about the asymp-
totic behavior of solutions of scalar Ginzburg-Landau equations and related
equations. For example, Chen [7], Evans, Soner and Souganidis [10], Emanen
[11], and Soner [23] have shown that solutions of the Allen-Cahn equation in a
singular limit exhibit a sharp interface which evolves via codimension 1 mean
curvature flow. The latter three papers establish this result globally in time,
using various weak notions of evolution via mean curvature. Analagous results
have been established for more general scalar reaction-diffusion equations by
Barles, Soner and Souganidis [2] and Jerrard [12], among others.

The larger part of this paper is devoted to establishing some regularity the-
orems. We first prove a small energy regularity result. In Section 4 we prove
that if certain weighted integrals of the energy density E€ are sufficiently small,
then E€ is in fact bounded in some smaller region. This result is valid uni-
formly for parameter values e £ (0.1]. Our proof uses a monotonicity formula
and a Bochner inequality, following ideas of Struwe [24], and Chen and Struwe
[8]. Small energy regularity and a covering argument imply partial regularity
results, as in Chen and Struwe [8].

In the special case of the usual Ginzburg-Landau equation in R2 x [0,T],
we establish much stronger regularity results. We prove that if integrals of the
energy density are bounded in some region, then in fact the energy is point-
wise bounded in a smaller region. This result, which is again uniform in e,
follows from the small energy regularity via a blowup argument (Section 6) and
a Liouville-type theorem (Section 7). The blowup argument is similar to one
found in Struwe [25].

This latter regularity result is used in another paper by the authors, [14] in
which we completely characterize the asymptotic behavior of solutions of (1.1)
in Q x [0,T], where fi C R2 and T > 0. This result, which is valid only locally
in time, provides rigorous proof of formal results of Neu [19], E [9] and others.

The paper starts with a collection of estimates in Section 2.
One issue we do not address is the solvability of (1.2). It is well-known that

(1.1) admits smooth solutions; this follows from the work of Ladyzhenskaya,



Solonnikov, and Uraltseva [16], as is verified in Bauman, Chen, Phillips, and
Sternberg [3], for example. Results of this sort are not so obvious in the case
of the generalized system (1.2). It is not difficult to construct some sort of
weak solutions of (1.2), for example by discretizing in time, solving implicitly
at each time step, and passing to limits. To establish regularity, however, seems
to require a priori CliQ estimates. Such estimates are not, in general, valid
for quasilinear systems, but they normally hold for systems for which there is
some sort of energy density which is itself a subsolution of an elliptic or parabolic
equation. This is the case for (1.2), as is shown in Proposition 2.1. It is therefore
not unreasonable to expect that the same estimate holds for (1.2), and thus that
smooth solutions exist. In this paper, however, we focus on other issues and
simpy assume the existence of smooth solutions.

We will always assume that the initial data for (1.2) satisfies

IK(-,o)|U~ < l, ||££(-,0)||L. <+oo.

Multiplying (1.2) by u( and denning w( := \ue |2, we discover

^ ^ + \{wc - l)wl + 2|Vu£|2 = 0, (1.5)
6

The maximum principle thus suggests that any reasonable solution should sat-
isfy

l * e ( * , t ) | < l (1.6)

for all (x,t) G Rd x [0, oc). Similarly, estimates in Section 2 imply that a
well-behaved solution should have the property that

/ E€(x,t)dx + I [ ei*1(z,s)dxds= [ E€(x,0) dx.
JR* JO JR* JR*

(1.7)

Both of these statements will hold, roughly speaking, as long as there is no
influx of energy from |x| = -hoc. It is not hard to see, for example, that a
solution produced by the implicit time discretization described above will have
these properties. We therefore further assume that for initial data as described,
our solutions satisfy both (1.6) and (1.7). To establish these estimates a priori
would require a delicate analysis and might not be possible, as is shown by the
example of the heat equation.

Notation and Preliminaries
We will use the following notation throughout this paper.

Integers d and k will always denote the dimensions of the domain and the
range, respectively, of the mappings we consider.

ec(-) and Ec(-) will always be as defined above, where the power p in the
latter definition is understood to be the same as that in the generalized system



(1.2). We will normally write ec instead of e€(u
€)y when no confusion can result,

and likewise Ec.
We employ the summation convention throughout. Roman indices z,j, , . . .

are always understood to run from 1 to d, and greek indices a, /?,... run from 1
to k. Exceptions will be indicated explicitly. A scalar product between matrices
is denoted by A : J5, so that for example Vu : Vv := u%.v%..

We also use the notation

B;(X0) = {x e Rn | \x-xo\<p}.

We will normally omit the superscript n which indicates the dimension of the
ambient space, displaying it only when the dimension is not obvious from the
context.

Observe that if u€ solves (1.2) for a given value of the parameter e, then
u(x,t) := u€(ax,a2t) solves (1.2) with e := e/cr. Similarly, we have Ee(u)(x, t) =
apE€(ue)(axy a2t). Rescaling in this fashion, we can convert statements about
solutions of (1.2) for arbitrary e into statements about solutions with c = 1, for
example. Whenever a statement of a theorem is invariant under this rescaling,
it clearly suffices to prove it for a single value of the parameter c. We will invoke
this sort of argument from time to time by saying, without further explanation,
that it suffices "by a rescaling argument" to consider a certain case.



2 Estimates
In this section we collect some estimates that we will use throughout this paper.

We assume that ue is a smooth solution of (1.2) on Rd x [0, oc) and that

Following a suggestion of M. Grillakis we define

= Ec(x, t)dx,

The following fundamental identities are immediate consequences of the
equation (1.2). We have

(2.1)

(2.2)

Given a smooth test function TJ € W2'0O(Rd x [0, oo]), we multiply the first
equation above by T) and the second by VT/, then subtract to obtain

r,E\ = VT? • V £ e + div (i}p€) + VT? • div a' - itf

We integrate to find

(2.3)
By adding, rather than subtracting, equations (2.1) and (2.2), we obtain in a
similar fashion

J(r,t (2.4)

The integration by parts that we have carried out above is justified if

VT?(-,<)£<(-,<) € L\Rd). v(;t)p'(;t) € L^R').

The former follows from our standing assumption (1.7). Invoking the same
assumption, the latter holds for a.e. t, since

fp€dx < f Eedx+ fe^\ul\2dx,



and the right-hand side is finite a.e. t. Whenever we apply the above estimates,
we will integrate them over some time interval, so we can safely ignore the set
of measure zero on which pe(-, t) is not integrable.

We next show that the energy density Ee solves a certain parabolic equation.
In the statement and proof of this lemma we omit all superscripts e, and we
write e to mean e(u) = ee(u

€).

Proposition 2.1 The energy density E satisfies

Et-AE- ^ - ^
£e _ < „,.

