
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



IO(\N\T
96- tot

Dynamics of Ginzburg-Landau
Vortices

Robert Leon Jerrard
University of Illinois

Halil Mete Soner
Carnegie Mellon University

Research Report No. 95-NA-018

September 1995

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



Carnegie Gallon University
Pittsburgh PA 152133090 TM40I



Dynamics of Ginzburg-Landau Vortices

Robert Leon Jerrard1

Department of Mathematics
University of Illinois

1409 West Green Street
Urbana, Illinois 61801, U.S.A.

Halil Mete Soner2

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

September, 1995

1Partially supported by the Army Research Office and the National Science Foun-
dation through the Center for Nonlinear Analysis and by the NSF grants DMS-
9200801.

2Partially supported by the Army Research Office and the National Science Foun-
dation through the Center for Nonlinear Analysis and by the NSF grants DMS-
9200801, DMS-9500940 and by the ARO grant DAAH04-95-1-0226.

University Ubrarfes
Unlverslf



 



1 Introduction

It is formally expected that, for a large class of Ginzburg-Landau type reac-
tion diffusion equations, the dynamics of the nodal set asymptotically depends
only on the local geometry of the nodal set. More interestingly, the asymp-
totic behavior of the solution is determined by the nodal set, thus dominating
the other properties of the solutions. In the case of scalar solutions, this phe-
nomenon is well understood for several canonical equations. Typically, the
solutions form sharp interfaces, called domain walls, and the time evolution of
these sets is governed by geometric equations. See for instance, [13], [1], [14]
and the references therein.

Neu [10] demonstrated this scenario for complex-valued solutions of a non-
linear Schrodinger equation and a Ginzburg-Landau type equation. By formal
asymptotics, he showed that the zeroes of these complex solutions, which he
calls vortices, persist in time, keeping their original winding number, and the
asymptotic vortex dynamics reduce to a set of ordinary differential equations
for the vortex positions. In particular, vortices with opposite sign attract each
other, while the ones with the same sign repel. His results were extended to
the full Ginzburg-Landau model by Peres & Rubinstein [11] and later by E [5].

The main goal heie is to rigorously study the asymptotics of the sequence
of solutions if considered by Neu [10] and E [5], in the limit t \ 0. Functions
u€ solve a Ginzburg-Landau type reaction diffusion system

(1.1) u\ - Au< = — (1 - |ue|2) i n f tx (0 ,oo )

and the boundary condition

(1.2) u'(x,t) = g(x), Wxi

where £1 is an open, bounded set in Tt2 and g is a given function with \g\ = 1.
Equation (1.1) is the gradient flow of the Ginzburg-Landau functional

(1.3) r(w) = rQ(w):

where, for 7l2 valued functions of ft, the energy density et(w) is given by

(1.4) e€(w):=hvw\2 + \w(w), W(w) = 1(1 - M2)2.
2 6 4

Recently, Bethuel, Brezis and Helein [3, 4] obtained a very detailed charac-
terization of the Ginzburg-Landau functional in the limit c J. 0. In particular,
they showed that, for any open subset O of ft2 and a w : O —> V? with |it;| = 1
on dO,
(1.5) Ib(w) > -K | deg(w; O)| | In e| - C,
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where C is a constant depending on O and the boundary values of w. Suppose
that d = deg(#; Q) > 0. Bethuel, Brezis and Helein also showed that

ird{IQ(W) : w = g on 80} = d7r|lne|

+ min{Wp(y) : y = {y\... ,yd) C J

where, as e j 0, |o(e)|/e —* 0 and Wg is the renormalized energy defined in
[4]: see §2, below. Moreover, the zeroes of the minimizers converge, along a
subsequence, to a minimizer of Wg. In [4], it is assumed that ft is star-shaped
and this restriction is later removed by Struwe [18], who also gave alternative
proofs for several results of [4]. Further results were obtained by Lin [8] and
Jerrard [6]. In particular, Jerrard [6] proved the lower energy bound (1.5)
for a smaller class of functions w, but with a constant C independent of the
boundary values of w. In our proof, we will use this version of (1.5) as stated
in Lemma 4.1, below.

Formal analyses indicate that, if initially ue has isolated vortices, then these
vortices move with a velocity of the order of line)""1. Therefore to obtain
nontrivial vortex dynamics, we rescale the time variable by a factor of |lne|
and set

v€(x,t) :=u€(x,\]n(e)\t).

Then v€ solves the boundary condition (1.2) and

(1.6) k€v\ - Ai;c = V— (1 - |t;€|2) in ft x (0, oc),

where

Our chief result, Theorem 2.1, is this: assume that initially there are M
isolated vortices with degree ±1 . Then, in the limit, these vortices persist
and solve a set of ordinary differential equations (2.10) as long as they remain
separated. The vortex equation (2.10) is, in fact, the gradient flow of the
renormalized energy Wg. Our key assumption is an energy upper bound:

(1.7) /

Then, by the standard energy estimate (3.4), this upper bound holds for all
later time.

