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Remarks on the Homogenization Method in Optimal Design Problems
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Abstract: The method of Homogenization for problems of Optimal Design, developed by F. MURAT and
the author, is recalled. It is shown how to avoid the characterization of effective properties of mixtures for
a general functional that does not involve gradients.

History of the subject

In the early 70s, while Francois MURAT was working on some academic problems of optimization that
had been proposed by Jacques-Louis LIONS [1], he found that a few of them had no solution [2]. His results
were quite unexpected for me, and as we were sharing an office in Jussieu in those days, we had many
occasions to discuss both his original proof and the various generalizations that he had then obtained [3],
and the subject was so fascinating that it marked the beginning of a long and fruitful collaboration, although
many of our results have been only partially published (in the sequel I will use "we" to mean F. MURAT and
myself). Essentially the initial problem was to minimize

J(o)= / \u(x)-z(x)\2dx, (1)
Jo

where

~~7~(arf") +au = f in (0,I),ti€#o(0>£)> (2)

z 6 L2(0,L) being given, and

aeA={a£ L°°(0,L),a < a < f3 a.e. in (0,1)}. (3)

F. MURAT was trying to apply the direct method of the Calculus of Variations, and he noticed that if a

sequence an € A is such that an —
fc a+ in L°°(0yL) weak • and — in L°°(0,L) weak *, then the

an a .
corresponding sequence of solutions un of (2) converges in HQ(0,L) weak to the solution tioo of

d ( diioQ \

dx V dx /

and

J(an)-+J(a_,a+)= / |uoo(x) - z(x)\2dx. (5)
Jo

He constructed then a particular sequence with a- < a+, defined z = UQO, implying then inf J(a) = 0,

and checked that it was impossible to have it = z in (2) for any a G A, by considering (2) as a differential
equation for a, which had no solution staying between a and /? in the interval (0, L) for the choice that he
had made.

We were naturally led to characterize all the possible pairs (a-,a+) and more generally we proved that
if a sequence U^ of measurable functions from an open set fi C RN into Rp satisfies U^n\x) £ K a.e.
x € Q for a bounded set K> and {/(n) — {7(oo> in L^ifyR?) weak *, then the characterization of all the
possible limits C/(oo) is U^°°\x) 6 conv(K), the closed convex hull of K, a.e. x £Q. This result might not
have been stated in such a simple form before, and Ivar EKELAND told me that it had been implicitely used
in some work of CASTAING and was related to a classical result of LYAPUNOV valid for a set endowed with
a nonnegative measure without atoms, and indeed our proof extended easily to such a general case. Our
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characterization appeared quite useful when we tried to understand the more general situation where u is
the solution of

-div(agrad{u)} = / in fi, u £ H^Sl), (6)

with
aeA = {a£ L°°(fi),a < a < p a.e. in (12)}, (7)

and one wants to minimize

J ( ) x . (8)
Of course, we had found that the main difficulty was to consider (6) for a sequence an converging only

weakly, and to identify the weak limits of un and of an grad(un), but at that moment we were not aware
that Sergio SPAGNOLO had already studied a similar question [4,5], and we were led to rediscover most of
his results by a different approach which, after an improvement of our initial method that I based on our
Div-Curl lemma, appeared more powerful. Although our names are rarely quoted nowadays, it is our method
that almost everybody uses now, but many do not seem to understand that our notion of H-convergence is
indeed much more general that the notion of G-convergence that S. SPAGNOLO had introduced, a reminder
of its relation with the convergence of GREEN kernels. At a CIME session in Varenna in 1970, I had met S.
SPAGNOLO who had asked me if some of my results about nonlinear interpolation had anything to do with
his own results, which he quickly mentioned, but although I could say that there was no relation because
the coefficients of his equations were not regular, I did not catch much about what his results really were.
I think that after obtaining our initial results, we finally became aware of what S. SPAGNOLO had done
through some work of Tullio ZOLEZZI, and one of his articles indeed puzzled us for a while, as we thought
that one of his theorems contradicted some of ours [6]. F. MURAT had first identified what one calls now
the effective conductivity of a layered material, and his formula had told us that, for N > 2, one could not
characterize the limit of un even if one knew the limits in L°°(fl) weak • of h(an) for all continuous functions
A, an information which I described later by using the notion of parametrized measures, until John M. BALL
told me that the notion had actually been introduced by Laurence C. YOUNG, and should be called the
YOUNG measure associated to the sequence an. The puzzling theorem in T. ZOLEZZl's article stated that if
a sequence an converges weakly to a+ in L°°(n) then the corresponding sequence of solutions un converges
weakly to the solution associated to a+. F. MURAT thought that some nuance in Italian might have tricked
us in mistranslating what was meant, but as we were pondering if "debolmente" could mean anything else
than weakly, it suddenly appeared that our mistake had been to read correctly weakly and to interpret it
incorrectly as weakly *, as indeed it was the first time that we had seen any mention of the weak topology
of L°°(fi) in a concrete situation; we understood then why there was a reference to an article of Alexandre
GROTHENDIECK, who had shown that convergence in L°°(Q) weak implies strong convergence in Lv

loc(Q)
for every finite p.

