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1 introduction
Consider the energy functional

for functions u : U —• Rfc, where U C Rfc is a bounded, open set and the energy
density E€(u) is given by

When k = 2 this is a well-known Ginzburg-Landau functional; associated el-
liptic, parabolic, and Schroedinger equations occur in a variety of contexts,
including simplified modek of superconductivity and superfluidity. For general
k, various systems of partial differential equations, such as (1.1) below, associ-
ated with the functional V seem to be natural model problems for the study of
codimension k pattern formation, see for example Jerrard and Soner [6].

A key feature in all of these systems of PDEs associated with the above
functional is the emergence of structures of codimension k characterized by
energy which scales like ln(l/e) as e —• 0 and by nonzero degree. In the study of
these problems, it is therefore essential to understand the relationship between
degree and energy. Such an understanding is the main focus of this paper.

Our basic estimate, found in Theorem 2.1, is a lower bound

I E1{u)dHk-1

dBr

for a Lipschitz function u with Brouwer degree deg(u]dBr) = d. After integra-
tion, this gives a lower bound for the energy on an annulus, which generalizes
a similar estimate for the case k = 2, established by Brezis, Merle, and Riviere
[2]-

Theorem 2.1 readily implies some specific instances of a general informal
principle:

For a set U containing an isolated vortex of u, I€{u\ U) > Cln(l /c) .

Here we use the term "vortex" to designate a zero of a function u : R* —• Rfc

about which u has nonzero degree. (The word "vortex", although widely used
in problems of this sort, is probably misleading in this context, since the objects
in question have little in common, in general, with fluid dynamical vortices.)

In the above statement, the condition that a vortex be in some sense isolated
is essential, as a pair consisting of two sufficiently nearby vortices of equal and
opposite degree need only have O(l) energy. One of our goals in this paper is to



develop a weak formulation of the condition that a vortex be "isolated", under
which the lower bounds of the desired sort are still valid. Thus, for example,
we show in Theorem 4.2 that the ln(l/e) lower bound holds for a function u on
a ball BR if the set of radii r < R for which deg(u; dBr) = 1 is large. This is
accomplished via a covering argument which is presented in Theorem 3.1, and
which yields bounds of the desired type as easy corollaries.

A refinement of the covering argument allows us under certain circumstances
not only to assert that a set contains a certain amount of energy, but also to
find a point in the set around which the energy is concentrated. This topic is
addressed in Section 5. These results and certain other of our lower bounds are
used in Jerrard and Soner [5] in an analysis of the asymptotic dynamics of point
vortices in R2 x [0,T), a problem inspired by the formal computations of Neu
[9] and others.

Finally, we derive several dynamic lower bounds. For example, in Theo-
rem 4.4 we consider a function ue € C([0,T], W1>oo(t7;Rfc)) which initially has
an isolated vortex at the origin, and we assume that the energy is uniformly
bounded in an annulus surrounding the origin. Under these circumstances, the
lower bound /€(uc(-,t)) < K\n(l/c) - C holds for all t € [0,T], and moreover
u€ continues to have an isolated vortex at the origin, in an appropriate sense.

These kinds of dynamic lower bounds are extremely easy to derive from our
basic estimate if one assumes, for example, that |uc(-,t)| > 1/2 in an annulus
surrounding the origin, for all t € [0,T]. The point here is that they are still
valid under weaker regularity assumptions.

Section 6 is devoted to establishing a dynamic lower bound in the case where
U C Rd, with d > A:, and uc(-, 0) has a (d—&)- dimensional manifold along which
each cross-section has a vortex-like structure.

This general dynamic lower bound, Theorem 6.1 is used in Jerrard and
Soner [6] as part of a proof that smooth codimension k mean curvature flow
is approximated in a certain sense by smooth solutions u€ : Kd —• Rfc of the
parabolic system

£^Det(u<) • Dxi< + I(|tt«|2 - l)u« = 0. (1.1)

In this context, the equation easily implies certain energy bounds, but pointwise
estimates showing that \u€\ > 1/2 away from the singular set seem not to be
available. Thus the results of this paper are exactly what is needed to show that
a vortex-like structure persists, despite the fact that one does not have enough
regularity to make strong statements about the degree around the singular set.

The estimate in Brezis, Merle, and Riviere [2] has played a fundamental role
in all subsequent analysis of Ginzburg-Landau vortices in 2 dimensions, as in
Bethuel, Brezis, and Helein [1], Struwe [11], and Lin [7], [8]. Our basic esti-
mate should similarly prove useful for the study of related questions in higher
dimensions. For example, the methods of Bethuel, Brezis, and Helein [1] and



Struwe [11] can be used in combination with our estimate to prove that min-
imizers u€ of Ie with fixed smooth boundary data of degree d > 0 converge
along a subsequence in W^(U \ {au..., aj}) as c - • 0 to a fc-harmonic map
u £ Wi*(U \ {o i , . . . , a j } ) . Our results here do not give much insight into
the harder problem of finding a "renormalized potential" in general dimensions
which would enable one to describe possible configurations of the limiting sin-
gular points o i , . . . , a j , as is done in Bethuel, Brezis, and Helein [1] for the
two-dimensional case.

We will generally use Jb to denote the dimension of the space in which we
work. In the final section, when we consider mappings between spaces of differ-
ent dimension, d will denote the dimension of the domain and k the dimension of
the range. We use the notation Br{y) = {x e Kk\\x - y\ < r} and Br = Br(0).
Also, we write

^ro,n(V) := Br,(y) \ Bro(y) for r0 < rx.

The volume of the unit ball in R* will be written a(ifc), so that Hk~l(dBi) =
ka(k).

All of our results relate to the behavior of the scaled energy density E€(u)
defined above. We will not explicitly indicate the dependence of Ec on u, when
no confusion can result. We also use the shorthand E to mean E1, the unsealed
energy density.

We define measures

df = E€(x)dx, dfi = E(x)dx.

Again, the dependence of these measures on the function u is not reflected in
our notation.