Bauman, Chen, Phillips and Sternberg [2] obtained the first result in this
direction. They studied the large time asymptotics of (1.1) on 7£2, with e = 1
and showed that, as t —» oc, the solution converges to a point on the unit
circle. Rubinstein and Sternberg [12], studied the dynamics of one vortex



in the limit e | 0 under several a priori assumptions on the behavior of the
solution around the vortex. They proved that the speed.of the vortex, in the
original time scaling, is of order | In el"1. In particular, they assumed that, for
all time t, there is exactly one zero of u€(-,t) and the degree around this point
is equal to one. Later, Lin [9] studied the dynamics of \d\ vortices, where d
is the degree of the boundary data g. In this case, all vortices have the same
sign and Lin proved that, in the original time scaling, they move with a speed
of order | In e]""1. Our result differs from these in two key points. We do not
assume that M = |d|, and we rigorously derive the vortex equation.

One key step in the proof is the lower energy bound

/ ee(u
e(',t))(x)dx > 7TM \lne\ - C(t), Vt > 0,

Jn

so that the unbounded part of the upper and lower bounds agree. When
M = \d\* this lower bound follows from the stationary results. However, in the
general case, one needs to localize the estimates around each vortex. We prove
this lower bound by using the local stationary result of the first author and
a local regularity result which states that a uniform in e local integral bound
of the energy density implies a uniform pointwise estimate of the energy in a
slightly smaller region. This result, proved by the authors in [7], is stated in
Lemma 4.2. These two results imply the desired lower bound, as long as the
vortices stay isolated. Then, we show that the vortices remain separated by
the following energy estimate:

ffld/4 < + Jlne|

where Oc is an open set not containing the vortices,

dz, E<(x,t) := e€(v<(-,t))(x) = \ \Vv'(x,t)\2+W(v<(xA)).

and rj is a smooth, positive function which is equal to a quadratic function
around each vortex: see (3.5). This estimate with rj(x) = \x\2 was first used
in [2] and later in [12]. Our argument is similar to that of [12].

In Lemma 5.1 and 5.2, we combine all these to conclude that there are
vortices yl(t), depending continuously on t, such that, along a subsequence tn

M

t=i

where
v\" :=kefi

€
t
n.

In Lemmas 5.3, we show that away from the vortices v€n converges uniformly
to the a function v{x,t), which is explicitly defined in §2. Moreover, Etn also



converges to |Vi;|2/2, away from the vortices. Finally, this convergence result
and the energy identity (3.3), with an appropriately chosen test function, yield
the ordinary differential equation (2.10) satisfied by the vortices.



2 Main Result

We assume that initial data VQ := v((0,-) satisfies the following: there are M
distinct points {a\,..., a€

M} C ft and a constant c* satisfying: VQ = g on

(2.1) Ro := I jmm { mjn{ K - aj| >, mm{ dist(o?, dfi)} } > 0,

(2.2) ^ := degO&aSifcte)) G {-1.+1}, * = 1,...,M,

(2.3) s u p { E £ ( x , 0 ) : |x - a,£| > RQ/2, i = l,...,M, e e ( 0 , l ] } < c * ,

(2.4) i n f { K ( x , 0 ) | : \x - a\\ > RQ/2, VZ = 1 , . . . , M , C e (0, l ]> > | ,

(2.5) / E*{x,0)dx <

(2.6) |VS| < 1,

We further assume that
lim a\ =

exists for alJ i= 1 , . . . , M and

(2.7) vl(dx) := I

In view of (2.2) and (2.3),
M

(2.8) d := deg(^; dto) = deg(^; dto) = £ * .

The assumption (2.7) is not restrictive. Indeed it follows from the stationary
results stated in §4 and a slightly stronger version of (2.3).

There are initial data satisfying above hypotheses: see Remark 2.1, below.

We continue by introducing several functions. For 6 e TZ1 and f = (6, c) €
Tl2, let

£x
 := (-c,6), n(0) := (cos(0),sin(0)), f(0) := (n



and for a non-zero vector, x, let 6{x) be the multi-valued function satisfying

Note that, locally on 7l2 \ {0}, there are smooth, single-valued representatives
of #(•) and, moreover, each representative satisfies

For M distinct points y := {y 1 , . . . , yM} C ft, set

M

Since \VQ\ = \g\ = 1 on <9ft, for every y C fi there is, by (2.8), a single-valued
smooth function po defined on dfl satisfying

(2.9) n (<pQ + 6(x; y)) = ^ = g(x),

Let (/?(x) = (f(x]y) be the solution of

Aip = 0, in

and if = (/PO on

Finally, set

:= ^ min { mjn

and let y(t) := {y1^),• • • ,yM(t)} be the solution of

(2.10) | , - « ) = -

on (0,T0) with initial data y*(0) = a», where

Our chief result is the following:

Theorem 2.1 As e [ 0;

M
(2.11) i/t

c(dx) := KE'{X)t)dx - 7r^6{ y i ( t ) }(dx), Vi € [0,T0),



and ve converges to

uniformly on any compact subset of { (x, t) € Q x [0, TQ) : x ^ j/*(t) } . More-
over, there are zeroes, yh€(t), ofv€(-,t) such that

y\t) = lim y'^t), V*€[0,To).