In our initial proof we assumed that the sequence an € A was such that an —* a+ in L°°(0,L) weak

• and > — in L°°(0, L) weak •, because these limits had played a role in the layered case, and that
On « -

£?<"> = grad(un) — £ ( o o ) in L2(fi; RN) weak and D™ = an grad(un) — Z>(°°) in X2(fi; RN) weak. Using an
integration by parts, we deduced that (£'(n).£>(n)) — ( J E * 0 0 ) . ^ 0 0 ) ) in V'(Q) (or M(Sl) weak • ) , and we were

led to identify the convex hull of the set (E,aE,a\E¥,a,-y parametrized by a € [a , /?] ,£€ RN, and the

explicit description of that convex hull gave us the missing link to prove the existence (for a subsequence) of a
symmetric tensor a^ £ A, independent of/, such that D^00) = a^JE^00), and moreover that a_I < a^ < a+I
a.e. in Q. Actually, our analysis provided the inequality (i?(°°) - a+E^.D^ - a^E^) < 0 a.e. in fi,
which I will use later on.

It is useful to mention that we had assumed no periodicity hypothesis on the coefficients of our equa-
tions, although we had been aware of that framework after reading notes of Enrique SANCHEZ-PALENCIA
[7,8], but his work helped us understanding something more important. Up to that point, we had been
dealing with abstract mathematical questions about Partial Differential Equations in variational form, us-
ing and improving results from Functional Analysis, and we had never used any physical interpretation of
our equations for the quite simple reason that we were not so confident with the knowledge of Continuum



Mechanics and Physics that we had been taught at Ecole Polytechnique. The new understanding that we
obtained from reading the work of E. SANCHEZ-PALENCIA and comparing it to ours was that the weak
convergence methods and the new H-convergence that we had been using (although the term was coined
much later), were actually a new mathematical approach for modelling the relations between microscopic
and macroscopic levels (I have learned since that the word microscopic should be replaced by mesoscopic
when talking to people who think that microscopic only means the scale of atoms). In those days, relations
between microscopic and macroscopic levels were only explained using a probabilistic interpretation and en-
semble averages, and this is still the case in many circles. I was not writing much in those days, and the only
articles that I wrote then were for the proceedings of a conference in Roma in April 1974 and another one
at IRIA in June 1974 [9,10], and it was between these two conferences that we had discovered the Div-Cul
lemma, in the process of reviewing all the situations that we knew where Ooo could be explicitly computed,
and [10] is the earlier reference with a hint to that new philosophy about Continuum Mechanics and Physics
which I have advocated for the last twenty years.

In the same period some numerical computations about similar Optimal Design problems were performed
in Nice, by Jean C 6 A and his team, and we were aware of the work of Denise CHENAIS, which meant that
if one imposed some kind of regularity condition on an interface between two materials then a classical
optimal solution could be found, while our work suggested that if one did not impose such a condition there
might be no classical solution, in which case one would have to use generalized solutions corresponding to
mixtures. In some simple cases we could propose a new relaxed problem that seemed to have much better
numerical stability properties, and if I computed necessary conditions of optimality in [10], it was partly for
telling J. CEA that there were stronger necessary conditions of optimality due to the fact that a classical
optimal solution had to be better than all possible mixtures, but I could not convince him that if he refined
his triangulations enough he might start seeing oscillations and that our analysis described what kind of
oscillations were useful, so that it was not so important to resolve these oscillations numerically. He might
have believed that the situation in his work with MALANOWSKI was general [11], while it was obviously the
result of a small miracle due to the very special form of their function g, as they had g(x, w, a) = f(x)u. Had
the computers been more powerful in those days, he might have discovered numerical oscillations in refining
his triangulations, but the cost would have been prohibitive at the time and only coarse triangulations were
used. The necessary conditions of optimality which I had computed considered a mixture of two isotropic
materials, without constraints upon the proportions, and the necessary conditions of optimality that I had
obtained were much stronger than the usual ones obtained by pushing the interface along its normal, an
idea going back to HADAMARD. The classical idea, which is often only derived in a formal way (although F.
MURAT <fe Jacques SlMON bad spent some time putting it into a rigourous framework [12]), gives conditions
to be satisfied on the interface, while I was obtaining necessary conditions which were valid everywhere. As
J. C 6 A was optimizing among all the domains obtained as unions of triangles of his triangulation, he was
also obtaining necessary conditions which were valid everywhere, but they were not as strong as mine.