(2.5)
Also,

^ « | 2 + - ^ - ( l - | « | 2 ) 2 | u | 2 ] < C E * ? . ( 2 . 6 )

Proof. Prom the definition of E we compute

V + ( | | 2 - l)u • ut).

We now replace tit and Vttt in the above equation by expressions we obtain
from the generalized G-L system (1.2), thereby obtaining

u%<^ _ , V e

(We have written out explicitly the terms for which there is some chance that
more condensed notation might be ambiguous.) We also have

from which we deduce that

AE = + )

|V2«|2 + Vu : VAu + ^ |ti • Vu|2



From these we obtain, after cancelling several terms and combining terms of the
same form,

+ ^ ( V e • V(i|Vu|2) - |Ve|2 + (|u|2 - l ) e X j <

From the definition of e we see that

Ve • V(±|Vu|2) + (\u\2 - l)Ve • V(i|u|2) - |Ve|2 = 0.

The above two equations immediately imply that (2.5) holds.
To prove (2.6) from (2.5), note that Cauchy's inequality gives

1(1 - |n|2)|Vix|2 - 1(1 - |u|2)2|u|2 < l j ( l - \u?f{\ - M2)

If \u\2 > 1/2 then the first term in the right-hand side is negative. If, on the
other hand, \u\2 < 1/2 then (1 - |u|2)2 < 4(1 - |u|2)4. Therefore

< i(l-

< Ce{u)2.

With (2.5) this immediately yields (2.6). D

Finally, we derive some L°° bounds for the energy. As these bounds depend
on 6, we again indicate explicitly the parameter e in what follows.

From (2.5) we easily see that w{x,t) := e"ct /c2Ee(x,t) satisfies

w\ - Aw€ - £.1-2 v2wcVu€ • Vu€ < 0
2e ~

Thus the maximum principle implies that for any smooth solution u€ and for
alls,* > 0 ,

W ^ s K U (2.7)

If we strengthen our assumptions on the initial data, we obtain the following
more useful result.



Proposition 2.2 Let u€ e C°°(Rd x [0,T];Rk) be a smooth solution of (1.2)
with p > 2, such that

for some n> 0. Then ||£c||oo < C/ep.

Remark. The conclusion of the lemma follows easily from standard regularity
theory if p = 2.
Proof. 1. By rescaling it suffices to consider the case e = 1.

Let w := |t/|2 and %l> := E + K(w — 1), where K > K will be fixed below. For
a smooth function <f> let

jC,(f> r = (j)f — A 0 — V (b\?u• Vtz

Then we compute that

o p — 2 « —9

£w; = 2t^(tc; - 1) - 2 |Vur + Ve -Ze

This with (2.5) gives

where

/ i = 2e ( p " 2 ) / 2 ( l - u;)|Vu|2 + 2*Tu;(l -w)- 2K\Vu\2 - e ( p - 2 ) / 2 ( l - w)2w,

2e 2e

2. We estimate

K(w - 1)] + 2|Vu|V"-2>/2 - K]

(2 - - ) + 2|Vu|2[e(p-2)/2 - K)

< 0

on {V > 0} D {e(p-2>/2 < K}. Also,

" 2 )

/2 = [
• VuQ - 2|Vu|4]



Hence

| | | |

e e
tx|2 _ c(p-2)/2 A y 2 u | _ 2) |Vl/|2 V

( Jf(,-2)\

on the set {ep/2 > K(p — 2)}. Combining these calculations, we obtain

A£> < 0 on {%l) > 0} O {e
(p"2)/2 < X } n {ep/2 >K(p- 2)}.

Note that if tp > 2K then E > 2K and thus e*/2 > /r(p - 2).
3. For p > 2, set

)

There is a #(;?) > 1 such tha* C(Kyp) > 2K + 1 for all K > K(p). Moreover,
ifK> K(j>) and tp < 2K 4-1, then

rp<C(K,p) => E<C(K,p) + K{l-w)<C(K,p) + K=-
P

Therefore by taking K = /T(p) V K in the definition of ̂ , we get

£t/; < 0 on {2K <t/><2K+l}.

4. If we set 4> := ̂  v/ 2JtT then £ 0 < 0 on {<f> < 2K -f 1} (in the sense of
viscosity solutions) and <p{x, 0) = 2K. Let

c(t) := sup{<£(z,5)|z € Rd ,5 G [0,t]}.

and define
t0 := max{t > 0|c(t) < 2K + 1}.

Prom (2.7) we deduce that c(-) is continuous and that t0 > 0. Also, C<j> < 0 on
Rd x (0,t0) and so the maximum principle implies that if t < t0 then <f>(x, t) <
<£(z,0) = 2K. Thus t0 = -foe and <f> < 2K on Rd x [0, oc). D

10



3 Convergence to codimension k mean curva-
ture flow

In this section we consider examine asymptotic behavior of solutions of the
generalized Ginzburg-Landau system in the case d> k = p.

For this purpose, it is convenient to introduce the normalized measure

In the following, we assume that Fo is a smooth embedded compact (d - k)-
dimensional submanifold of Rd, and that {Ft}o<t<T is a smooth codimension k
mean curvature flow starting from Fo, for some r > 0. We let F C Rd x [0,r]
denote the set swept out by F*, i.e.

r= U rtx{t}.
0<t<T

Also, we define
6(x,t) = dist(rr,Ft) = min \x — y\.

Since F is smooth and compact, we can find a number GQ > 0 and a smooth
function rj such that

2 U6(xJt)>2a0,

and
T){x,t) > -<7Q whenever 6(x,t) > CT0.

Ambrosio and Soner [1] establish several properties of the function \62 in a re-
cent paper. Their results immediately imply that TJ has the following properties:

Theorem 3.1 For (x,t) in a neighborhood oJT, the matrix V2r}(x,t) has k
eigenvalues equal to one, and each of the remaining d — k eigenvalues satisfies
the estimate \Xi(x,t)\ < C6(x,t). In particular, V2r)(x,t) is a projection onto a
k-dimensional subspace when (x,t) € F. Moreover,

- AV77 = 0 on F.

In fact, Ambrosio and Soner [1] show that for a smooth evolving manifold
as above, Vr;t(x,t) gives the normal velocity vector of F t at (x,t) € F, and
AV?7(x,t) equals the mean curvature vector, so the above equation precisely
characterizes smooth codimension k mean curvature flow.

We will use these results in the following form:

11



Corollary 3.1 For any f € Rd and all (x,t) in a neighborhood ojT we have

vV-*<KI2- (3.i)
Also, 77 satisfies

yt-Arj<-k + Cr) (3.2)

inRd x [0,r].

Proof. The first assertion is immediate from the above characterization of
the eigenvalues of V2r/ near I \

To verify the second assertion, first note that

rjt = 0, A77 = k on F.