A lengthy computation shows that the differential equation (2.10) can be
rewritten as

where W(y) = Wg(y) is the renormalized energy defined by Bethuel. Brezis
and Helein [4]: given y, let F(x) be the harmonic function satisfying

M (x -y^-n

where n is the unit, outward normal vector and gT is the tangential derivative.
Note that VF(x) = (Vy>(x; y ))x. On dSl, set

1=1

then, the renormalized energy is given by ([4, (47) page 21])

M1 r M

— I $ (g A gT) dHl - *£ d% F(y%
Z7r JdQ i=i

Remark 2.1 Given any sequence ac := {a^,... ,a^} there are functions VQ
satisfying (2.3)-(2.7) and the boundary condition (1.2). Indeed, let

M

and ipe be a smooth, single-valued function satisfying

Define

wrhere H : Tl1 —> [0,1] is any smooth, non-decreasing function with H(0) = 0
and i/(l) = 1.



Remark 2.2 At To, two vortices, say yM l and yM, with opposite sign collide
(i.e.

yM-\To) = yM(To) dMdM-i = - 1 ) .

Suppose that, at To, all other vortices are away from yM~l{T0) = yM(T0).
Then it is expected that these two vortices cancel each other and the remaining
vortices solve the differential equation obtained by deleting these two vortices.
Analysis of this cancellation is an interesting open question. The difficulty is
this: at the e level, the total energy is expected to decrease by 2TT | In c| at To.
Since in our analysis, it is crucial that the | In e\ part of the upper and lower
energy estimates agree, our proof fails after To.

A related question is to understand the break up of an initial vortices with
degree greater than one. It is expected that such vortices break up into several
degree one vortices and then solve an augmented differential equation. Our
energy type estimates of §3, in particular (3.5), show that, in the original time
scaling, this break up does not happen in finite time.



3 Energy Estimates

Let E€, /4 and k( be as in the Introduction. Then (1.6) gives

(3-1) El = 2

(3.2) VE€ = -k,f +d\v(a(),

where for i, j = 1,2,

a=l a=l

Let r]{x) be a smooth, positive function with Vrj(x) = 0 for x € d£l. As in
[7, §2], multiply (3.1) by 77, (3.2) by V77 and subtract the two identities. After
integrating by parts:

(3.3) j j rj df4 = -k€Jr) \v€
t\

2 dx + I In e\ J (z?2r?Vi;c • Vv€ - Ar?£6) dx.

Taking TJ = 1, the foregoing computation and (2.5) yield the standard energy
estimate

(3.4)/ E€(x,t)dx + kjl [ \v\\2dxds = / E€(x)0)dx < Mn\lne\ + c*.
Jn Jo Jn Jn

The energy estimate (3.3) with rj(x) = \x\2 was first used by Bauman, Chen,
Phillips and Steraberg [2j and later by Rubinstein and Sternberg [12]. We
modify the quadratic function in the following way. Let Ro be as in (2.1) and
choose 77 so that

V(x) = i\x-aZ\', xe

V(x) ^ Vo = j-Ro, x € O€ := Q \\JiBji0(al),

Vrj(x) = o, xe an,

II^IL * ^
Then Z)277 = / in (Ji -^Ho(ai) ^^d therefore

Moreover, for x G O e ,

D2r)Vv€ • W -



Hence

with an appropriate constant C, independent of e. We integrate:

(3.5) J rjdfil < J ijd/i* + | In e *

We close this section by stating pointwise estimates that follow from (2.6)
and the heat kernel representation of the solution ve (for details see [15, §3]) :

(3-6) K|<1, ellWIL + ̂ lbVlL <C
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4 Stationary Results and Regularity

In this section, we recall and summarize several technical results that will
used in the next section. The first result is a local lower bound for the energy
functional Jc. Bethuel, Brezis and Helein [4] studied the minimizers of V with
given boundary data. They obtained lower bounds and the exact asymptotic
behavior of the minimizers in star-shaped domains. Later, Struwe [18] removed
this restriction. Further results were obtained by Lin [8, 9] and Jerrard [6].
The following is a special case of the local lower bound proved by Jerrard [6].

Lemma 4.1 Let 0 < e < 1, t < R and w : &2R —* B\ be a continuously
differentiate function satisfying,

\Vw\ < —, deg(w]dBR) ^ 0, \w(x)\ > - V|x| € [R,2R].

Then there is a constant C{k\), depending only on k\, such that

e€(w) dx > 7r In ( — ) — C{k\).
B2R \ t J

Moreover, there exists x* € BR such that w(x*) = 0 and for every A G [e, R]

/ ee(w) dx > 7T In f — ) — C(k\).
JBX(X*) \ej

The following pointwise gradient estimate is proved by the authors in [7].

L e m m a 4.2 (Regularity) Let 0<e<l,e<R and u€ be a solution of (1.1)
in BR x (0,4i?2). Suppose that

(4.1) sup( / e€(u
€(-,t))dx : t£ [0,4-R2] } < h.

IJB2R )

Then there is a constant C{k\), depending only on k\, such that

^ V|x| <R,te [R2AR2].

Further assume that

e£(ue(-,0))(x)< kx \/\x\<2R.

Then

et(u
e(-,t))(x) < ^ V|x| <R,te [0,4R2].

11



The proof of the above theorem consists of two main steps: first, by a mono-
tonicity result of Struwe [16], we establish the above result for small k\ and
then we use a blow-up argument, similar to the one used by Struwe [17].