After some discussions with Guy CHAVENT, who was studying the related problem of identifying the
permeability of an oil field from measurements at various points, I had proposed a numerical approach for
solving numerically the type of optimization problem that we had been studying, but the numerical method
that I had proposed did not work well at all. As we knew that the optimal mixture that we were looking for
was locally obtained as a layered medium, I had chosen to parametrize the possibilities with a proportion
0 £ [0,1] and an angle describing the orientation of layers (as I was considering a 2-dimensional problem),
but that method appeared to be quite unstable because when 6 is 0 or 1, i.e. the material is isotropic, the
orientation of the layers is not determined. I did not try another numerical method, but I had learned that
even when the solution of an optimization problem is on the boundary of a set, it might not be a good idea
to move only along the boundary of this set in order to find the solution, and a better approach could be to
cut through the set in order to arrive more quickly at the interesting points on the boundary.

At that point, the crucial difficulty that we were facing was that we did not know how to characterize the
set of possible a^ corresponding to mixing in given proportions some (isotropic) materials. It should be said
that for what concerned bounds, the method that we had used for obtaining bounds was not restricted to
the case of symmetric tensors, although we had mostly concentrated our attention on the case of symmetric
operators, where the computations are simpler.

During the year 1974-75, where I visited the University of Wisconsin at Madison and the Mathematics



Research Center, I found the simplifying approach that F. MURAT later called H-convergence, and although
my approach is often called the energy method (without usually attributing it to me), it should better be
called the method of oscillating test functions.

I also learned from Carl DEBOOR about the term "homogenization", which had been coined by Ivo
BABUSKA [13]. I. BABUSKA had been motivated by Engineering questions with periodic structures, and I
learned from him why it was not enough to describe the effective coefficients and how important it was to
understand local amplifying factors: this motivated me later to prove results about correctors.

When in the Spring of 1977, I gave my PECCOT lectures at College de FYance on Homogenization in
Partial Differential Equations, I described the basic theory of Compensated Compactness and the basic
theory of H-convergence, which we had developped (some terminology and simplifying notation that I use
here were actually introduced later [14]). In the context of a diffusion equation, which is only a simple model
as all our methods are variational in nature and can be extended to many other situations in Continuum
Mechanics or Physics (for equations or systems which need not be elliptic), the natural class is to choose the
coefficients satisfying

a € M(a,0;Q) = {a € L°° (n;C(RN ,RN)),(a(x)U) > <*K|2,
1 -, (9)

(a(*X-0 > da(*)£|2 for a11 f € RN, a.e. x e Q >,
P J

and the basic result is that M(ot, /?; ft) is compact for the topology of H-convergence, i.e. from any sequence
an G M(a,f3\Q), one can extract a subsequence am which H-converges to aejj G .M(a,/?;ft), i.e.

if i) £ ( m ) — £ ( o o ) in L2(Q\RN) weak

ii) £>(m) = amE{m) — D ( o o ) in L2(Q;RN) weak

iii) curlE(m) stays in a compact of Hfo\ (ft; Ca(R
N,RN^j strong (10)

iv) divD^m^ stays in a compact of i/j~*(ft) strong

then JD (00 ) = aefJE
{oo) a.e. in ft.

There exists a sequence of correctors P(m) G L2(ft; C(RN, RN)) associated to the subsequence am, satisfying

P<m) — / in L2(Q]C(RN,RN)) weak

Q(m) _ a(m)p(m) _ fl^ in L 2 (&; C(RN, RN)) weak

cur/(P(m)A) stays in a compact of Hfo\ (ft;£a(/ZAr, RN)"j strong for all A G RN

div(Q(m>>\) stays in a compact of #,~*(ft) strong for all A G RN,

and the role of P<m) is to describe what oscillations must exist (at a microscopic level) in E^m^ when one
has only measured (at a macroscopic level) what the weak limit E°° is: if (10) holds then one has

p(m)£.(oo) _ £»(m) _^ o in ^^(ft; RN) strong, (12)

and the convergence can be shown to hold in L^0C(Q)RN) strong for some p > 1 if one knows better
integrability properties for f^°°) or if one uses MEYERS's regularity theorem. If all am are symmetric, then
aefj is symmetric (but P^m) is not symmetric in general), and in this case one has

ifi) am-*a+ in L°° (ft;C,(RN,RN)) weak •

ii) (am)-1 - (a-)"1 in L°°(p;C8(R
N\RN)) weak *

then a . < ac/y < a+ a.e. in ft.
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I derived a few months after a general method, although of rather difficult use, for deriving bounds on
effective coefficients [15]. The underlying idea is that (11) formally says that a (m) = Q(m\P^)'\ with
P ( m) and <2(m) satisfying linear differential constraints, and it was natural then that I tried to apply to this
situation the Compensated Compactness theory that we had developped the year before. For every real
function F on C(RN,RN) x £(RN,RN) such that

if i) PW - /*») in L7(Q\C(R!*,RN)) weak

ii) g(n) _ Q(OO) in L2(Q-X(RN,RN)) weak

iii) curl(P^X) stays in a compact of H^l (O; Ca(R
N

yR
N)) strong for all A € RN (14)

iv) div(QW\) stays in a compact of #j~*(fi) strong for all X e RN

then liminf / F{p(n\Q^)<pdx > f F(P^°°\Q^)<pdx for all <p £ V(Q),<p> 0,
n^°° Jn Jo.