The first of these equalities holds because 77 attains its minimum on F, and the
second follows from the description of V277 in Theorem 3.1. If we let <f> = T)t — Ar],
we thus have (again using Theorem 3.1)

<t>= -k, V<f> = 0 on T.

Given any (x, t) eHd x [0, r ] , we can find j / G F ( such that \x — y\ = 6(x, t). We
then have

<f>(x,t) =

D

The following theorem is an easy consequence of these properties of 77.

Theorem 3.2 Suppose that ue : R d —> Rfc is a smooth solution of the general-
ized Ginzburg-Landau system (1.2) with p = k and initial data uc(x,0) = h€(x)
for which

Jridv€
o->0 (3.3)

as e -* 0. Then

Proof. We use the smooth function 77 defined above in the weighted energy
estimate (2.3). Dropping a negative term and using (3.2) and the definition of
fit, we have

< C Jvdfil + I -2(e€)* + (c,)**2 V27?Vti£

12



Select s e (O,cr0] such that (3.1) holds on the set F£ = {x\6{x,t) < s}. This
number s may be chosen uniformly for t £ [0,T], SO we may assume that
I|V277||/T7 < C on Rd \ Ft

s for some constant C, uniformly in [0,r]. Then

< 0.

Moreover,

-2(ee)* + (ee)4

<

The three preceding inequalities together yield

Gronwall's inequality now immediately implies that

t < C jWo
for all 0 < t < r. Dividing by log | , we obtain the conclusion of the theorem.
D

Remark. This proof may be seen as a Pohozaev-type estimate, as used for
example in Bauman, Chen, Phillips, and Sternberg [3].

The hypotheses of the above theorem mention only the initial distribution of
energy. If we assume in addition that h* exhibits a vortex-like structure along
cross-section of To, so that To is a "topological defect", then we can strenthen
the above result.

Because Ft is assumed to be a smooth codimension k manifold, at each
y e Ft we may find vectors n1(t/,t),... ,nfc(y,t) € Rd such that each nQ is
normal to Ft, and nQ -vP = 6ap. We assume moreover that Ft is orientable, so
that (y,£) H-+ nQ(yyt) may be taken to be smooth and globally well-defined on
F.

For y e F t, we define iuc(s y,t) : Rfc -» Rfc by

Theorem 3.3 Suppose that u€ is a smooth solution of (1.2) with p = k and
initial data satisfying (3.3). If in addition there exists /c, a\ > 0 such that
llVt̂ Hoo < K/C and

lim d e g K O ^ O ) ; ^ ) ^ (3.4)

13



for all yeT0, a G (0,<7i], then

liminf 14>dv\ > K(k) f 4>dEd'k (3.5)
c - ° J JT%

forall<peCS°(Rd).

The constant K(k) comes from Lemma 3.2 below.

Remark. Theorems 3.2 and 3.3 taken together imply that if vt is any weak
limit of i//, then the support of vt exactly equals IV

As the sign of deg(tx;e(-; y, t)) depends of the choice of n1 , . . . ,nfc, we may
take it to be positive, without any loss of generality.

We assume a > 0 is fixed and we introduce the notation

K := [0, l ] d -*

U := B\a x K C Rd.
We denote typical points in B±a and K as x and y respectively. Given a function
v€ : U —> Rfc, we further define

mc(t/,t) := leb^r G [a,2a]|deg(t;c(.,t/,t);aJ5r) = 1}),

V t
e :={y€l fK(y , t )>(T/2} .

Here leb1 denotes 1-dimensional lebesgue measure. We may think of Vt
€ as the

subset of points in K at which the cross-section at time t exhibits an isolated
vortex, in a weak sense.

The following two estimates are proven in Jerrard [13] as Theorem 6.1 and
Theorem 4.2 respectively.

Lemma 3.1 Let v€ G C([0,T);W^°°(U;Rk)) with

\\Dv<\\ < ~

for some K > 0, and assume that

for ally € K, r € [c,4(r], and that

j J p€(v
e)k/2dydx < K (3.6)

for all t£ [0,T\. Then

ton Hd-k(Vt
() = Hd-k(K) = 1, (3.7)

for all t e [0,r].

14



Lemma 3.2 Suppose that <p( G Wx '°°(Rfc;Rfc) and that

W I U < K/C,

and that

leb\{r € [<r,2o]\teg(4>€,dBr) = 1}) > a/2.

Then

f \e€{<f)k!2dx > K(k) ln(a/e) - C(*, *)•

The constant AT (fc) is given explicitly in Jerrard [13].
Using these we present the

Proof of Theorem 3.3.
1. For a G (0,<7i] to be determined, define U as above.
First we define a map tp G C°°(/sr x [0,T];T) such that for every t G [0,T],

^(-,2) is a diffeomorphism of A: onto a subset of IV Now we define $ : U x

Note that for fixed (t/,t), ^(- ,y, t ) maps Rfc onto the normal space to Ft at

)
We may assume that |V* | < C and that the M > C~~l > 0, where J * =

det V * is the Jacobian of $ .
We also assume that a is small enough that \P is one-to-one.
Finally we define ve(x,y,t) := txc(^(x,t/,t),t).
2. We now verify that v€ satisfies the hypotheses of Lemma 3.1 Since u€ is

assumed smooth, it is evident that the map t «-• vc(-,-,t) is continuous in the
norm of W1*00. We next compute

\Vve\ < | W | | V # | < C\Vu€\ < C/e.

Also, it is clear that
U), (3.8)

so the condition on the degree of vc(*,t/,0) follows immediately from (3.4) and
our choice of a.

Finally, note that e€(v
€)(x,y,t) < Cee(u

€)($(x,y,t),t), and so

K

<

{6(.yt)>*}

< c

15



by Theorem 3.2.
3. Lemma 3.1 therefore asserts that (3.7) holds.
We now define, for y € Ft

Vi
€:={yeri\m

€(y9t)>a/2}.

It is clear that we can find a finite collection of maps {*i}^i of the form
described above such that

M

r t c l ) *i(f/,t).

Thus (3.7) and (3.8) imply that

lim Hd~kiTt \ Vt) = 0. (3.9)

4. For x sufficiently close to I \ , let p(x) G Tt be the unique point of Tt

satisfying
6(x,t) = \x-p(x)\.

Fix a so small that p(x) is well-defined on {£(•,£) < 4cr}. Note that for y G V̂ €,

2 * / 2 ( x ) d F f c ( x ) > A T ( f c ) - ^ . (3.10)

This is an immediate consequence of Lemma 3.2.
In the calculations below, Jp denotes the Jacobian of p, Jp := [det dpdpT)1^2.