We note that all of our results remain valid, with obvious modifications in
the values of certain constants, for a wide class of energy densities, including
for example

^ = I|I>tt|* + i . ( |u | 2 - l ) 2 .

We state our results for the density E€ defined above because it has certain
analytic properties, as shown in Jerrard and Soner [6], which make it seem a
more natural object of study than, for example Ee. However, we do not use any
of these properties in this paper.

We will use a definition of the Brouwer degree of a function which is equiv-
alent to other definitions, though perhaps not as well-known. Given a function
u € WliOO(U; R*) such that |tx| > a > 0 on dU, we select a smooth nonnegative
function rj: R* —• R supported in Ba and satisfying



Then the degree of u is defined by

/ x)) det Du(x)dx.deg(u; dU) = /
Ju

One easily verifies that deg(tx; dU) is independent of the specific choice of the
function 77. If u = 0 at some point in dU then deg(u; dU) is undefined.

For more information on degree and related topics, see for example Fonseca
and Gangbo [4].

One property of the degree which is immediately evident from our definition
is that it is additive in the following sense: suppose that u is a function as
described above, and that the set U is partitioned into a collection of subsets
I7i, . . . , J7n, such that |u| is bounded away from zero on each dUi. Then

Also, it is well known that u must have a zero in any set V in which deg(tt; dV)
is well-defined and nonzero. Thus we may refine the above identity as follows:

de(7(u; 8U) = ] T deg(u; dVi). (1.2)
{i\u has a sero in f/»}

Acknowledgments
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2 The basic estimate
Theorem 2.1 Suppose thatR>\ and that u G Wl>°°(BR; Bx).

If deg(u; dBr) = d for some r G [1, R], then

LfdBr

where

A(r;M) = min | m t a ^ r '+Cr1(l-m)a

m€[O,l] r

on<f
fc/2

for v(x) = x/\x\. The constant C depends only on k and \\Du\\oo-

Remarks.

1. We estimate \Du\ from below by |Z}Tu|> where Dru is tangential part of
Du. Since u|aBr, the restriction of w to dBr, is Lipschitz, the tangential
gradient is defined H*'1 a.e., and |J9Tu| G L°°(dBr).

2. In fact, C depends only on the modulus of continuity of u. Thus the
estimate still holds, with changes in C, if for example u G W^^BR) n
Ca(BR) for some a > 0.

Proof. 1. Let m = minx€aBr |tx(x)|, and suppose that x is a point at which
the minimum is attained. If m < 1, then

Hx)\ < i ± ^ for all x G Bff{x)y

where a = 2|| j>u||̂ oo • Since we have assumed that r > 1, it is clear that

H^idBr fl Ba) > C~l(l - m)*-1.

Thus we easily estimate

(2.1)



2. In the next several steps, we show that

L \Du\kdHk~1 > —

By rescaling, it suffices to show that

\Du\kdHk-1 > mkK(k)d^ (2.2)L
for all u e W^°°(BuRk) such that \u\ > m on dBY and deg(u;dBx) = d.

In assuming that the deg(u; dB\) is well-defined, we have implicitly assumed
that m > 0. Near dB\ we may thus define

P=\u\, , - i .

Clearly p > m on dBu and |Du|2 = (?\Dv\2 + |£>p|2|t;|2, so we have

pul* > mfc|I>v|fc on dB^ (2.3)

3. We further define a function t>: Rfc —» B1 by

v(x) = M«(||).

We now claim that deg(t); dBx) = deg(tx; dBx) = d.
Indeed, this follows from the basic properties of degree. In particular,

deg(-]dU) is constant under homotopies H : U x [0,1] —• Rfc, as long as
0 & H(dU, s) for every s € [0,1]. Let

H(x, s) = (1 - s)u(x) + 5t)(x).

Then for x € 0Bi, s e [0,1] we have

H(x, s) = (1 - *)u{s) + |^yjn(x),

so that \H(x,s)\ = Kx) | ( l . - s) + s > m > 0. It follows that deg(ff(.,«);5B1)
is constant for 5 € [0,1]. This verifies the claim.

4. We now fix a smooth positive function rj with integral 1, supported in
Bi/2* We may assume that rf{x) = y(\x\). We have

t ) ( )



for a.e. x € B\. Thus

d = / det Dv(x)t}{v(x))dx
JB1

det Dv(^)rj(\x\)dx

J0 JdBr
 r

= / Vi^r*'1 f det Dv(x)dHk-1(x)dr
Jo JdBj

I
5. Let Jv denote the Jacobian oft), that is, Jv = (det DO DvT)1^2.
Also, for x € dBi let i/(x) = x/|x|, the outward unit normal at x, and let the

matrii P(x) be the projection onto the tangent space at x, i.e. P = id - v ® i/.
We may now define the tangential gradient of t), Drv = PDvP.
Let Ai(x) , . . . Afc-i(x) be the eigenvalues of DTv(x) corresponding to eigen-

vectors in the plane {y\y • i/(x) = 0}. Then the Jacobian of v on the manifold
dBi is given by JTv = |Ai A*-i| (see for example Simon [10], Chapter 2).

We claim that

det DO < Jv = JTv <{k- , l f c - l

on dBx.
The first inequality is obvious. To see the second, we compute the gradient

of v at a point x € dB\ to find that

Dv(x) = i/(x) <g> v(x) + P(x)Dv(x).

Since |v| = 1, we have

DvDvT = v ® i/ + PDvDvTP.

Because Pi/ = 0, we see that i/ is an eigenvector of DvDvT with eigenvalue 1.
The remaining k - 1 eigenvalues are precisely A?,... A|_j , where the {AjJ^1

are the eigenvalues of Drv identified above. Thus

(Jv)2 = det(DvDvT) = A2 x . . . x A j . x = (JTt))2.