one defines g by

p(a)= sup F(P,aP), (15)

and one deduces that

liminf / g(an)<pdz > f g(aejf)<pdx for all p € T>(fy,<P > 0. (16)

Of course, the quadratic theorem of Compensated Compactness [16] provides an analytic characterization
of those quadratic functions F which satisfy (14), i.e. F = FQ -f affine(P,Q) where Fo is an homogeneous
quadratic function which satisfies

F0(rj®(,Q) > 0 for all rj,^ £ RN and Q £ C(RN,RN) such that QZ = 0. (17)

It should be emphasized that this method for obtaining bounds requires no assumption of symmetry for a.

It was only a few years after, while I was visiting the COURANT Institute, that I tried to find which FQ
would be suitable for the case of mixing isotropic materials, restricting myself to the case where aejj was
also isotropic. I was then looking for functions invariant under orthonormal changes of basis, and found that
t h e n a t u r a l o n e s t o use were ±trace(QTP),trace(PTP) - (trace(P))2,(N - l)trace(QTQ) - (trace(Q))7.
After having computed the particular bounds that my method gave in the case of a mixture of two isotropic
materials using given proportions, George PAPANICOLAOU suggested that I compare my bounds to the
HASHIN-SHTRIKMAN bounds, and indeed they were the same, but I could not make much sense out of the
derivation of their necessary conditions, although I could easily apply their idea using coated spheres in
order to construct materials having the effective properties corresponding to the bounds that I had proved
to hold. It was also during that visit that I taught Robert V. KOHN about our method of Homogenization
for Optimal Design problems, and if he often forgot to mention our names concerning these matters, it was
not because he had never heard of our work.

F. MURAT thought then that the same functions that I had used for finding the best bounds for
isotropic mixtures of two (isotropic) materials could also give the best bounds for anisotropic mixtures.
It was easy to check what the necessary conditions were in the anisotropic case, but despite some advice
by L. Edward FRAENKEL on how to use ellipsoidal coordinates, it took us some time to construct some
optimal geometries using coated confocal ellipsoids. These results were presented at a meeting at New York
University in June 1981, and they gave the missing link in the method that I had partially described in [10],
but when I conjectured that one could probably extend the method to the question of mixing more than two
(isotropic) materials, Graeme MILTON immediately pointed out that some of his computations showed that
the construction using coated spheres did not always work. It is still not clear if my method for obtaining
bounds, which by the way was later described as the "translation method" by G. MILTON and is widely used



now with usually no mention of my name, gives optimal bounds or not in the case of mixing more than two
materials. However, this is not an important issue for the question of using Homogenization in problems of
Optimal Design, as some simplifying arguments were then discovered.

In the following Spring, I taught these results in a topics course at Ecole Poly technique, and I asked two
students, Philippe BRABDY and Didier POUILLOUX, to make a numerical study comparing the materials that
we had constructed by using confocal ellipsoids and those that could be constructed by successive layerings,
a method that we had already used for the results quoted in [10] and which I did not think general enough,
but to my surprise they announced that the two sets seemed equal, and they quickly provided a proof using
N layerings in orthogonal directions, where in each layering the normal direction was a common eigenvector
for the two materials being mixed. While visiting the Mathematical Sciences Research Institute in Berkeley
in the Spring of 1983, I generalized their result by deriving a formula for layering materials in arbitrary
directions which had the advantage that it could be reiterated easily, and I wrote all the details in the
proceedings of a meeting dedicated to Ennio DEGlORGI, held in Paris in November 1983 [17].

During the same Spring, Michael RENARDY had told me about his work with Daniel JOSEPH on
POISEUILLE flows of two immiscible fluids, which in applications were either melted polymers or crude
oil and water, the water being added in small quantity in a pipeline for lubricating it. For a cylinder with
arbitrary cross section ft, there are infinitely many possible POISEUILLE flows, but when Q is a disc one
only observes the flow where the less viscous fluid occupies an annular region near the boundary, and they
had imagined that it was related to a maximization of dissipation. This situation was described by (6) with
/ = 1 when one seeks to maximize ^a\grad{u)^ dx = f^udx, and indeed there is a classical solution in
the case of a circular cross section, but I told M. RENARDY that I expected no classical solution in gen-
eral, contrary to what they had conjectured. To prove that there was no classical solution, I looked at the
necessary conditions of optimality as I had done in [10], but using the new characterization of all mixtures
of two isotropic materials in given proportion that we had obtained two years before, and to my surprise I
discovered that our precise characterization could be ignored completely and that the same necessary con-
ditions could be derived from the crude bounds that we had derived ten years earlier. A classical solution
satisfying the necessary conditions of optimality must satisfy both DiRICHLET and NEUMANN conditions
on the interface, which is quite unlikely in general, but the precise argument for rejecting that possibility
was mentioned to me by Joel SPRUCK who reminded me of a result of James SERRIN that I had heard at a
conference in Jerusalem in 1972 (and he told me about a quicker proof by Hans WEINBERGER), valid in the
case of simply connected domains, and showing that for such domains only the circular one had a classical
solution. Of course, this negative result when Q is not a disc does not tell what configurations will be chosen
by a mixture of fluids in a pipe, as the question of what mixtures of fluids really try to optimize must be
studied further. Although the idea that turbulent flows are trying to optimize something has been suggested
before, as mentioned by D. JOSEPH [18], it is not clear what it is that they could be trying to optimize, but
that idea is consistent with the Homogenization approach that in order to optimize some criterion one has to
create adequate microstructures. The details of our method were finally written for the purpose of a school
on Homogenization at Breau sans Nappe in July 1983 [19].