Here dp denotes the gradient of p considered as a map from TxRd = Rrf into
Tp(x)Tt = Rd"fc, and thus is expressed as a (d — k) x d matrix, after choosing
bases for the respective tangent spaces. In particular, with this definition the
change of variables that we employ below is valid.

For every smooth, compactly supported <f> we have

I<\>dv\ > f <f>dvl
J J{6(,t)<2(r}

where

h = / [

and, by a version of the co-area formula,

(3.11)

16



In the last step we have used (3.10).
5. Fix any subsequence and a measure v such that v\n —> v. By Theorem

3.2, we know that spt v C Ft. It follows that

I[<t>{y)-Jp{y)<t>{y))dv

We will show in Lemma 3.3 below that Jp{y) = 1 for y € IV Thus I\ vanishes
as e->0.

Also, (3.11) and (3.9) evidently imply that

liminf/2->#(*) / </>(y)dHd-k(y).«-o JTt

D

Lemma 3.3 Forp as defined above and y e Tt, Jp{y) = 1.

Proof. Fix y £ Ft and orthonormal vectors Ti,...,Td_fc which span TyFt.
Takin
form
Taking the standard basis e i , . . . , e<j as a basis for TyRd, the matrix dp has the

(dp)ij = Ti-pXj, t = l , . . . , d - *, j = l , . . . , d .

After a relabelling we may assume that e» = r» for % = 1, . . . ,d — A: and that
ed_fc+i,..., ed are normal to Ft at y.

We claim that

)«(») = «« fort = l , . . . , d - f c . (3.12)

Indeed, for any i = 1 , . . . , d — k, by the definition of p,

\p{y + h&i) — y — ̂ etl = ^(y + ftei,t)
= 6(y) + hei-V6 + O(h2)
= O(/i2)

since V<5 is normal to Ft. Since p(y) = 2/, this implies that Vp -r = T. Thus

p{y + he{) - p(y)

which implies (3.12).
Also, for j < d — k and /i sufficiently small, similar reasoning shows that

p(y + hej) = p(y). Thus (dp)ij = 0 whenever j > d - k. With (3.12) and the
definition of Jp, this implies the conclusion of the lemma. D
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In the remainder of this section, we briefly indicate a way to construct initial
data he for (1.2) in such a way that the resulting solutions, if smooth, will satisfy
the hypotheses of Theorems 3.2 and 3.3.

We impose some topological restrictions on Fo by assuming that there exist
smooth, bounded, open sets O a , a = 1,..., fc, such that

k

To = f | dOQ. (3.13)
c r = l

For a = 1,...,k, let dQ be the (signed) distance to dOa, so that

JaM _ j -dist(z, dOQ) ifxeOQ
a {X) ~ \ dist(x,dOQ) iixeKd\OQ

Since the sets Oa are assumed smooth, each function dQ is smooth near dOQ.
We assume in addition to (3.13) that

VdQ • Vd0 = 6a/3 (3.14)

on Fo.
For a = 1T ...,&, let da be smooth functions such that

dQ = dQ in an neighborhood of Fo,

sgn(dQ) = sgn(dQ), ±\d?\ < \da\ < 2\dQ\ on Rd .

Let d : Rd —̂  Kk be the vector-valued function whose ath component is da.
Note that d is related to the ordinary distance function £(-,0), defined above,
by

C~l6{x, 0) < \d(x)( < C6(x,0) (3.15)

Finally, note that assumption (3.13) implies that d/\d\ -> A:"1/2(l,..., 1) as
|x| —> oo, so we may find d satisfying the above conditions, for which there
exists same nv*mber M such that

d/\d\ = A"1 /2(l,. . . , 1) for all \x\ > M. (3.16)

Remarks. 1. Assumption (3.13) appears to be a necessary condition for the
existence of initial data with the required properties. Given (3.16), one can
modify tke sets Oa locally near Fo to arrange that (3.14) be satisfied.

2. Assumption (3.13) is satisfied by any Fo which can be embedded as a
codimension 1 manifold in Rd~*+1. Also, it is clearly preserved under homotopy.

Let v : Rfc —• R* be a function of the form v(x) = p(|x|)j^7, for a scalar
function p such that

p(0) = p'(0) = 0, 1 - Ce~W'c < p(\x\) < 1, p'(\x\) < Ce~c^.
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Then for e{v) = \\Dv\2 + W(v), we have

O(e"c /W) (3.17)
\x\

as \x\ -+ oo.
We define

One can then verify that

in the sense of distributions, and it is clear that (3.4) holds. Moreover, one
can verify that h€ satisfies the hypotheses of Proposition 2.2, and thus that a
smooth solution u€ with h€ as initial data satisfies

So h€ has all of the desired properties.
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4 Small Energy Regularity
In this section we establish a small energy regularity theorem for solutions of
the generalized Ginzburg-Landau system. The basic argument we follow was
introducted by Schoen [22] for stationary harmonic maps and generalized by
Struwe [24] and Chen and Struwe [8] to the case of heat flow for harmonic maps
and for Ginzburg-Landau type approximations of harmonic maps.

The proof relies on a monotonicity lemma and a Bochner-type inequality,
that is, a differential inequality which is satisfied by the energy. The main
novelty here is the observation that these estimates are available in this more
general context, as well as the fact that our result is local in nature. In problems
involving asymptotic behavior of solutions of Ginzburg-Landau type systems,
global energy estimates, independent of e, typically do not hold. Thus the local
character of our estimates is very useful in these applications.

Small energy regularity results of the sort that we establish here can be used
with covering arguments to deduce partial regularity results, as in Chen and
Struwe [8].

We start by establishing a monotonicity formula, which we get by putting an
appropriate test function r\ in the identity (2.5). We first define this function:

Let 7 : [0, oc) —• [0,1] be a smooth nonincreasing function such that

J 1 if r < 1/4
0 i f r > l / 2 .

Also, define p : Kd x (0, oc) -> R by

We fix {xo,to) and let f?(x,t) = 7( |z0 - X\)P(XQ - x,t0 - t), for x € Rd,t < t0.
In what follows we will for simplicity take XQ = 0 and write r for to — t. We
have

[V27 V7 x x

where / is the identity matrix. We then have

20



IVTT^Wf _ / jV -y -WI 2 x T7..e^»/ , |*-Vtt€|,.<|2

' " ' V 7 7 4r2 '•

So with this choice of T/ in (2.4) we obtain (using the fact that 17 is nonnegative)

(4.1)

By the definition of 7, the integrals on the right-hand side above are supported
on {x : 1/4 < \x\ < 1/2}. Recalling that IV7P/7 < ||7||c2, we have

Also, for \x\ > 1/4,

(1 + M)2 „ (1 + J£i)(4,rr)-^ exp(-J^) < C(d - p).

Thus we have established the following local monotonicity formula.