Since t) = v on e)Bi, the final inequality in our claim is just the inequality
of the arithmetic and geometric means:

(A? x ... x Ati)1 '*"1 < ^ ( A ? + . . . + A*_x



6. Combining Steps 4 and 5 and using Holder's inequality we obtain

JdBi

a x f rack-Ik
^ \Drv\kdHk-l}j (M

This inequality together with (2.3) establishes the estimate (2.2), after rescaling
to a ball of radius r.

7. Combining estimates (2.1) and (2.2) we see that

/ E{u)dHk~l I
dBr JdBr

~ m€[O,l] \ r I

:= X(r;k,d).

where the constant C depends only on the dimension and on HDuHoo. One
easily verifies by calculus that

D

We deduce the following

Corollary 2.1 Suppose that u€ e W^iBfrBx) with \Du€\ < n/e. If\u€\ > 0
in the annulus A€yR and deg(ue; 8BR) = d, then

/c) - C{K,k).

Proof. We define u(x) := u€{ez) on BR/e, so that deg(u,dBr) = d for all
r € [1, R/e] and \Du\ < K. We may then employ a change of variables and
Theorem 2.1 to deduce that

E€(u€)dx = / E{u)dx
BR JBR/(

R/€

/

R/€ f
/ EWdH

y ) - C(fc, ic).



D
It is clear that the argument given above will yield analagous bounds for a

variety of functionate with arbitrary growth rates p > fc — 1. (If p < A: — 1 then
we can no longer use Holder's inequality as in Step 6 of the proof.) We record
two of these results here, as they might be of some interest.

First, if deg(ti;&Br) = d and \\Du\\oo < C, then

/
JdBr

where

Secondly, note that our arguments apply also to functions which are con-
strained to take values in the unit sphere. In this case, in fact, the estimates are
a little easier. So for example, if u € Wl*(U; S*"1), where U is a neighborhood
of dBr, and deg(u; dBr) = d, then

LIdBr V

Both K(k,p) and K(k,p) above are exactly given by

J QB\

where E is the appropriate energy density and v(x) = x/\x\. (Thus in particular
the estimates are always sharp if d = 1.)

10



3 A covering argument
In this section we present a covering argument which can be used to deduce
powerful and flexible lower bounds directly from the results of the previous
section. We start with a fact which is both elementary and obvious, but which
we state as a separate lemma, as we will refer to it several times.

Lemma 3.1 (Amalgamation) Given any finite collection of closed balls in
Rfc, say {Bi}^Llf we can find a collection {Bi}^ ofpairwise disjoint balls such
that

N N

diamBj = diam&i, and (3.1)

N < N, with strict inequality unless {Bi}^ is pairwise disjoint

Proof. Replace pairs of intersecting balls Biy Bj by larger single balls B such
that dianxB = diamBi + diamB2> continuing until a pairwise disjoint collection
is reached. This collection has the stated properties. D

In order to state the following theorem, we introduce some notation. Fix a
constant C* = C*(||.Dt/||oo) such that

fi(Bi(x)) > 4C* whenever u(x) = 0. (3.2)

Such a constant exists, because if \u(x)\ = 0 then |tx(x)| < 1/2 on a ball of
radius l/(2||£>u||oo). We now define

A(r)= / C*A\(s]k,l)ds.
Jo

From the definition we immediately see that A(-; A:, 1) is positive and nonincreas-
ing, so the same clearly holds for C* A A. If follows that

A(-) is subadditive and increasing.

It is also clear that

A(r) > K(k)]nr-C(\\Du\Ud). (3.3)

By integrating the conclusion of Theorem 2.1 as in Corollary 2.1 we see that

11



Lemma 3.2 Suppose that I < RQ < Rx, and thatue Wl'oo(BRl',Bi).
If | deg(u; dBr)\ > 1 for all r € [Ro, Ri] then

The covering argument given here will immediately yield a variety of lower
energy bounds.

Theorem 3.1 Let U C Rfc. Suppose that u € Wl'°°(U;Rk). Then we can find
a collection of balls {Bi}^ with radii r» > 1 such that

M

V)>A{ri)i (3.5)

and
deg(w; dBi) = 0 for all i such that B» C U. (3.6)

Also, the interiors of the balls are pairwise disjoint

Remarks.

1. Note that deg(u; #(£»)) is well-defined for each t such that J3» CC U as a
consequence of (3.4).

2. The definition of A contains constants which depend on Jb, H D u ^ , so the
lower energy estimate in (3.5) depends on these quantities.

3. By rescaling as in the proof of Corollary 2.1, we find that if tx* is a function
satisfying HZta l̂oo < /c/c, and if the above hypotheses are otherwise un-
changed, then we may find a collection of balls {£;} with pairwise disjoint
interiors, each having radius r̂  > €, satisfying (3.4), (3.6), and

/ic(Si n U) > Ac(r<) > K(k) ]nfa/c) - C{K, k).

Here Ac(r) := A(r/c). We will typically apply Theorem 3.1 in this scaled
form.

Proof, If u(x) ^ 0 in U, then the empty collection of balls has the stated
properties. So we assume that u(x) = 0 somewhere in V.

1. Let Z = \J{x€U\u(x)=o} Bi(x). Each component of Z has diameter at
least 2, so Z has a finite number of components, say Zi,...,Zjvf0. For each
i = 1 , . . . , Af0, let pi = (l/2)diamZi.

We now claim that

12



Let N = [pi/2] + 1 > pi/2.
Then, since Z» is connected and diamZ* = 2p» > 4(JV—1), we can find points

, . . . , i s in Zi such that |£j- — £*| > 4 if.; ^ i .
For each j = 1 , . . . , N, let yj be a point such that

C Zi.

Such points exist by the definition of Z^
If z is a point such that

for some k ^ j , then the triangle inequality implies that \XJ — ifc| < 4, which is
impossible. Thus B I ( J / J ) D -Bi(j/fc) consists of at most one point, and so

N

> 4iNTC* by (3.2),

> 2piC* by the definition of N.