During the Spring in Berkeley, R. KOHN had mentioned that he was going to visit Konstantin LUR'IE in
Leningrad in the Fall, and he had asked me if he could describe some of our unpublished work (and possibly
my recent results). Of course I did not see anything wrong with that, although I later thought that there
had been a few hints before which showed that R. KOHN was often forgetting to quote my ideas or was even
attributing them to others. The result of that visit was that K. LUR'IE is often refered to now for our results
that I had described in 1981 and that R. KOHN had explained to him in 1983, and as R. KOHN himself
does systematically refer to him for things that he had heard from me, one must exercise great care before
accepting any attribution of ideas mentioned by R. KOHN, K. LUR'IE and their followers for what concerns
the period after the Fall of 1983.

What I know about the early work of K. LUR'IE mostly comes from what Jean-Louis ARMAND told me
about it. J.-L. ARMAND had found some strange effects in the numerical approximation of some Optimal
Design problems, and as he had found references to K. LUR'IE's work as a possible explanation of the
difficulties that he had encountered (essentially due to the oscillations that I had warned J. C £ A against),
he paid a visit to K. LUR'IE in Leningrad. As it was K. LUR'IE who had mentioned to him about [10], it
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was clear that K. LUR'IE knew about our work (but this reference is usually absent from all recent articles),
and J.-L. ARMAND would probably not have traveled so far, had he known that there were some specialists
in France who could answer his questions: after he had made contact with me, we even taught together a
topics course at Ecole Poly technique.

According to J.-L. ARMAND, K. LUR'IE was trying to extend PONTRYAGUIN's theory to partial differen-
tial equations, probably after he had found a problem of optimization without a solution because no function
could satisfy the necessary conditions that he had derived (I suppose that [20] is the right reference). K.
LUR'IE had devised a way to obtain necessary conditions of optimality which improved the one consisting
in just perturbing the interface between two materials: he would cut out many small balls in one region
and many small balls of the same volume in the other region and exchange the contents of these balls, and
then he would estimate the change in the cost function to be minimized, giving a necessary condition of
optimality. Up to this point one can say that this is almost PONTRYAGUIN's idea, but then he thought that
there was no reason to restrict oneself to spherical shapes and he cut out many small ellipsoids and found
that it was better to choose very flat ellipsoids with short axes perpendicular to some direction, and in the
limit it started looking like a layered medium. I do not know the level of mathematical precision that K.
LUR'IE had used for these computations, but my guess is that they were slightly formal, but he certainly had
the right idea, and he was certainly glad to find in [10] a purely mathematical framework that did exactly
what he had discovered in a clever way. As K. LUR'IE pointed out to J.-L. ARMAND, he had been lucky
that [10] had been published in the proceedings of an optimization conference, as this had enabled him to
discover more easily that reference.

The method that we had developped is adapted to minimizing functionals like (8), which are weakly
continuous in u £ HQ(Q), and this is an important limitation for some applications. It is useful then to
consider more general functionals, like

J(a) = f G(x,tx,a,<7rad(u)) dx, (18)

where grad(u) occurs in a nontrivial way, as some cases like

G(x,u,a,pracf(u)J = <p(x, u) (agrad(u).grad{u)J + (grad(u).a rpi(x, u) + xp2(x, u)j + g(x,u}a), (19)

can be handled by our method when v?> ^1*^2,0 have natural regularity and growth properties, so that any
G satisfying (19) can be said to depend upon grad{u) in a fake way. Results for functionals depending upon
grad(u) in a nontrivial way are still very fragmentary, and I have partial results which extend those that I
had described in [21], but I will not discuss them here.

Of great importance for applications are questions related to Elasticity, and the first results following
our ideas were probably those of R. KOHN k Gilbert STRANG [22]. Unfortunately most works have been
concerned with inadequate approximations like Linearized Elasticity and only consider functionals whose
dependence upon the stress is fake. As one aspect of Optimal Design in Elasticity consists in cutting holes
out of plates in order to keep enough strength but use less material, it is useful to point out that the system
of Linearized Elasticity and the presence of holes creates a few technicalities in the mathematical apparatus,
which are often just swept under the rug in many articles which are then incomplete mathematical papers.