Lemma 4.1 The measures \i\ satisfy the estimate

-T^J Vdfi < C{-Y,d-p)n€
t{B1/2).

D
Before stating our small-energy regularity result, we introduce some nota-

tion. For x0 e Rd, r > 0, and 0 < t < t0, let

aj(i; x0, t0) := j 7 ( ^ ^ ) p ( x o - x, to -

where 7 and p are defined at the beginning of this section. We write ac to
mean af. Note that the ofr is scale-invariant in the following sense: Given
a function ue solving (1.2), we may define a rescaled function by u(x,t) =
ue(x0 + Rx, RH). We also define c = e/R, E(x,t) = 2/p{ei(u))p/2. As remarked
in the introduction, u solves the system (1.2) with scaling €, and

E{x,t) = RpE€(x0 + Rx,R2t).
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Thus, using the fact that p(Ry,s) = Rd~pp(y,s/R2) we obtain by a change of
variables

/

,.R|£ t —

In particular, by taking fi = rwe can convert statements about ae
r to statements

about a€.
We now change notation, using 77 to denote a small constant which will be

chosen below. We also introduce the notation

V.{xo,to) := {{x,t)\t € [to - «2,t], \x - xo\ < s}.

We now have

Theorem 4.1 (local small-energy regularity) Suppose that u€ is a solution
of (1.2) on Br x [7b, 7i], with e < r. Suppose also that there exists K > 0 such
that for all x € Br, s<r with Be(x) C Bry and all t e [To, 7\] we have

Then there are positive constants 77, po, and C such that if

a€
r(to-T

2',xo,to)<ri

for some (xo,to) € Br/4 x [To -hr2,Ti] and r e (O,r^J, then we have

(POT)P

Proo/. 1. We first claim that it suffices to establish the theorem under the
assumption that r = r^/rj. Indeed, if r < r277 then we define f by insisting that
r = fy/fj. Note that r < r, and so 7(|x|/f) < 7(|x|) for all x. Thus

ctf(to — T;xo,to) — Qe(to ~ rj^o>^o) ^ 77.

Clearly also (4.2) continues to hold if r is replaced by f. We may then use f
instead of r in the proof, and the desired equality will be satisfied.

Next, by rescaling we may set r = 1. Thus we assume that

a€(t0 - 77; x0, t0) < 77, r2 = 77.
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The constant 7? £ (0,1] will be fixed at the end of the proof. After these
normalizations, (4.2) implies that

l*l(Bi) < K. (4.3)

2. For PQ e (0,1/4] to be chosen, let

f{a) = (2po,/fi- <r)p max E(x,t).
V{xM)

Take a0 £ (0,2pQy/rj) and (x,i) £ Vao{xo,to) such that

/(ao) = max /(a), E(x,T) = max
[ O 2 A ] ^(t

Let W — Poy/rj — OQJ2. Then

sup

sup £

Thus E(x,t) < 2p£ in 7V(^J). Estimate (2.6) now imphes that

Et - AE + ^

1
in Va{x,t).

Note £ilso that it now suffices to show that (PS < C for appropriate choices
of T), PQ. Indeed, if we have this estimate, then

(p0T)p max E(x,t) = f(por)
•Pp0r(*0,<0)

< f(o0)

< C,

w(x, t) = exp{m£2/p(t - t))E(x, t).

Then

which is the conclusion of the theorem.
3. Let a = aA£~l/p and

p - 2 VwVtx Vu
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and w < el28E in Va(x,t). The coeflScients in the above equation satisfy

so by a parabolic Harnack inequality for nondivergence structure equations,
see Krylov and Safonov [15], which depends only on the above bounds on the
coefficients, we have

£ = w(x,t) < C5~{ + } I w(x,t)dxdt

E(x,t)dxdt.

4. Since 77 < 1 and po < 1/4,

o < o < poy/rj < 1/4

and so for (x,f) € V&(x,t), we have

j(\x - x\)p{x - x , U j 2 - t ) > a~(d~p) exp(~l/4). (4.4)

Thus

< Ca~2 [ 7(|x - x\)p{x - i j + a 2 - t)£?(ar, i)dxdt
JV*{x,t)

ft
< Cd~2 I ae(t;x,t + &2)dt

Jt-a*
< Cae(to-v;x,i+a2) + C(K)(i-{to-T])) (4.5)

by the monotonicity formula, Lemma 4.1.
Recall that by construction, t < t0, so the last term on the right hand side

above is bounded by C(K)T].

5. By translation, we may set XQ = 0, and we define i := t + a2 — to. Observe
that by construction we have

\x\ < 2poy^, 1*1 < 4P
2
0TJ. (4.6)

We now claim that if po is sufficiently small, then

ae(to-r}]x,t + a2) < 4ae(t0 - 7};xo,to) + 7} < 577.

We write

ae(t0 - 77; x, t + a2) - 4ae(t0 - i?;0, to) = h + h + h,
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where

h = / [7 (1*- 2/1)-

», t0 - T))dy,

h = 2y 7(M)b(»> *? + *) - My, v)]E(y, t0 -

Recalling that 7 = 1 on £1/4(0), we have

h < l|V7||oo|2F|(j^£7(tf,to-i?)

x supMx -y,t) 112/| > 1/4, |x - y| > 1/4, t > 0}

if 1/8 > 2pQy/rj > \x\, which may be achieved, for given 77, by adjusting p0.
Taking po still smaller yields I\ < r//3.

To estimate 72, note that if p(x — y,r) + i) — 2p(y, rj +1) > 0 then

We rewrite this inequality as

23?-fo-s)>4fo + t)(log2-

This implies that

using (4.6). Thus

if p0 is chosen small enough. With (4.3) this implies that J2 < 77/3.
The estimate of J3 is very similar to that of /2, so we omit it. Thus we have

proven our claim.
6. Putting together steps 5 and 6, we find that

<Cr}

Taking 77 small now gives
< Cr\.

As remarked in step 2, this immediately yields the conclusion of the theorem.
D
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5 Some variations
By modifying the argument of the small energy regularity theorem, we obtain
slightly different results which will be useful later on.

Proposition 5.1 Suppose that u€ solves (1.1) on Br x [T0,Ti], where e < r.
Assume also that there exists K > 0 such that

for all t € [Tb,7i] and all Bs(x) C Bri and that

Ec{x,T0) < n/r2 inBr.

Then there exist constants C(/c),r(«) such that

, t) < C/r2 in Br/2 x [To, To + r2r].

Remark. Note that this applies only to the usual Ginzburg-Landau system
with quadratic growth.

Proof. 1. As in the proof of Proposition 4.1, it suffices to prove the result
for r = 1 > e. We may also assume by a translation that To = 0.