The following result uses the fact that the range of the limit function is
the circle. It is the key step in proving the convergence of v€ away from the
vortices. Our proof closely follows Lin [8, 9].

For y = {y\... ,yM} C ft, recall that

R(y) := - min { min{ \y* - y>\ }, min{dist(y\dft)

and, for {rl,...)rM} C (0,/?(y) Al] and r0 € [0,R(y) Al] , set

firo := { x e Q : dist(z,<9ft) > r0 } ,

r = min{ r\ : z = l , . . . , M } ,

In the following lemma, we consider a smooth function

satisfying the boundary data (1.2). We define di, Q(x) = 0(x;y), 6i(x) =
8(x - yl) as in §2 and assume that e € (0,1].

Lemma 4.3 Suppose that \w\ > 1/2 on O, and that there is a constant k,
independent ofr, satisfying

Mr M

(4.2) / e€{w)dx < 7T ^ | lnr i | + fc,
Jo i=i

(4.3) / ee{w)d7il(x)< \ , V t = l , . - . . , M ,

(4.4) / e€(w)dHl(x) < k.
JdQr0

Then, there is a single-valued, smooth function tp defined on O such that

(4.5) w(x) = \w(x)\n(ip(x) + 0(x)), x € O,

and
f 2 < yllnrl

Jo ~ r2

with a constant C depending only on k, R(y) and the boundary data g.

12



Proof. 1. Since \w\ > 1/2 on O, the definition of Q(x\y) implies that there
is a single-valued, smooth function ip defined on O, satisfying (4.5).

k.

Set p := \w\ so that, by (4.2) and (4.5),

r N 1

(4-6) / p2\j:\Ve\2 + Uv<p\2 + V \

Since 0 is harmonic in O, by integration by parts,

r r M r
/ v<p-ve= ^ve • n + y~ / ipve • n\

Jo T JanrQ T^\JdBrM)

where n and n* are, respectively, the outward, unit normal vectors of dQro

dBTi{tf). The definition of 0 yields

JdBTi

ni = 0,

and therefore, for any A,

/ [p-
JdBri(y')

i sup |V0-nl| sup \<fi-\\.
dBu(y>) dBri(y')

Fix i and choose

2-KTi

Then, on dB^y*),

Since \w\ > 1/2 on O, by (4.3) and (4.5),

lv> - A| < c
1/2

with an appropriate constant C. Since nl = —n^i),

M M i

V U \ x ) - n [X) = 2Lsd* Vc/fc(xj -ri {X) = — 7 vQfc -
fc=i fc=i

Therefore, on dBri(y
l),

C

\x-yK

13



which yields
M .

<c
with a constant C depending only on k, R{y) and g.

2. Since 0 is harmonic in O,

for any A. Choose

so that, by (4.4),

n = / fo> - A] V 6 • n
Jdn

< C sup |V0| /
anro Jdnro

< C.

Combine the previous two steps. The results is:

(4-7)

with a constant C depending only on fc, R(y) and g.

3. Set R* = R{y) A 1. The definition of 6 yields

M rR* r \

JO 2 ~~~ ̂ J Ju JdBriy*) 2L\

where C = 7rM|lni?*|. Substitute this and (4.7) into (4.6) and use the fact
that \w\ > 1/2 on O. The result is:

< I p2\h
JO LZ JO Z

M
^

14



Since

, t ) |<—, xeO,

we conclude using (4.2) that

15

V2 vMlnrl
<Ce-^- -.
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5 Proof of the Main theorem

We start by showing the localization of the energy.

Lemma 5.1 There are constants to > 0, C and functions

such ihatve(yi>t(t),t) = O and for any e € (0,1], t e [0,t0], Ae [t,Ro]

(5.1) ^(J3A(y*-e(t) ) > 7T In 0 ) - C, Vz = 1 , . . . , M.

Proof. Set
n\:={xeSl : \x-al\e(Ro,2Ro)}.

1. For e e (0,1], set

<e := sup{T > 0 : \ve{x,t)\ > 1/2, V(x,i) € £l\ x [0,T] }.

By assumption (2.4), te > 0. The continuity of v€, (2.2), and the properties of
the topological degree imply that

\deg(vt{;t);dBM)\ = l1 Vt<U, c € (0,1], i = 1,... ,M.

We apply Lemma 4.1 to w = v€(-,t) with R — RQ. The gradient estimate (3.6)
and Lemma 4.1 imply that for every t € [0, t£], e € (0,1], and i = 1,. . . , M
there exists

y^(t) e

satisfying vt(yi'€(t),t) = 0 and (5.1) for all A € [e,Ro\ with a constant C
indepenedent of e. Then the global energy estimate (3.4) yields

(5.2) i4({x : | x - y * ( t ) | > A , Vt = 1,... , M » < C + 7rMln(i?o/A),

for all t € [0,te], e€ (0,1], A€ [c.flo] and t = 1,... ,M. Set

T£ := sup{ T € [0,t£] : y^it) e Biio/aCoJ), Vt € [0,T], i = 1,... ,M }.

Since v'Cy^W.t) = 0, by (2.4), T( > 0 for all e e (0,1].