It has been suggested by Owen RICHMOND [23] that dealing with plates with holes could lead to theories
with higher order gradients, and although I am not entirely sure about what precise mathematical result to
conjecture, it seems clear that one has better go back to the derivation of the equations for plates, starting
from 3-dimensional Finite Elasticity, which is the only type of Elasticity that real materials can follow, and
then study the various possible limiting behaviours as the thickness and the typical distance between holes
tend to zero.

Most mathematical problems of control are idealizations, as real situations are usually much too complex
to be analyzed with existing mathematical tools, and it does not make much sense then to specialize on
only one particular functional, as is mostly done by those interested in Linearized Elasticity. The role of
mathematicians is to put in evidence general methods for solving large classes of problems, and we had put



a message in [19], namely that, after spending many years trying to characterize the best information on
effective properties in terms of proportions, we had realized that we did not need such a knowledge and
that a large class of Optimal Design problems, with state described by equations like (6) and cost functions
described by functional like (8), could be solved by generalized solutions corresponding to mixtures. We
could have mentioned that our method could be applied as well to functionals like (18)-(19), which depend
upon grad(u) in a fake way, but we did not think about it. As I have mentioned, our method does not apply
directly to functionals whose dependence upon grad(u) is not fake. It was pointed out by R. KOHN that one
needs to know a little more about the characterization of effective properties in the case where for the same
a one solves (6) with various right side / ; and the cost function uses explicitly the corresponding solutions
Uj.

At a meeting in Trieste in September 1993, Martin BENDS0E had described a numerical approach which
avoided a precise characterization of effective coefficients in Elasticity, and this had enraged K. LUR'IE, but
what M. BENDS0E was saying was consistent with our message of twelve years ago: it is important to realize
that Homogenization plays a role in some problems of Optimal Design, but it is also important to realize
that fortunately it is not entirely necessary to characterize which effective properties are possible for given
proportions of various materials used for creating every possible mixture. The efficient method that M.
BENDS0E was describing took advantage of that philosophy, and added to it the necessity of an interacting
procedure: in practical applications no one gives a precise functional to minimize, and it is not always useful
to spend too much time minimizing in detail a functional which is only used at a given instant of the search
for an efficient design, and one might want to use the information about generalized solutions of various cost
functions in order to discover a purely classical efficient design, as the technological cost of creating these
mixtures has not been taken into account.

The purpose of this article is then to try to simplify the technical details of the approach that we had
invented twenty years ago, and as the characterization of effective properties has not yet become a simple
matter, it will have to be avoided.

Position of the problem

Assume that u € HQ(Q) is the solution of the equation

-div (A grad(u)^ = / in fi, (20)

where A € M(a,(3;Q) is symmetric, i.e. al < A < 01 a.e. in fi, and A is chosen among some available
materials, which might be in limited quantity. One makes the assumption that all the materials used can be
rotated in arbitrary way, and for simplifying the details, one assumes that only a finite number of materials
M i , . . . , Mm , are available. The admissible A are then of the form

, (21)

with

ReL^faSOiN)), (22)
and the characteristic functions x«, l = 1> • • • >m> must satisfy

Xi: = 1 a.e. in fi
(23)

Xidx < 7»,*= l , . . . , m ,Ln
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where 7, denotes the given available quantity of material #1, t = 1,. . . , m. Of course, one assumes that

f ) , (24)

so that there is enough material to fill ft with, and there are characteristic functions satisfying the constraints.
The problem studied is then to find if there is a classical Optimal Design A minimizing the cost function

/ (E )) f > ( / ) ( 2 5 )

to introduce a relaxed problem describing generalized solutions corresponding to mixtures of the originally
available materials, to derive necessary conditions of optimality for generalized solutions (conditions which
are of course valid for classical solutions), to describe stable algorithms for computing generalized solutions
(and classical solutions when they exist), and more generally to learn as much as possible about how to
attack more general questions. Of course, the method described applies to other functionals J, but (25)
serves as a prototype, where the important features of this class of problems can be discovered and studied.

One assumes that

u »—• 9i(x, u) is continuous from HQ(Q) weak into LX(Q) strong, i = 1, . . . , m, (26)

which means that </,, i = 1,. . . , m, satisfy CARATHEODORY conditions with suitable growth with respect to
u. Such a property generalizes to functionals depending upon grad(u) in a fake way, but it does not extend
to general functionals depending upon grad(u).