Take XQ € Bi/2, t0 < 1/16 to be fixed later, and define

<T)2 sup Ee(x,t).
)

Exactly as in the proof of Proposition 4.1 we select a0 e (0, v^o) and (x,t) e Vao

such that

/((70) = max /(a) E€(x,t)= max E(x,t):=£.

We further define W := (y/to — (To)/2. Following the argument of steps 1-4 of the
proof of Proposition 4.1, we find that

a~2 / ac(t^?+ a2)1 A a2£ < Co"2 I a€(tyx,t + a2)dt

for some a <a.
2. By the monotonicity lemma, the definition of ac and the assumed L°°

bounds on i?e(-,0),

a€(*;x,? + a2)dt < ac(0;x,? + a2) + C(n)t
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Prom the definitions we have t + a1 < 2t0, so with Step 1 we obtain

1 Aa2£ <C(n)t0.

So there exists some r > 0 such that if to < r, then

= fiVTo/2)

< Ct0.

In particular, £c(xo,to) < C for to < r. D

Next define

:= / p(x0 - x,t0-

Proposition 5.2 Suppose that u€ is a solution of (1.2) on Hd x [To,Ti], with
e < 1, and that for alls < 1 and a// (x, t) eRd x [To, Ti] iye

Then there are constants rj,pQiC which may depend on K, such that if

a^( to- r 2 ;xo^o) <r]

for some r > 0 and (^o, t0) € Br/4 x [To -I- r
2 ,Ti], tAen we have

Remark. The point is that when we omit the cutoff function 7 from the
integral, we no longer require r to be small.

Proof. The assumption that r is small is used only in two places in the proof
of Theorem 4.1 The first is in deriving (4.4), where it is used to guarantee that
7 is nonzero on a certain set. This clearly is no longer necesary when using a^
instead of o£.

Second in (4.5) we employ the monotonicity formula Lemma 4.1, and thereby
pick up an error term which is bounded by KT2. If however we work with a^
instead of a£, then there is no error term in the monotonicity formula. Indeed,
setting 7 = 1 in (4.1) we obtain

Thus in this situation we can derive (4.5) with no restrictions on r. D
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6 Regularity
In this section we prove a uniform asymptotic regularity result for the usual
R2-valued Ginzburg-Landau system

~( | i z £ | 2 - l )u c = 0, (6.1)

in 2 space dimensions.
We will use the notation

for r >O,0 £ (0,1]. Wre set Qr := Q r(l) and Q(6) := Qi(0). For (x,t) € Q r ,
we define

To simplify notation, we do not explicitly indicate the dependence of 6 on r.
Note that 6 is just the parabolic distance to the parabolic boundary of Qr.

Our main result is

Theorem 6.1 Suppose that ue solves (6.1) in Qr with

ti(Br) < n (6.2)

for allO<t <r2. Then

6{x,t)2E€(x, t) < C(K) in Qr(0).

In particular, for every 6 < 1,

Ee<C(K,6) in Qr(0).

Combining this with the short-time regularity result, Proposition 5.1, we
immediately deduce the following

Corollary 6.1 Suppose that u€ satisfies the hypothesis of Theorem 6.1. If, in
addition,

,0) <K forallxeBr,

then
Ee(x,t) < C(K) for all (x,t) € Br/2 x [0,r2].

D

We start by proving a compactness result that we will use several times.
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Lemma 6.1 Suppose that {vn} are functions such that for each n,

vn,t -Avn = ^-(1 - \vn\
2)vn

on Qr, for some cn > 0. Let En = e€n(vn). If En<C and

sup / En(x,t)dx<C
t€[0,r2] JBr

uniformly in n, then vn is uniformly bounded in C^* (Qr) and En is precom-
pact in Lfoc(Qr). Moreover, if en -> e € [0,-foc] and

vn—>v locally uniformly, En -+ E in L?oc, (6.3)

then
(i) ife=: 0, then v solves

vt - Av = |VU|2tJ (6.4)

; = |Vv|2/2.
(ii) ife€ (0, oo). then v solves

(6.5)

and E = e?(v).
(Hi) ife = +oc, then v solves

vt - Av = 0 (6.6)

and'E=\Vv\2/2.

Remark. C]^JA(Qr) is the space of functions which are Lipschitz continuous
in the x—variables and C1^4 in the t-variable, locally in Qr.
Proof. 1. The proof does not in any way depend of the radius r, so we work

on Q to simplify notation. It is obvious that vn and Vvn are uniformly bounded
in Loo. Let Q' := Q{6X) for some 0X < 1, and fix a function C € Cg°(Q) such
that C = 1 on Q'.

By using £ in the estimate (2.3) we immediately obtain

a \vn«\2dxdt<C(Q'). (6.7)
Q'

2. Now we define Q" := Q(^) for some 02 < #i- From Step 1 we know
that vn(-,t) is Lipschitz in Br for every t e [0,r2]. Fix (x,ti), (x,t2) € Q" with
ti < t2. For all 5 such that Bs(x) C B$lT, we may integrate the inequality

M) ~ Vn{y,ti)\ + C\x - y\
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over y e B8{x) to obtain

\vn(x,t2)- vn(x,ti)\ < — 2 / b>n(y,t2)-vn(y,
*sl JBB{X)

1 f*2 f
= —2 / / vn,t(y,s)dyds + Cs

c / ft2 r y / 2

< -Vt^Ti I / vn* (y, s)dyds + Cs
S \Jtl JB.{*) )

In the final inequality we have used (6.7). If £2 — 1̂ is sufficiently small, then
B9(x) C 2?0ir for s = (£2 — ^ I ) 1 ^ 4 - The above inequality with this value of 5
then yields

/

This implies that vn G Cfo\'4{Q), uniformly in n.
3. We multiply (2.6) by £2En and integrate over Q to find that

2 + En\V
2vn\

2 + En±(l - l^l2)2!^

< j j {CC?El + CCt^ - 20EW • VEn)dxdt.j
We now use Cauchy's inequality to cancel the bad terms on the right-hand side
against terms on the left, thus leaving us with

/ ^ \
Q' <£

<cJJ(?E3
n + <;E2

n)dxdt. (6.8)

In particular, VEn is uniformly bounded in L2(Qf).
4. We next claim that

Multiplying (2.6) by <2 and calculating as in Step 3, we find that

JJQ> <
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Because En = eCn(vn) is uniformly bounded, there exists some e > 0 such that
\vn\ > 1/2 whenever en < e, so that the above estimate plainly implies (6.9) in
this case. On the other hand, if en > ?, then

Qi tn t

5. Fix a smooth function rj supported in Q' such that 77 = 1 on Q". By
differentiating (6.1) with respect to time and multiplying by 2vn,t, we obtain

|2 - A K |2 + 2 | V v t |2 + 4±\vn,t | - AK,t | + 2|Vvn,t |
2 + 4 [(W2 - 1)|W I2 + 2\vn • vn,t |

2] = 0
ax 6 n

Multiplying by rj and integrating, we get

Vn,t I2 + (Vt + Aty)|t;n,t \2dxdt.