2. For i = 1 , . . . , Mo, let Bf be the smallest ball containing Z». The radius
rf of Bi evidently satisfies

r? < diamZi = 2p{ < fi(Zi)/C*.

Applying the amalgamation lemma to this collection, we obtain a pairwise
disjoint collection {B}}^ such that

t= l

and for each j E {l , . . . ,Mi},

where rj is the radius of the ball Bj. Thus

ii{B)r\U) >

ZiCB)

= C*r). (3.7)

13



Thus (3.5) holds, by the definition of A.
Clearly the collection {B}} satisfies (3.4). If it also satisfies (3.6) then we

are finished.
3. If not, there is at least one ball, say B\ = Bri (zj), such that B{ C U and

\deg(u;dB{)\>l.Let

f = dist(z},0J7) A dist(zj,B\) A . . . A dist(z},B1^).

Then |u| > 0 in the interior of the annulus A ^ ( x j ) , so that by Lemma 3.2 we
deduce that

> A(f ) -A(rJ) + A(r}) = A(f).

Thus the collection

satisfies (3.5). It is clear that it also satisfies (3.4).
By oui choice of f, Bf(x\) intersects either dU or 9J3j for some j .
If the former holds and (3.6) is satisfied, we are finished. If (3.6) does not

hold but Bf(x\) fl dU ̂  0, we may find another ball, say B\ C U, on which u
has nonzero degree, and repeat the above step.

4. Otherwise, we apply the amalgamation lemma to the collection { B ? } ^
to find a pairwise disjoint collection of balls {Bf}^ with M3 < Mi, satisfying
(3.4) and (3.5). We then have

B?CB*

where we have used (3.1) and the subadditivity of A in the final inequality.
5. We continue in this fashion, expanding and amalgamating the balls as

necessary. All of the balls obtained, both after an expansion step and an amal-
gamation step, satisfy (3.4) and (3.5). The process can continue as long as (3.6)
remains unfulfilled. On the other hand, the process must eventually stop, as
each expansion step either decreases the number of balls violating (3.6) or else
leads to an amalgamation step, which then decreases the total number of balls.
Since we started with a finite number of balls, (3.6) must eventually be satisfied.
D
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4 Some lower energy bounds
The estimates presented in this section are for the most part easy consequences
of the results of the prevous section. It is convenient for applications to state
these in the scaled form, as discussed in Remark 3 following the statement of
Theorem 3.1.

Theorem 4.1 Let U C Rk. Suppose that u€ e W^°°(U;Rk) satisfies

deg(u';fl[/)#0, \\Du<\\ < */e,

and
\u€\>0 in{xeU\dist(x,dU)<R}. (4.1)

Then there is a constant C = C(/c, k) such that

Proof. Let {B»}££i be the collection of balls found in Theorem 3.1. Since
the degree of ue is nonzero, the set {u€ = 0} must be nonempty, and hence the
collection of balls is nonempty. Moreover, it is evident that at least one ball,
say 2?i, must have nonzero degree and must therefore intersect dU. Because
deg(u€;d(Bi n U)) / 0, u€ must have a zero in B\ n U. Now (4.1) guarantees
that B\ has radius at least R/2.

We immediately conclude that

> A(R/2e) > K(k)ln (^) - C(K,Jb).

The above theorem tells us nothing about a situation in which the function
u€ has a single isolated vortex away from dU but also has zeroes near dU. Such
a situation is covered in the following

Theorem 4.2 Suppose that u€ € W^°°(BRl;R
k) with \\Due\\oo < n/e, and

that
leb\{r e [0, JZiHdeg^;^) = 1}) > R

for some R< R\, where leb1 denotes 1-dimensional lebesgue measure. Then

f(BRl)>K(k)]nR/e-C(K,k).

15



Proof. 1. Let {Bi}^ be the collection of balls found in Theorem 3.1,
which as above must be nonempty, and let r» denote the radius of B*.

We claim first that

{r € [0, jyideg^flBr) = 1} C \J{r € [0,Ri]\dBr nft * 0}

Indeed, let p e [0, Ri] be a radius for which deg(uc; dBp) = 1. We need to show
that

for some i € {1 , . . . , M}. Indeed, if not then (3.4) implies that |ue| > 0 on
and

deg(u*;dBp)= Yl deg(u€; 95^ = 0,

again using (3.4) and (1.2). As this is impossible, our claim is verified.
2. We now have

R < leb1({r€[O,i?1]|deg(u€;aBr) = l})

€ [0,Ri]\8Br HB< # 0})

b^fr € [0, RfldBr n B, # 0})

<

Thus, using as usual the subadditivity of Ac,

= A(iJ/2e).

The next estimate is in very much the same spirit.

Theorem 4.3 Suppose that u€ € Wl'°°(BRl;R
k) with H i ^ U < */e, and

that for some Ro = Rx - R < Rx and a > 0,

fc6x({r £ [Ro,Ri]\6eg{u*;dBr) = m}) < (1 - a)R

holds for every integer m. Then

16



Proof. Apply Theorem 3.1 to the annulus ARQ^ to find a collection of
balls {Bi}^ with radii r».

1. We first claim that deg(u€;dBr) is well-defined and constant on the set

S = {re [Ro.RxWdBrHBi = 0 for all t = 1 , . . . , M } .

It is clear that the degree is well-defined in this set, since u€ is positive outside
of the balls {£»}.

Select two radii ri < Vi in set S. Using as before the additivity of the degree
and (3.6), we have

u€;0Bro) = deg(u€;&4ro,ri)

= 0.

This is our claim.
2. Prom Step 1 and the hypothesis it follows that

We may then argue as before that

aR < leb^lRo, Rx]\S)

Thus

Finally we present a dynamic lower bound. This proof is made very easy
by the availability of a measure-theoretic notion of an "isolated vortex" from
Theorems 4.2 and 4.3.

Let Bx = {x e R*||z| < 1} as usual, and let Q = Bxx [0,7*].