The method that we had initially introduced consisted in constructing a relaxed problem where u still
solves (20) but A must satisfy

A(x)eic{el(x))...,em(x)) a.e. xen. (27)

where K,{6\,..., 0m) denotes the set of all possible effective tensors associated to mixtures using the initially
available materials Mi, . . . ,Mm , with local proportions 0i, . . . ,0m, and to minimize the relaxed functional

Ji(x,fl1>...,flm)= / {£eigi{x,u))dx + Y<hi{

i, • • •»#m» satisfying the constraints

m
0 < 0i < l , t = l , . . . , m , ^2$i; = 1 a.e. in Q

(29)

/

The main difficulty is that the sets K(0\,... ,^m) are not known in general. We had characterized the case
where m = 2 with M\ and Mi isotropic, but even the case m = 1 with M\ anisotropic is not completely
understood yet. Fortunately, the characterization of £(#i , . . . , 6m) can be avoided.

Presentation of the results

The method that I present here is based on the fact that, although K(0i,... ,0m) is not known, one can
characterize the sets

K(0u...,0m)E={AE: A € £ ( * ! , . . . , « m ) } , £ € RN'. (30)



In order to simplify the notation, (0U..., 0m) will be abbreviated as 0,

Proposition 1. Assume that N > 2. For any symmetric M, let \i(M) denote the smallest eigenvalue of
M and let AAT(M) denote the largest eigenvalue of M. Define A_(0) and A+(0) by

1=1

Then
D € K{0)E if and only if (p - \,{0)E.D - \+{0)E) < 0, (32)

or equivalently
K{0)E is the closed ball with diameter [A_(0)£, A+(0)£], (33)

or .
/C(0)£ = < £ E : A.(0)7 < 5 < A+(0)7 >. (34)

Using this characterization, one shows then that a relaxed problem consists in minimizing J\ given by
(28), where 0 still satisfies (29) and u is still given by (20), but where A satisfies now

A £ B(0) = {B : A_(0)7 < B < A+(0)/}. (35)

Once one has solved this problem, one uses Proposition 1 to replace A £ B(0) by some Aejj £ K{0) such
that Aejf grad(v) = Agrad(u) a.e. in fl, and one has a generalized solution of the initial problem.

Although the understanding of Homogenization has been instrumental in discovering which relaxed
problem to introduce, it is useful to have a direct proof of the existence of a solution of this relaxed problem
that uses as little as possible from the theory of Homogenization. It is even useful to forget that 0 comes
from proportions and prove the following more general result.

Proposition 2. Let 0 be a nonempty bounded weak • closed convex set of V7, where V is a separable
BANACH space. Let ̂ - ,^+ be two maps from 0 to L°°(Q) such that

<* < V-(6) < V+W < 0, a.e. in ft, for all 0 € 0 ,
1 (*X(\\

— and fi+ are (sequentially) weakly • upper semi-continuous on 0 ,

where the usual order and weak • topology are used for L°°(ft). Let A be a symmetric tensor satisfying

li-{0)I <A< /x+(0)/, a.e. in ft. (37)

The set of admissible (0, A) is then convex and (sequentially) weak • compact in V x L°° f ft; £S(RN, RN)j,

and if u is solution of (20), the set of resulting (0, u) is (sequentially) weak • compact in V x HQ(Q), SO that
every functional which is (sequentially) weak • continuous on © x HQ (ft) attains its minimum.

The next step is to derive (first order) necessary conditions of optimality. One assumes now that the
functions A,-, i = 1 , . . . , m, are differentiate, and that

v •—• Tr (̂ar, v) is continuous from HQ(Q) weak into H^1(Q) strong, i = 1 , . . . ,m. (38)
ou
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The purpose of that condition is to have a functional which is GATEAUX differentiable with a GATEAUX
derivative which is continuous from HQ(Q) weak into H~l(Q) strong, and the following necessary conditions
are valid in the general framework of Proposition 2 under such hypotheses, but in order to simplify the
exposition, only the functional (28) will be considered.

Proposition 3. Assume that (38) holds and that (6*,A*) is an optimal solution which minimizes the
functional (28) under the constraints (29), (35). Denoting the corresponding state by u*, one defines the
adjoint state p* £ HQ (ft) as the solution of

m r\

-div(A'grad(p-)) = X>,*|£(z,«*) in fi, (39)
1 = 1

and a necessary condition of optimality is that

/ Z^«'*? - (Agrad(u*).grad(p*j\ dx is minimum at (0\A*)

when (6, A) satisfy the constraints (29), (35), and (4 0)

, a.e. in ft,i = 1 , . . . ,m.U

The only information about the constraints (29) and (35) which has been used in order to derive (40) is
that the set of admissible (0,^4) is convex, and the next step is to interpret what (40) means for the precise
constraints (29), (35). Let

fto = {x £ ft, \grad(u0)\ \grad(p*)\ = 0}. (41)

Taking 0 = 0* and varying A in B(6*), one deduces from (40) some information about A* outside fto. Let

grad(u*) . _ . _
\grad(u*)\

_ ^ r a d ( £ ) . (42)
\grad{p*)\

cos(v?*) = (eu .ep) , with 0 < <p* < TT in Q \ Qo,

then (40) implies

-A eu = 2 u + 2 p

_ A , ( n - A , ( n r , A+(g*) + A,(g*) ( 4 3 )