(6.10)
In particular, using Step 1, Step 4, and Cauchy's inequality we obtain

II i7|Vvn,t |
2dx dt <C{6) + 6 f f rj2\vn,t\

4dxdt, (6.11)
J JQ' J J

where 6 > 0 will be selected below. Defining f = 771/2, we use a Sobolev-Poincare
inequality to compute

T}2\vn,t \
4dx dt = / / |fvn,f |4dx dt

Q' J JQ'

JQ'

< C JJ ij|Vt;n>t |
2 + |V^|2|t;n,t \

2dx dt.

We substitute this into (6.11), select 6 small and use Step 1 to conclude that

/ / \Vvn«\2dxdt<C{Q").
J JQ"

Since

En,t < |Vt,n||Vt>n,t I

we easily deduce that Enit is uniformly bounded in L2(Q"). With Step 3 this
proves that {En} is precompact in L2

OC(Q).
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In fact, the above estimates show something slightly stronger: that {|Vvn|2}
and {(|vn |2 - l ) 2 / e 2 } are both precompact in L%OC(Q).

6. Assume now that (6.3) holds. We first consider the case e = 0. In this
case, pn := \vn\ —> 1 uniformly as n —> oo, so for n sufficiently large we may
define a globally single-valued function <f>n such that

We normalize <t>n by imposing the requirement <t>n(0) £ [0,2?r). We then see from
(6.3) that <f>n —* <f> locally uniformly in (J, where <f> satisfies t; = (cos(0),sin(0)).
It is also clear that V</>n —* V</> weakly in L2. Writing (6.1) in terms of pn and
<f>n, we obtain two equations, one of which is

With the above estimates, we may pass to limits to find that <f> satisfies

0 t - A0 = 0.

Rewriting this in terms of v yields (6.4).
7. Still assuming that e = 0, we need to prove that E = (l /2) |Vv|2 . In view

of the results of Step 5, it suffices to show that

0
4

in Lfoc(Q). From (6.8) and the fact that \vn\ —» 1 uniformly, we have

~^2)Adxdt < C{Q')IL
for n sufficiently large. This immediately gives the desired conclusion.

8. If we assume that e G (0, oc) or e = -hoc, the stated conclusions follow in
a straightforward fashion from the estimates of Steps 3 and 5. •

We are now ready for the

Proof of Theorem 6.1 .
1. First note that the statement of the theorem is invariant under rescalings,

so we may assume without loss of generality that r = 1.
Suppose that

sup{6(x,t)2Ec(xyt)\e > 0,(z,t) e Q'} = +oo. (6.12)

Temporarily fix n > r;""1/2, where rj is the constant from Theorem 4.1. For each
6 > 0, the function
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is well-defined and continuous in Q approaches 0 as 6(x, t) approaches 0. From
(6.2) it is clear that the hypotheses of Theorem 4.1 are satisfied. It follows that

limsup sup a\{ t){t \±\x,t) > rj]
e-0 (x,t)€Q K n

otherwise (6.12) and Theorem 4.1 would lead to a contradiction. Thus we can
select en —> 0, (xn,tn) € Q such that

^ M (6.13)

and for all (x,£) € Q such that t < tn, we have

^ ^ (6.14)

The small-energy regularity Theorem 4.1 now implies that

E€»{x,t)<Cn2/62(x,t)

for all (x,t) € Q such that t < tn. In particular, if we let rn = 6(xn,tn)/n, then

E<»(x,t)<C/r2
n in V¥{Xn,tn){xn,tn). (6.15)

2. For (x,t) G 7^(0,0) let yn(x) := z n + r n z and sn := tn -h r^t, and define

Note that (j/n,sn) G ̂ 6(xn,tn)(^n,tn) for (x,t) G Pn(0,0), so vn is well-defined
on this set. Let en = en/rn . Then vn solves

1 /, .2
Vn,t -Av n -f ̂ ( | ^ n | - l)vn = 0.

If we denote En(x,i) = een(vn)5 then by rescaling equations (6.15), (6.2), and
(6.13) respectively, we obtain

En<C inT>n/2(0,0), ( 6 1 6 )

/ En(x,t)dx<K, (6.17)
JBR

J n
whenever R < (4rn)~1, (x,t) G Pn/2(0»0)- These estimates are all independent
of n.
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3. If fat) e 7^(0,0), let rn(x,t) := 6(yn(x),sn{t))/6(xn,tn). Rescaling
(6.14) then yields

7( 'X ~~ y ' )p(x - j/, T2)En(y, t - r^)dt/ < 77/2. (6.19)

Also, if (x,t) e V^{^0), it is ckar that (yn(*)>«»(*)) € ^(X n ttn

and so rn(x,t) < 1. Moreover, if |x| < y/n,

l-\yn{x)\ > l-\xn\-6(xn,tn)/\/n > 6(xn,tn)(l

Similarly sn(t) > 62(xn,tn)(l - n"1) whenever t £ [— n,0]. Thus, recalling the
definition of 6,

sup{\rn(x,t) - 1 |: fat) e Pv^(0,0)} - • 0 as n - • ex. (6.20)

4. We may assume after passing to a further subsequence that e n - ^ l 6
[0, +oc] and, as a result of Lemma 6.1, that vn —> tJ locally uniformly and that
En^~E strongly in I|oc(7>oo), where ?«> := R 2 x ( - o c , 0 ] .

Let

- x, t0 -

E inherits the estimates

:= /

C < C, (6.21)

-, 0IILI'(R») < ^ for every < < 0 (6.22)

from (6.16), (6.17), and
a ( - l ; 0 , 0 ) = r?/2 (6.23)

(6.22) respectively. Also, (6.19), (6.20) and Fatou's lemma imply that

(6.24)

for all (x,t) e Poo-
5. We now consider three cases, corresponding to the three cases of Lemma

6.1. In each case we will show that v must be a constant, in contradiction to
(6.23).

Case(i):c = 0.
Prom the proof of Lemma 6.1, we see that we may write v = (cos(<£), sin(0)),

where ^ solves the heat equation on T^, and that E = \V<f>\/2 < C. It follows
that V<j> also solves_the heat equation on T̂ oo- Standard Liouville-type theorems
then imply that V<f> is constant, and we see from (6.22) that this constant can
only equal zero. This contradicts (6.23).