Theorem 4.4 Let ue € C([0,T]; W1^°(B1)) satisfy

\\DU€\\L-IQ) < *fa

deg(tx*(s 0); dBr) = 1 for all r € [1/2,1],

17



for some a > 0 and all t € [0,T]. Then for all e sufficiently small and for all
te [0,T] we have

lebH{r e [l/2,l]|deg(u<(.,t);0Br) = 1}) > 1/4 (4.2)

and
> K(k)]n(l/e) - C(/c, fc).

Proof. By Corollary 4.2, the estimate (4.2) implies the other conclusion of
the theorem, so it suffices to prove (4.2).

Suppose that (4.2) is false, and let t0 € (0,1] be the infimum of the set of
times t € [0>T] for which

leb^r G [l/2,l]|deg(n€(.,t);aBr) = 1}) < 1/4.

We claim that

leb^r e [l/2,l]|deg(u£(-,to);0£r) = i}) < 1/4,

for every integer i. Indeed, fix a radius r € [1/2,1] for which |u€(-,to)| > 0
on dBr, so that deg(u€(-,to);dBr) is defined. By continuity it follows that
|ue(-,t)| > 0 on dBr for all t close to t0, and hence that deg(ti€(-,to);0Br) is
constant for t near to- Thus for every integer i we have

{r|deg(«<(.,to);0Br) = i} C f | (J {r|deg(u<(-,t);0Br) = t}-
€>0 \t-to\<6

This readily implies that the function

t H-+ Ieb1({r £ [1/2,1]| deg(u€(«,t); dBr) = i}) is lower semicontinuous.
(4.3)

With the definition of to, this implies the claim.
From the claim and Corollary 4.3 we deduce that

fi€
t(A1/2A)>K(k)]n{l/e)-C,

which contradicts the hypothesized upper bound. Thus (4.2) holds. •
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5 Localization
In this section we prove a refinement of our covering theorem, which can be
used to show, not only that a set contains a certain amount of energy, but also
that one can find small sets on which that energy is concentrated.

Lemma 5.1 Let U C R* and suppose that u e W^°°(U;Rk). Let {£*}& be
the collection of balls found in Theorem 3.1, and let f = max, r*.

Then we can find a point x* € U such that u(x*) = 0 and

li(B*(xm)nU)>A(*/16)

for every a € [l,4f].

Before we give the proof of the lemma in the proof of Theorem 3.1, we
illustrate its utility by noting some consequences. As before, we state these
estimates in the scaled form.

Theorem 5.1 Under the hypotheses of Theorem 4-1, there exists a point x* €
{x € U\dist(u,dU > R)} such that u€(x*) = 0 and for every a e [e,B],

; 1) In (^) - C(K, *). (5.1)

Proof. Let {B»}££i be the collection of balls found in Theorem 3.1. We
have shown in the proof of Theorem 4.1 that at least one ball, say Bi, has radius
at least R/2.

Now using Lemma 5.1 we find a point x* e U satisfying (5.1), and such that
u€(x*) = 0. The latter identity and (4.1) imply that dist(x*, dU) > R. D

Theorem 5.2 Suppose that u€ satisfies the hypotheses of Theorem J^.2 and that,
in addition,

) + C

Then we may find a point x* € BRX such that u(x*) = 0 and

for every a € [c, R/2].

Proof. 1. Let {B»}jli be the collection of balls found in Theorem 3.1, and
let r» denote the radius of JB». We have shown in the proof of Theorem 4.2 that
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We claim that the new hypothesis implies that r̂  > R/S for some t. If not,
we may assume that rx + . . . + rm > R/8 and rm+i + . . . + rM > R/8 for some
me {1, . . . ,M}. Then

M

m+1

which is impossible if e is small enough.
Now the desired conclusion follows from Lemma 5.1. D

Remark. It is clear that we can similarly strengthen the other lower bounds
which are based on Theorem 3.1.

Proof of Lemma 5.1. We use the notation from the proof of Theorem 3.1,
so that rj and Xj will denote the radius and the center, respectively, of the ball

1. First we establish the following
Claim: for any a € [0,f], we can find a point x(a) such that

)) )>A(«r/2). (5.2)

and
u(z) = 0 for some x € Ba(x(a)). (5.3)

As in Step 1 of the proof of Theorem 3.1, we start by constructing the set

Bx(x).

with connected components £
If diamZj > a for some t, take x(a) such that diam(Ba(x(a)) n Z») > a.

Exactly as in Step 1 of the proof of Theorem 3.1, we may estimate /i(Ba(x(a)) n
Zi by finding a sufficiently large number of disjoint balls of radius 1 contained
in the given set. This gives

> C*diam{B0(x(a))nZi) > A(tr/2),

which is (5.2). It is clear that in this case (5.3) holds.
2. If dizmZi < a for all t, let Bf be the smallest ball containing Z^ We now

proceed as in the proof of the previous theorem, alternately amalgamating and
expanding balls to obtain collections which at each level satisfy (3.4) and (3.5).
(In all of the following cases, the ball Bo(x(a)) that we construct must contain
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some ball B?, so that (5.3) will hold when we are finished.) Since by hypothesis
this procedure eventually yields a ball of radius greater than a, we may define

i = inf{ i> l\r) > a/2 for some j = 1 , . . . ,MJ .

If rj € [cr/2, a] for some j , then for x(a) = xj we have

tiB.(x(o)) > M(BJ) > A(rj) > A(<r/2).
3. Otherwise, we consider two possibilities.
Case 1: The collection {Bj} was obtained from {Bj"1} by expansion;

Case 2: The collection {Bj} was obtained from {B*""1} by amalgamation.
If Case 1 holds, then (recalling the proof of Theorem 3.1) there is some ball,

say BJ, such that

with u satisfying the hypotheses of Lemma 3.2 on the annulus A j_i Ax\) and

hence also on the smaller annulus A ?_i (x\). Thus

4 1
 V(*5)) > A(CT).