2. Let 77 be as in §3 and let O€ be as in (3.5). By taking A = Ro/2 in (5.2),
we get

< c, vt<re.
16



Then, by (3.5),

Jvdnt < Jvdul + C\lne\ f\c
s(O

()ds <

for all t < T£. Since, by (2.7),

lim ke / 77 dfi'o = 0,

there is a sequence c(e), such that, as e J. 0, c{t) —* 0 and

dti < [c(e) + Ct]\\nt\, V t < Te.

3. Suppose that T( < 00. Then we claim that |yi>£(T,) - a\\ > Ro/2 for some
i e {1,...,M}. Indeed for all* < T£ and i e {1 , . . . , M}, yi>£(t) e B«o/2(ot

f)
and, taking A = .Ro/4 in (5.2), we get

H\({x : |x - a\\ > (3/4)i2o, Vt = 1,...,M})

<l4({x: |x-»*••(*)!>

< C, V * < To t e (0,1].

By the regularity result Lemma 4.2 and (2.3), there is a constant C satisfying

E€(x,t)<C2, \/(x,t)eQ\x[0,Te), e 6(0,1].

In particuiar, in Q\ x [0,T€), W(t;€(x,t)) < C^e2 and therefore

|t;£0r,t)| > 1 - 2Ce, V(z,t) € «J x [0,7;).

Set ei = min{l, 1/(8C)} so that |^f(x,*)| > 3/4 for all e € (0,ci], (x,t) e
Q[ x [0,re). By the continuity of v\ t€ > T( and therefore ^ ' ' (TJ-oJI > Ro/2
for some i e { 1 , . . . , M}.

4. By the previous step,

and, by (5.1),

f * > c2| In e| - c3,

with appropriate constants c2 and C3. In view of Step 2,

[c(e) + CTe] I In e| > c 2 | l n e | - c 3 .

17



Choose e2 € (0, e{\ and t0 > 0 so that

[Cto + c(e)j | lne| < c 2 | l n e | - c 3 , '

for all e € (0, c2]. Therefore t0 < T€ and

yi>c(t) € Bao/ato) V t e [ 0 , t o ] , e€(0,c 2 ] , t = l , . . . , M .

In the foregoing argument we assumed that T€ < oo, however if T€ = oc, the
above conclusion is immediate.

5- Hence, (5.1) holds with 4 for all e G (0,e2]. However, by (2.4),

to := t0 A min{T€ : t € [c2,1] } > 0.

Let to be as in Lemma 5.1 and Q be a dense, countable subset of [0,to]. By
a diagonal argument, we choose a subsequence, tn [ 0, so that

(5.3) ^ W ^ J

exists for all t € Q and i € { 1 , . . . , M}. Set

vf(dx) := i/t
€n(dz) = fc€n £

€ n (z , t )dz,

so that as n —> ex), by (5.1) and (3.4),

M

(5.4) ^A^E^(t ) } , VteQ.

Lemma 5.2 For every i G { 1 , . . . , M}, yl(-) extends to a Holder continuous
function, with exponent 1/2, on [0,t0] and (5.4) holds for every t € [0,t0].
Moreover, yi>€n converges to yi uniformly on [0,to].

Proof. 1. Fix i and let (f>{x) be a smooth, positive function with compact
support in B^oa). Then for any t e Q,

<f>(yl(t)) = l im —

2. Since &v\ = k<E\x,t)dx, by (3.1),

18



and therefore, for 0 < 5 < t,

I<\>dv\- \ <\>dv\ < \ \ V M k J [* [ \Vv€\2dxdt) ( f t \v€
t\

2dxdt) .
J J \Js JQ / \Js JQ J

3. The energy estimate (3.4) yields

/ |Vt;c |2dx<C[|lne| + 1], Vt > 0,
JQ

f \v€
t\

2dxdt < |lnc| [ / E€{x,s)dx- [ Ec(x,t)dx\ .
JQ UQ JQ J

Using (5.1), with A = Ro, and the energy estimate, we conclude that

1 j \vt\2dxdt< C[|lne| + 1], V0 < 5 < t < t0.

and

4. Combine the previous two steps. The result is:

- j 4>dvl < C \\V(p\\x y/t^s, \/0<s<t<to,

and. by Step 1,

\ V T ^ ^ V 5 < i , s,teQ.

For any i € { 1 , . . . , M}, s < t, s>t G Q and 5 sufficiently close to £, there is
a smooth function </>, with compact support in BR0(ai)j satisfying:

4>{y\t)) = 2,

Hence for all 5 < t sufficiently close to t and s,t € Q

and therefore, y1 is a Holder continuous function on Q. We extend yl as a
Holder continuous function on [0,io]-

5. To prove the uniform convergence, let tn be a sequence in [0,i0]- Choose a
further subsequence Uk so that tnk and yly€nk(tnk) converge, respectively, to t
and yiy* for all i € { 1 , . . . , M}. Lemma 5.1 implies that, as k -+ oo,

Then, for any 5 < t , s € Q , i s { l , . . . , A / } and <f> as before,

W'*) - WOO) < c ||Vtfiu V^T,
and therefore j / l > * = y*(<). D
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Our next result is about the behavior of v€ away from the vortices. Let n,
tp(x;y) and &(x;y) be as in §3. For r e (0,/Jo], A € (0,1], set

r>A : = { ( x , t ) € Q r x [ 0 , t o ] : \ x - y i { t ) \ > X R o V z = l , . . . ,