Case (ii): ?G (0,+oo).
Lemma 6.1 implies that v solves (6.5) on P^ . As in case (i), a Liouville-type

theorem shows that v must be constant. This is the content of Theorem 7.1,
which is proved in the next section.
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Case (iii): c = +00.
By Lemma 6.1, v solves the heat equation on V^. An argument very similar

to that given for case (i) above shows that v is constant. Thus the proof is
complete. D

Remarks. 1. Heuristically, case (i) corresponds to the possibility that a
singularity might form in the interior of Q, and cases (ii) and (iii) correspond
to the possibility that a singularity might enter Q at the boundary. Thus they
arise as a consequence of the fact that the theorem is local in nature.

2. Carrying out a similar blowup argument for the usual Ginzburg-Landau
system (1.1) in d space dimensions, one may obtain a function v solving either
(6.4), (6.5), or (6.6) on Rd x (-oc,0] and satisfying the estimates (6.21), (6.23),
(6.24), and

/ E(x,to)dx<CRd~2

JBR(XO)

for every (xo,to) € Hd x (—00,0]. To establish a regularity result like the
one given above, one would need a Liouville-type theorem asserting that such
a function is necessarily constant. We conjecture that such a Liouville-type
theorem holds.

3. For the generalized Ginzburg-Landau system (1.2), one may again carry
out a blowup argument to find a function solving a limiting PDE on the set
Rd x (—oc,0], but one does not expcet a Liouville-type theorem to hold except
under special circumstances. In this case, these results can be interpreted as
giving some qualitative information about the types of singularities that can
occur, as in Struwe [25].
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7 A Liouville-type theorem
We start out with a Liouville-type theorem for the elliptic Ginzburg-Landau
equation in R2. Stronger results of the same character may be found in Brezis,
Merle and Riviere [6]; we include this here for the reader's convenience.

Lemma 7.1 Suppose that u : R2 —» R2 solves

-Au + (\u\2-l)u = 0

and that E(x) := (l/2)|Vti|2 + W{u) is bounded and satisfies

E(x)dx < C. (7.1)L/R2

Then u is constant.

Proof. As in (2.3) we derive

[ATJ(X)E(X) - V2T)(x)Vu{x) - Vu(x))dx = 0./•
for smooth test functions rj. Let rj(x) = g(\x\), where

s2 if s < r
2r2 if s > 2r,

with 0 < g'(s), g"(s) > -C/r for s € [r,2r]. Then |V2T7(x)| < C/r if r < |x| <
2r, so

H (̂w(x))dx < ~ / £(z)da;.
3r r -/{^<l^l<2r}

Letting r —> oc and using (7.1), the right-hand side tends to zero. Thus |u| = 1,
and so the equation becomes Au = 0. Now the result follows from the standard
Liouville's Theorem. D

With this theorem we complete the proof of Theorem 6.1.

Theorem 7.1 Let u be a function solving

1 2

1 e2 '

on Too = R2 x (—oo,0] and satisfying in addition the estimates

\u\ < 1, \\E\\L-(Voo) < K, (7.3)

K for all t < 0, (7.4)
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a(t - 1;-M) := J Pi* - », l)E(y,t)dy < 17/2, (7.5)

where 2? := e7(u), 77 is tfhe number from Proposition 5.2, and n may be any
positive number.

Then u is constant.

Proof. 1. We may assume by reseating that c = 1.
For # > 0 , T < 0 s e t

H{R;T) := sup{a(t - R2;x,t)\x e R 2 , ^ (-oc,T]}

Then (7.5) states that
(7.6)

for all T < 0.
2. If there is some T < 0 for which

sup H(R;T)<rj, (7.7)

then for every x G R2, t < T, i? > 1 we have the estimate

and Proposition 5.2 impties that

Letting R -> 00, we find that £(z, t) = 0 for all x € R2, t < T. This impties that
u is constant on {t < T}, which in turn impties the conclusion of the lemma.

3. In order to demonstrate that (7.7) holds and complete the proof, we
assume that

for every T < 0, toward an eventual contradiction. We first claim that with
(7.6) this impties that for each T < 0, there exists some R{T) > 1 such that

:

To prove this, it suffices to show that for each T < 0, H(-,T) is locally
Lipschitz in [0,00). By the chain rule and (2.3), we have

±a(t-R2;x,t) < 2R jP{x-y,R2)\tH{y,t-R2)\2dy+C{R) JE{y,t-R2)dy,

where C(R) contains a factor of 2R from the chain rule and sup norms of
derivatives of p. One easily checks that C(R) may be taken to be continuous.
Now using estimate (6.8) with 7/ = 1 we get

I' \ut(y,t)\2dy < (
J J-0 s<t
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where we have used (2.3) in the last inequality. With (7.4) we find that

dR v ' ' } '

which implies that -^H(R,T) < C(R) for all T < 0.
4. From (7.4) it is clear that for each T < 0 and R > 0,

[a(t - i?2;x,t)|x € R2 ,t < T} = 0.

Using this fact and Step 3, we may thus choose xn € R2 , tn < —^ such that for
Rn := # ( - n ) > 1,

a ( t n - i ^ , x n , t n ) = 3r//4. (7.8)

Define

un(x,t) :=u{xn + Rnx,tn-{-Rlt), En{x,t) := e1/Rn(un)(x,t)

for (x,t) € Poo- Then rescaling as usual, we find that un solves

un,t -Aun + - s jCM 2 - l)«n = 0

with the estimates

II^(-,<)IILMR2)<C

and for any (x,t) G V^,

an(t-l;x,t) := Jp(x - y,l)En(y,t - l)dy

= a(i-R2
n;x,t)

< H(Rn;tn) = 77. (7.9)

Here (x, i) = (RnX -f xn, ii^t + *n), so that t < tn for t < 0. Also,

an(l;0,0) = a(Rn,zn,tn) = 377/4. (7.10)

5. Now (7.9) and Proposition 5.2 imply that

sup{£?B(x,t)|n > 1, (x,t) € V} < C < +00.

This shows that the hypotheses of the Compactness Lemma 6.1 are satisfied
by the sequence un, with cn := l/Rn < 1, so we may extract a subsequence
converging to a function u locally uniformly, with En —> E in L^CPoo)> The
strong convergence of En and (7.10) imply that

u is not constant. (7.11)
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Since en < 1, we only need to consider two cases:
Case (i): cn - 0 and E = \\Vu\2.
Then we show as in Step 5 of the proof of Theorem 6.1 that u is constant,

in contradiction to (7.11)
Case (ii): en - + 1 € (0,1] and E = ec-(t2).
In this case, by rescaling we obtain

/ / \un«\2dxdt= r
K2

since tn —• —oc as n —* oc. With Lemma 6.1 this shows that u solves the elliptic
Ginzburg-Landau system

and ||£(-,t)| |Li(R2) = H-EOIIL^R 2 ) < C. However, we have shown in Lemma
7.1 that that any such function must be constant, again contradicting (7.11).
D
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