So the claim holds with x(a) = x\.
4. We now consider Case 2. In this case we can find a ball, say Bj , which

was formed by amalgamating balls, say B*""1, j = 1 , . . . , m for some integer m.
We recall how the amalgamation procedure works: we may assume that

The first Step in the procedure is to select a ball B2 containing BJ"1 U BJ""1

and with radius f2 = rj"1 -f rj""1. Without loss of generality,

B2nBi-l*9,
and so we select a ball B3 D B2 U B^'1 with the appropriate radius. This

process continues until we arrive at Bm = B{, which is finally disjoint from the

balls in the collection {B]-1}"^^.

Note that rj"1 < a/2 for all j , so clearly we may find some integer j such

that the ball Bj- has radius fj- € [<r/2,o-]. Let x(a) be any point such that

Bj C Ba(x{a)). Then, using as before the subadditivity of A,

• = 1

> A(fj)

> A(«r/2).
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(If i = 1, then the first inequality above has to be replaced by fi(Ba(x((T))) >

J2i=i n(Zi), since the balls {B?} need not be disjoint. Everything else however
works without change.) This establishes the claim from Step 1.

5. Now using the claim we may find a sequence of points z» = x(f/2*), for
t = 1 , . . . , j such that 1 < f/2j < 2, and

for each i = 1 , . . . , j . It is not hard to see that we may take Zi+i G Bf/
Let x* be a point in Bf/2j such that u(x*) = 0. Then we have

for every t, so that B?/2i(xi) C Bf/2i-*(x*). Given a e [l,4f] we may find i < j
such that
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6 Containment of vortex submanifolds
In this section, we establish a containment result analagous to that of the previ-
ous section, except that now we are interested in functions u€: Rd x [0, T] —• R*,
with d>k. We will assume that u€ initially has a (d — k) dimensional manifold
along which each ^-dimensional cross-section has a vortex-like structure. Then
we show as above that this structure persists if we assume appropriate bounds
on the energy n€ in a tube surrounding the vortex submanifold.

In order to make use of the notion of degree, we need to consider maps
between spaces of equal dimension. Thus the proof works by filling up U C Rd

in some appropriate way with fc-dimensional submanifolds on which the degree
of u€ can be defined and our earlier estimates can be used.

We consider the simplest possible geometry: our submanifold will be the
unit cube in Rd~k. More general situations can be reduced to this one by a
change of coordinates.

As usual, Bp denotes a ball of radius p in R*. It is also convenient to define
K = [0, l ] d ~* , and U = B^ x K C Rd for some arbitrary a > 0. We let
denote the tube Aa^ x K.

We denote typical points in B±o and K as x and y respectively.
We will use the notation

m'(y,t) = leb\{r G [a,2a]|deg(tx€(.,y,t);0Br) = 1}),

We may think of Vf as the subset of points in K at which the cross-section at
time t exhibits an isolated vortex, in a weak sense.

Theorem 6.1 Let u€ € C([0,T];H^1'oo(J7;Rfc)) with\\Du€\\ < n/e, and assume
that

for ally eK, re [a, 4a], and that

V\{TOM) < K (6.1)

for all t e [0,T]. Then

and
limrof |Ine\~Vt{B*, xK)> K(k). (6.3)
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Proof. 1. First note that (6.3) follows from (6.2), Theorem 4.2, and Fubini's
theorem.

We assume, towards an eventual contradiction, that (6.2) does not hold, i.e.
that there exist sequences cn —• 0, sn G [0, T] such that

Hd-k(V£)<l-a<l.

We may assume that a < 1/2.
Suppose that y is a point in Vt

€, so that m€(y,t) > a/2. We have seen in
(4.3) that me(y, •) is lower semicontinuous. Consequently, it is clear that y G V£
for all s sufficiently close to t. Hence the function

t ~ Hd~k(Vt
€)

is lower semicontinuous. It follows that if we define

tn = inf{t G [0yT)\Hd~k(Vt
€») < 1 - a},

thenHd-k(V£)<l-a.
2. We also claim that for n large enough,

Indeed, consider the set

B<tn »<t<tn

The definition of tn implies that Hd~k(W) > 1 - a. Also, for any y G W, there
is a sequence s* —»tn such that y G V/fc

n, and so we deduce that for any integer

liminf leb\{r G [a,2a]|deg(uc"(-,i/,t);aBr) = j } ) < a/2.

Again using lower semicontinuity, this implies that

lebx({r € [a,2<7]\deg(u"(;y,tn);dBr)=j}) < a/2,

for y G W,ji ^ 1. If in addition y & V£", then the same inequality holds for
j = 1, and Theorem 4.3 implies that

£<" (x, y, t)dHk(x) > K{k) ln(<r/2e) - C.

Thus by (6.1) and Fubini's theorem,

C > f f E<"(x,y,t)dHk{x)dH<l-k{y)

> Hd-"(W\V£)(K(k)]n(Ve)-C).
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Therefore
lim Hd'k(Vt

€n) > Hd~k(W) > 1 - a.

Since a < 1/2, this implies our claim.
3. We have shown so far that

According to Lemma 6.1, to be proven below, this implies that

an obvious contradiction to (6.1) for c sufficiently small. Thus we have estab-
lished the theorem. O

We now prove the lemma used above. The "time" variable does not play
any role here, so we may work on U = B^ x K. We accordingly modify our
earlier notation in the obvious way:

m"(y) = lebx({r € [<7,2<7]|deg(U<(-,j,);3Br) = 1}),

V' = {y6 K\m<(y) > a/2}.

We also define We = K \ V.

As remarked before, me(-) is lower semicontinuous, so V* is open.

Lemma 6.1 Let ue € W1'oo(U;Rk) with \\Du(\\ < n/e. If

a < Hd~k(Ve) < 1 - a (6.4)

for some 0 < a < 1/2, then

1 - C 7 , (6.5)

1. We first establish (6.5) under the assumption that d = k + 1, so that
K = [0,1] C R~ Later we will use this to establish the general case.