The uniform convergence of yt>€n imply that, for sufficiently large n, Q™x C
Qr,A- Moreover, the energy estimate (5.2) and the regularity result Lemma 4.2
imply that

(5.5) sup Ee" < ^
Qr.A T

In particular, there is e(r, A) > 0 such that

a ,ACr , cne(0,c(r,A)],

where

Then, for en G (0,e(r, A)] there exists a single-valued, smooth function, (f€n :
QT,\ -* 72,1, satisfying

where ye(t) = {j/1>€(t),.. •, ?/M'e(^)}- Moreover, we may choose ipCn independent
of A, r.

Lemma 5.3 For A G (0,1/2], there are constants C > 0 and C(A) > 0 satis-
fying

I 2 C(A)en,

for every t € [0,t0], r € (0,i?o/2]; and en € (0,e(r, A)].

Proof. We suppress the subscript n in our notation and write t for tn.

1. Fix A € (0,1/2] and for z e { 1 , . . . , Af}, let

fc(i) = fc(M,e,A):=inf{r / E'{x,t)dHl{x) : r e [A2i?o, Ai?o] }.
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By (5.2) with A =

7 ( 0 := tx\{{x e Q:\x- y*(t)\ € [ A 2 ^ , XRo] '})

< C + 27rM|lnA|,

where C is a constant independent of A, e, i and t. The definition of k(i) yields,

Hence, k(i) < C* := 2nM + C/ ln2 and therefore there exists r* = ri(X,t, e) €
[X2RQ,\RQ] satisfying

The above argument was first used in this context by Struwe [18].

2. Set r0 = RQ/2 and fix A, t and c € (0, e(r0, A)]. Set

G£(x) = 0(*; ys(^)) «?(*) = 0(x - y'

and
0:={xenro :x<

The local lower bound (5.1) with A = ri5 and the energy estimate (3.4) yield

M

M

C + 7rM|lne| - n

M

Hence the hypotheses of Lemma 4.3 are satisfied and consequently,

/ |V^€ |2dx<C + C(A)e, t e (0,e(ro, A)],sup
t€[O,to]

with constants C(A), independent of e, and C, independent of e and A. Since
e(ro> A) < e(r, A) for all r < ro, and Qro,A(0 C O for all sufficiently small e,

sup / |V^c|2dx<C + C(A)e, c€(0,c(r,A)l.
t€[O,to] JQroA*)
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3. Since ftr \ Qro C QrtX(t) C T€{t) for t e (0, e(r, A)], on fir \ Qro

Hence
\Vve»\2}<C.

By redefining e(r, A), if necessary, we may assume that C(A)e(r, A) < C and
therefore
(5.6) / \V^\2dx < C,

for every t € [0,t0], r € (O.iZo], A € (0,1], and en € (0,c(r, A)].

We estimate the L2 norm of </?£n next. Given the gradient bound (5.6), it
will be enough to control tpin near the boundary, as in the following lemma.

Lemma 5.4 There are constants C > 0 and r0 > 0 satisfying

f \^(xtt)-ip(x-trr(t))\2dHHx) < C ( r + Hj),

for every t e [0,to], r € (0,r0], and en € (0,c(r, 1)].

Proof. We suppress the subscript n in our notation and write e for en. Fix

t€[0 , t o ] -

1. Let 5* := \dCt\ and p : [0,5*] -+ 5f2 be the arc length parametrization of
, i.e., \p'(s)\ = 1 and

Since 5fi is smooth, there is ro > 0 such that, for every r € [0,r0],

0flr = { p(s) - m(s) : se[0,s*] },

where n(5) is the unit outward normal to d£l.

2. Since
(5.7) sup { /xj(ft \ Qro) : t e [0,t0], e € (0,1] } < oo,

by a covering argument (see [4, §IV.l]), there are {s1 > e , . . . , s^'6} C [0, s*] and
constants C, N* satisfying

N€<N\

{xeSl\Qr0 : | v € (x , t ) |< l /2}c{p(s ) - rn (5 ) : r € [0,r0], 5 € 7C },
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where
n [0, **]•.

3. Fix r G (0,r0]. For e € (0, e(r, 1)], we extend ip€ to a smooth, single-valued
function on

fir>i U { (x, t) € H x [0, to] : x = p(s) - pn(s) for some 5 ^ F p € [0, r] }.

Moroever, we may choose <p€ so that ^€(x, t) = ip(x; y€{t)) for x e ^ f l and, as

> <p(x;y(t)),

uniformly in x €

Since ip(x;y€(t)) is smooth,

); y((t)) - ^(p(5) - rn(S); yf(t) )|2 ds < Cr2

and therefore
a<a + Cr2,

where

d : = 2 / | ^ (
J[0,s']\I'

4. For s ^ r, \v€(p(s) - rn(s),<)| > 1/2 and <^£(p(s) - rn(s),<) is defined.
Moreover, at (p(s) — rn(s),t)

\ < C[\

By (5.7),

(5.8) a < a + Cr2

- 2 r

< Cr f fQ
r{l + \Vv<(p(S)-

< Cr f [1 + |V/|2] dx + Cr2

Jfi\Qr0

< Cr.
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5. Since |/£ | < N*Ct, by (5.8), there is s e [0,s*] \ Ie such that

l¥>e(p(«) -rn(s),t) - <p(p(s) -rn{s);y€(t))\2 < Cr.

By (5.5), for any s € [0,s*]

\<pe(p{s) - rn(s),t) - <p(p(s) - rn(s)-y((t))\2

< j 2 + 2\ip€(p(s) - m{s),t) - <p(p(s) - m(s) ; ;

C
~ r2

Hence

2

D

- 2Again we may assume that e(r, l)r < r and therefore

(5.9) / I^^O-^xj^-C*) ) ! 2 ^ 1 ^) <

for ever>r i £ [0,<o^ r € (0, i?o], and en € (0, e(r, 1)]. By the Sobolev embedding
theorem, (5.6) and (5.9) yield

(5.10) / \^{X)t)\
2dx < C,

for every t e [0,t0], r € (0,/2o], A e (0,1] and en G (0,€(r, A)].

Set

Proposition 5.5 As n —̂  oo, i;Cn converges to

v(x,t) = n((^(x;y(t)) 4- 6 (

uniformly on compact subsets ofU. Moreover, |Vt?Cn|2 and 2£ € n converge to
\Vv\2 strongly in Ll

loc(U).

Proof. We suppress the subscript n in our notation and write e for tn.
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1. Let rm be any sequence tending to zero and set Qm := Qrm,rmi e(m) : =

m) and so forth. By (5.6) and (5.10),

(5.11) sup{ / ^(x
jQm{t)

te [0,<0], i € (0,e(m)], m = 1,2,...} < oo,

where (?m(£) is the t cross section of Qm. We use this estimate and (5.5) in
a diagonal argument to construct a subsequence, e* J, 0, and v? such that, for
every m,

^** _> y? strongly in L2(Qm),

in weak*L°°(Qm).

Since [/ = limQm, V is defined on U. In view of (5.11) ip extends to ft x [0, to]
and it satisfies

sup / \(p\2 + \Vp\2dx < oo.
t€[O,to] /n

Moreover, for every m,

t^(x,t) -^ v(x,t) := n(<p(x,t) + 6(x;y(t))) in L2(Qm),

and Vv€k converges to Vv in the weak* topology of L°°(Qm).

2. Fix m and recall that k€ = | In e| -1. We claim that ^p{x,i) = ^(x; y(t)) and
that ip€k converges to <p uniformly on Qm. Indeed, let £*—•£*€ (0?£o]« For all
k satisfying e^ < e(m), set

wk{x,t) := ^€fc(x,<fcCfc + t*), (x,£) € G^,

pfc(x,t) := |v€fc(x,t*;€jb +tk)l

where

and, for sufficiently large k,

Q*mx[-tl0)cGk
m,

Moreover, wk satisfies

u€k(x,t + tk\\ntk\) = pk(x,t)n(wh(x,t) + ek(x,t)),
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where u* is the solution of the Ginzburg-Landau equation (1.1) in the original
unsealed variables. Prom (1.1) we obtain

(5.12) {pkf wk - V • ((pfc)2 V(wk + ek)) = 0, in G,

and, by Step 3 of Lemma 5.2,

fk ( \u\k\2dxdt<C,
Jo Jn

with a constant C independent of k. Since pk > 1/2 on G^,

/° / \wtk + ek\2dxdt<C.
J-t*k JQm

From (5.11) and (5.5), we also know that

sup < / \wk\ + \Vwk\2dx > < oc,

and, by (5.5),

k
m

sup

Since, on Q*m x (—oc,0], 6fc is uniformly smooth in the x variable, the family
{wk + Ofc}£i1 is precompact in Cll^{Q*m x (—oo,0]). Moreover, as k —> oc, 0fc

uniformly converges to

e(x):=0(x;y(n)-
Hence there are a subsequence, denoted by k again, and a bounded function
w defined on Q x (—oo,0] such that for every m, wk converges uniformly to w
on every compact subset of Q*m x (—oo,0] and

sup / |u;|2 + |Vtt;|2(ix < oo, / / \wt\
2 dxdt < oc.

t<0 JO. J-oo JQ

Note that 0 is harmonic in U and, by (5.5), pk converges to one in H^iQ^ x
(—oc, 0)). We let k —• oc in (5.12) and conclude that w solves the heat equation
on Q*m x (-oc,0]. In view of our estimates, w is a solution in Q x (-oo,0].
Moreover, by (5.9),

Since, by definition, <p(x\y(t*)) is harmonic in fi, standard uniqueness results
for the heat equation imply that

w(x,t) = ^ (x ;y( f ) ) , (x,t) 6 ft x (-oo,0].
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This proves our claim that <p{x,t) = <p(x\y(t)) and that ip€k converges uni-
formly to {p. Moreover, since the limit is independent of.the subsequence, <pe

is convergent along the original sequence.