For y e [0,1], let x*(l/) = 1 if y € Ve and 0 otherwise. Condition (6.4)
implies that we may find a point y € [0,1] such that

We may assume without any loss that y < 1/2. (Otherwise we may achieve this
by the change of variables z *-+ (1/2 — z).) Then

1 = l - i / ~ a / 2 > a / 2 .
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2. Let 7 = a/2 A 2a, and for y < y define

p(y)= [\*dHl. (6.6)
Jy

Note that p(0) > 7, p(y) = 0, and p(-) is nonincreasing. It follows that p(-) has
a unique right continuous inverse a : [0,7] —> [0,y]. (We specify that o(-) is
right continuous only to guarantee that it is uniquely defined; we will not make
any further use of this property.)

Similarly, there is a unique right continuous function 6 : [0,7] -• [y, 1] satis-
fying the identity

Jy

if)

(1 - X
€)dHl for all p € [0,7]. (6.7)

Since W€ is closed, it has at most countably many components, and the
function p(-) defined in (6.6) is constant on each component of W€. Thus the
set {p e [0,7]|a(p) € W€} is at most countable. Similar reasoning applies to the
set {p € [0,7]|6(p) € F c } , so we may find a set R = {ri ,r 2 , . . . } C [0,7] which
is at most countable, such that

a(p) € V€
y b(p) eW< for all p € [0,7] \ #•

In particular, it is clear that a(-) and b(-) are continuous away from R.
We may also assume that 0 = r0 < r% < r2 <
3. Suppose that r» < "p < r i+i for some t, so that b(p) € W€ for all p near p.

Using (6.7) we have

for all h sufficiently small. Thus V = 1, and similarly 0! = — 1, on [0,7] \ R.
For each p € [0,7] we now define the set

Prom the definitions of a(-) and 6(-) we readily deduce that if Pi > P2, then

o(/>2) - a(pi) > pi - P2 and 6(pi) - 6(p2) > pi - P2.

This immediately implies that Sp ^ 0 and that

i fp i<P2 .

We moreover claim that 5P is constant in each interval (r^ri+i). Indeed, this
is clear from the fact that within any such interval, a' = — 1 and V = 1. Thus
the set S* := Sp for all p € (ri,r i+1) is well-defined.
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In fact, because we have taken a and 6 to be right continuous, 5* = Sp for

4. We define functions /» : U —> R by fi(x, y) = dist((x, y), Sl), and for each
[0>7] we define a fc-dimensional manifold

M> = {(x,i/)

is a smooth cylinder which contains the disks B^ x {<*(/>)} and B^ x
on its two ends. Since 7 < 2cr, Af p C tf for all p < 7. The fact that the sets S '
are increasing implies that

frl(Pi)n f^iPj) = * whenever i > j and p» > pi.

In particular, Mpl and MP2 are disjoint whenever pi^ P2>
The essential point, informally, is that the cross-section at a(p) contains a

vortex, whereas that at b(p) does not. As a consequence of this fact, we have
the following:

/ E€(x)dHk(x) > C~l In i - C. (6.8)/
J

We will establish this estimate in Lemma 6.2.
5. In the following computation we apply Federer's coarea formula (see for

example Chapter 3 of Evans and Gariepy [3]) to integrate over the manifolds
Mp, which are precisely level sets of the functions /*. Recall that the Jacobian
Jf of a scalar function / is simply given by Jf = \Df\. In particular, J/» s 1
for all t, and so we may integrate over level sets of ft without introducing any
correction. Thus

inf /
€[O,7] JTo

> 7 inf / ETdH*
€ [ O ] J

by (6.8). This is (6.5) in the case d = * + 1.
6. Now suppose that d > k is arbitrary and that (6.4) is satisfied. We will

establish (6.5) by reducing this situation to the case d = k + 1. In order to do
so, we are forced to introduce more notation.

For t = 1 , . . . , d - *, let

*iK = {ye K\Vi = 0},
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where y» is the tth component of y. Similarly, for any / € Lx(K)y define
*J € L^K) by

JoJo
For any integer t € { 1 , . . . , d - k} and fi € (0,1/2) we define the set

Slj = {y Z*iK\(3 <*iX
€ <l- P).

We will prove below in Lemma 6.3 that (6.4) implies that there exists some
P = p(a) > 0 such that

for some i € { 1 , . . . , d - k}. Note that if y G 5/^ then u€ (restricted to the set

B40 x *rl(y)) s a t i s f i e s (64) with d = A: + 1 and a replaced by /?. Thus we may
use (6.5) to conclude that

L - 1
£J"ndlin^* > C In C

/A<y,4«rXir~1(y) e

if y € S^p. Using (6.9) and Fubini's theorem, we compute

/ E'dx > f (f E<dHk+l)dHd~k-1(y)

Thus (6.5) holds for general d > k. D

Finally we turn our attention to the two lemmas used in the proof of Lemma
6.1.

Lemma 6.2 Estimate (6.8) holds.

Proof. 1. We will use the notation M*M = Mp n TaM.
We define a diffeomorphism 9 between M^^ and an annulus in R*:
First, for (x, y) G Mp let d(x, y) denote the geodesic distance in Mp between

(x,y) and the point (0,o(p)). Then for (x,j/), we define *(x,y) = d(x,y)x/|x|.
Note that * maps circles in M^^ of the form dBs x {y} onto circles in R*

in a way that preserves distances in the direction perpendicular to these circles.
The definition of * makes sense at all points in Mp except for (0, b(p)). It

is clear that for (x,o(p)) G B2a x {a(p)} we have
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It is easy to see that d{x,y) < 1 4- 8a for all (x,y) € Mp and all Mp of
the form constructed above, and |x| > a on M^^. Thus all functions * of the
given form are Lipschitz on Af£f4a U (Ba x {a(p)})} with a Lipschitz constant
depending only on a.