3. Let t€ —> t* be given. We claim that, for any m and T > 0,

m / ° / E€(x,tkc + t€)dxdt = T[ i \v(x,t*)\2dx.
no J-TJQM JQm(r) 2 1

JTJQM JQm(r) 2

This convergence result is very similar to the convergence results proved by
the authors [7, Lemma 6.1], so we only give the outline of its proof. For e
sufficiently small, set O = <5m(fe),

X)t) := E\x,tK + U) = ee(u
e(-,t + |lnc|t€))(x) (x,t) e fix [-T,0].

We compute:

(see [7] for details). Moreover, by the regularity result, there is an open set Q,
containing O x [— T, 0], so that E€ is bounded on Q, uniformly in e. Hence,

(5.13) El - AE€ + \D2ue\2 + ̂ p- < C,

and therefore
rO r

sup / / \D2u€\2dxdt < oc,
c J-T JO
lim / / — V ^ dx dt = 0.

These estimates, together with the uniform gradient and time derivative es-
timates of u€, imply the claimed convergence of the energy; see [7, Lemma
6.1].

4. To complete the proof of this lemma, it suffices to show that

(5.14) lim/ E€(x,t)dxdt= [ \\Vv\2dxdt.
*l° JQm JQm 2

For sufficiently small e, let M€ be the smallest integer greater than to | In e|,

and, for t e [t[ 1 , ^ € ] ,

g€(t) := |lne| / ' / E€(x,s)dxds
Jt\~l JQm(t[)

E\x,rkt + t[)dxdr.
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Since E€ is bounded in Qm,

lim / E€ dx dt = lim f° gt(t) dt.~
40 jQm do y0

For t e [(Mo], let l(t, e) be the smallest integer greater than t. Then, as e j 0,
**(*.«) _> t and, by Step 6,

Moreover, #€ is bounded by a constant K(m) independent of e. Therefore,
(5.14) follows from the dominated convergence theorem. D

Proof of Theorem 2.1. Let t0 be as in Lemma 5.1 and en, yl(t) be as in
(5.3). By (2.7), y*(0) = a» for each i. We will first show that y(-) is a solution
of (2.10) on [0,t0].

Fix i and t € [0,t0]. Without loss of generality, assume that i = 1 and

1. Let <p be a smooth function with V0 compactly supported in £2. Since
di/t

c = k,E€(x,t)dx, by (3.3),

4 / <t>dvl = - I (ke)
2(f>\vl\2+ f

dt Jo Jo Jo

Steps 1 and 3 of Lemma 5.2 yield,

[ j f , Vse[0,to].
7T Jt Jo

If the support of D2(f> does not include {yHT). • • • ,VM(T)} for all r e [t, s], by
Lemma 5.3,

(5.15) (/>(y1(5))-(/>(0) = ~ T /
7T Jt JO

2. For A € 7l2 and 6 e [0, Ho/4], let & = (;4 • x) H(|z|), where, for r > 0,

1, r e [0,6],

tf (r) := 2-r/6,

0, r > 26.

We calculate:

£>20« = (A-n)n®n rH"(r) + [n® A +A®n+(A-n)(I - n®n)] H'(
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where r = |x|, n = n(0) = x/r and ® is the tensor product. Although fa is not
smooth enough, by an approximation argument, we use'(5.15) with <j> = fa.
For all 5 sufficiently close to t, we find that

(5.16) = - [
7T Jt

where

IifaS) = \ I {\\Vv\2 + \Vvn\2)n- 2(Vv-n)Vvdx,
o JB26\B6 2

I2{8,6) = 'if (\Vv-n\2-\\X/v\2)ndH\x),
JdB26 2
f
JdB26

h(s,6) = -

Since the left hand side of (5.16) is independent of 6 and (5.16) holds for all
A ell2,

(5.17) y\s)-y1(t) = limi / ' [h(r,S) + I2(T,6) +h(r,6)]dr,
7T

for all 5 sufficiently close to t.

3. Recall that t(6) := (n(0))x and

M

Then, v = n($) and, for a = 1,2,

/ M

N ^
M

We evaluate the following functions at x = rn{6):

n
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\Vvn(0)\2 = E2(x),

2

(Vv • n{6)) - Vv =
a=l

where E\, E2 and £"3 are bounded functions. We use these identities in the
definition of h(s,6) :

2di r26 r27r 1
Ii(s,6) = k1(s,6)6+-± / / -(B(5,x)-n(tf))^)-

0 J6 J0 I

where fci(s,6) is bounded and

observe that (A(s,x))x — -B(s,x). Since for a fixed 7 G

A7Jo

as 6 i 0,

uniformly in 5 € [0,to]« A similar calculation shows that

/2(5,6) = fc2(s,«) « - 2di / ' ( 5 ( 5 , x) • n(0)

and therefore, as 6 I 0, his^S) —> —27rdi5(5,0), uniformly in 5 € [0,to]-
Similarly, as 6 j 0, 73(5,6) —• 7rdiB(5,0), uniformly in 5 G [0,to] Q11 ,̂ by
(5.17),

for all 5 sufficiently close to t. Since B is continuous,

4. In the previous steps, we have proven Theorem 2.1 on [0,to]- Since the
family of functions {u€(-, to)} satisfies the assumptions (2.2)-(2.7), we complete
the proof of the theorem by an iterative argument. D
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