2. Let R = d(z, y) for (z, y) € dBa x {6(p)}. * is then a diffeomorphism of
Mp

aM U (Ba x {a(/>)}) onto BR.
We may thus define v€: BR -> R* by v€ = u€ o *~ 1 .
Define

5 a = {r € [cr,2a]|deg(txc(.,a(p));aSr) = 1}.

Recall that a(p) G Ve by construction, so Ieb1(5o) > ^/2 . Moreover, for r € Sa

and x 6 B r we have vc(x) = wc(*"1(x)) = «c(x,a(p)) and hence

deg(v*idBr) = deg(ti€(.,a(p));aBr) = 1.

Thus
leb1 ({r € [a, i?]| deg(t;c; 5Br) = 1}) > a/2.

3. We claim in addition that

leb1 ({r € [<r,ii]|deg(t;*;fl£r) # 1}) > a/2.

To see this, let

Sb = {r € [a, 2<r]| degCu'C-, 6(p)); 5S r ) ji 1}.

We will also abuse notation to write

*(5 6 ) - {s e [ajR]\dBa = * (9B r x {6(p)» for some r e 5 6 } .

Because b(p) £ Vc and $ preserves distances in the radial direction, we have
1 1

Fix s e * (5 6 ) , with r e Sb such that dBa = * ( a 5 r x {b(p)}) . Prom the
definitions of v€ and * we see that for x e dBsy

«<(x) = v'(s±) = t i ' C * " 1 ^ ^

Because the degree of a function depends only on its boundary values, we deduce
that

deg(v*;dBs) =

This proves the claim.
4. Since \D*\ < C(<r), we see that C-^Du"^ < ||Dve||ao <

Thus we may use Theorem 4.3 to deduce that

£7e(t;e)dx > *"(*:) ln ( - ) - C.
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Again using the fact that $ is Lipschitz, we immediately deduce that

E€(u€)dHk > C~l ln(~) - C.

One last lemma remains. The proof is not hard, but the notation is extremely
awkward.

Lemma 6.3 Let f e L°°(K) with 0 < / < 1 a.e., and suppose that

/ [
K

for some a < 1/2. Then there exists /? = /?(a,d - k) > 0 such that

Hd-k~l ({x e *iK\0 < mf < 1 - /?}) > /?.

for some i = 1, . . . , d — fc.

Remark. Applying this lemma to / = x6 yields (6.9).

Proof. 1. We write d — k = n, so that K = [0, l ] n , and we prove the lemma
by induction on n.

If n = 1 the conclusion is obvious, with /?(a, 1) = a.
For the induction step we will need to assume that the result holds for n = 2,

so we establish this case independently. For /? = /?(a, 2) to be chosen, define

i = 1,2. We assume that H1^) < fi, and we must show that H1{S2) > /?.
2. We further define sets

As TXK = Wi U Si U Vi, we have

Also, from the definitions we immediately see that

0 < /
J
/ wf <
w1
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0 < / nJdH1 < (1 - fiHHSi) < 0(1 - 0),
Jsl

(1 - 0)H\Vx) < ( *xfdHl < H1^).

These imply that

where the final inequality holds whenever 0 < 1 — tf, which we may take to be
the case.

3. For any A\ C TC\K and y € ^K, we let

Then by Fubini's Theorem,

Also, for each y £ n2K, v%(Vx) < Hl{Vx) < tf + /?. Define the set

An obvious estimate gives

(V^dH^y) < (t? + P)Hl{Gv) +

With the above estimates, this implies that

Hl{Gv) > 2/3.

4. It is clear that

for all y e n^/f, and that

These two inequalities imply that Hx(Gw) ^ 2/3, where

Gw ~ {y € *2K\0 < ul(Wx) < Z0}.

5. Since -ffx(5i) < /? by assumption, it is obvious that 0 < v%(Si) < /3. Note
also that
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Thus for y € Gy H Gw we have

t9-8 /?< *2f(y) < t? + 5/?.

Moreover, Steps 4 and 5 imply that Hl(Gy H GHO > 1/3. If we now take /?
small enough that

p < i? - 8£, tf + 5/? < 1 - /?, 0 < 1/3,

then the lemma holds for n = 2. Note that /? can be chosen uniformly for all
i? € [a, 1 - a], so we may write /? = /?(a, 2).

6. We now suppose that the lemma holds for 1,2, . . . , n — 1, with n > 3, and
we set K = [0, l ] n .

Given / : K —• [0,1] we may apply the induction hypothesis to it\f : ̂ \K —•
[0,1] to find some t € { 2 , . . . , n} for which

where Su = {y € Tr^ilf |̂ 3 < TT̂ TTI/ < 1 — /?}. We may assume that i = 2.
For j/ = (0,0,y3,...,J/n) € 52i, define / y : [0,l]2 — [0,1] by / y (xi ,x 2 ) =
!,X2,j/3,...,yn). Then

fy(xlyx2) dxx dx2 := t?(j/) G [/?, 1 - ^]

by definition of S î- Applying the induction hypothesis to fy for each y € £21,
we have

H\SiM(y))>m2)~-p, (6.10)

where i(y) = 1 or 2 and

*(»)(») = {* € x i (y )[0,1]2 |^ < *i{y)fv < 1 - ? } . (6.11)

7. For i = 1,2, define 5 ^ = {y e S2i\i(y) = j } . Since Hn~2(S21) > p and

^ (6.12)

for j = 1 or j = 2. We may as well assume that the former holds.
Let

£ = {y = (0,y2, • • •,!/„) e xiirtay e Sj1^ (o,y2) e

We deduce from (6.10) and (6.12) that

JT-^E) = / J5r1({*2€l0,l]|(0,x2)€5i(»)})(«r1(a;a)d£r-2(y)
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Moreover, for y e £ , *2y has the form (0,0,j/3,. . . , i /n), «ad 8° fn2y &
defined. For any 5 € [0,1], by definition /(5,y2 , . - . , ! /n) = /tr2y(«»2/2), so (6.11)
gives

for y € E. The last two facts immediately imply that the conculsion of the
lemma holds for /?(a, n) = /?/?/2. D
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