>1 ep = eu -h ep in 12 \ fi0-

On the set where ep = eu, i.e. the subset of ft \ Qo where <p* = 0, one can create 4̂* by using a fibered
material with fibers parallel to eu, where the material M, (used with proportion 0*) is turned so that eu

is an eigenvector for the eigenvalue A;v(Mt). On the set where ep = —eu, i.e. the subset of ft \ ft0 where
(p* = 7r, one can create A* by using a layered material with layers perpendicular to eu, where the material
M{ (used with proportion 0t*) is turned so that eu is an eigenvector for the eigenvalue A^Af,). On the set
where ep ^ ±e u , i.e. the subset of ft \fto where 0 < <p* < TT, one can create A* by using a layered material
with layers perpendicular to eu — ep, where the material M, (used with proportion 0t*) is turned so that
eu — tp is an eigenvector for the eigenvalue Ai(M,) and eo -f ep is an eigenvector for the eigenvalue Ajv(Mt).

With the notations of (42), the necessary condition of optimality (40) becomes equivalent to

jf [f > * * + \grad(u')\\grad(p')\(-X+(0)cos2(£•) + A _ ( 0 ) s i ( ^ ) ) ]

is minimum at 0* when 0 satisfies the constraints (29).
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As the integrand in (44) is convex in 0, the condition is equivalent to a first order condition

9iK*\ dx is minimum at 0* when 0 satisfies the constraints (29),

(« )
*;<*) = *,•(*)- \gvad(v.-)\ \s'ad[p-)\\

One can then transform the preceding condition by using LAGRANGE multipliers. It is useful to notice that
up to that point, the analysis has only consisted in observing what A* should be in terms of 0*, and that the
set of admissible (0,A) is convex, and therefore everything that was done can be extended to the framework
of Proposition 2, and after one has eliminated A one is led to a problem of minimization on 0.

As one has not obtained information about A* on QQ, one notices that on the subset where grad{u*) = 0,
one can change A* without changing the solution of (20), and therefore one can choose there a particular
A* corresponding to a layered material. This argument does not work on the set where grad(um) ^ 0 and
grad(p*) = 0, and one adapts an argument of RAITUM [24] for changing A* on this set. Let

Qc = {x £ Q : (A*grad{u*) - \_{Om)grad(u*).A*grad(u*) - \+{e*)grad{u*)} < o}, (46)

i.e. the set where A*grad(u*) cannot be obtained by a layered material, and the preceding analysis shows
that on Qc one must have grad(u*) ^ 0 and grad(p*) = 0. Denoting E* = grad(um) and D* = A*grad{u*),
one defines

0C = {# € L°°(QC)R
m) : (Dm - \_(0)E\Dm - A+(0)£r) < 0 a.e. in fic,

m

O<0, < l , i = l,...,m,53tft- = l. a e - i n f i c ,

Jci,

(47)
t = l

which is nonempty as it contains 6*, and convex (weakly • compact) because A_ is convex and A+ is concave.
Then one defines the functional Jc on ©c by

{

and Jc attains its minimum on a weakly • compact convex subset Qopt C 0C, containing 0*, and on Qc one
replaces 0* by an extreme point 0opi of Qopt. Using an argument which I learned from Zvi ARTSTEIN in
1975 [25], one shows that one must have (Dm - A.(0opt)E\Dm - \+(0opt)E*) = 0, and the property of A.
and A+ which is used in this argument is that if one has 0°pt = 1 for some i on a subset u) C fic> then one
has \-{0opt) = \+{0opt) a.e. on u.

Proofs

An essential ingredient in the proofs of the preceding results is the following lemma.

Lemma 4. Assume that
() () ^ N

£>(«) . , £>(«>) i n L2(Q;RN) weak,

(£•(*).£>(")) _ (E-C^).^00)) in M(12) weak •,
(n) - 6n^

(n).jD(n> - a n£ ( n )) < 0 a.e. in f2,
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where
a < bn < Qn < 0 a.e. in ft,

* _ J - in L°°(Q) weak •, (50)
On Ooo

dn —k Ooo in L°°(ft) weak •,

then one has
( ( ) ( O ^ ) ^ ) ) < 0 a.e. in ft. (51)

Of course, the information on (E^.D^) will usually be deduced by integration by parts (or by applying
the Div-Curl lemma) when E^ = grad(un) with un G H%(Q,) satisfying an equation like (20), but it is useful
to realize that if Homogenization has played an essential role in the development of this method, most of
the results can be explained with few technical results from Homogenization, and one must then isolate the
crucial steps in the analysis. Lemma 4 is actually a consequence of the following more general result.

Lemma 5. On the domain a>b>0,E,DeRN

T(D-bE.D-aE) is a convex function of E,Dy(E.D),a, - . (52)

More precisely

—!— (D-bE.D-aE) = sup \-(D.E) + 2(E.v) + 2(D.w) - 4 ^ - 2(v -w) ~ <*M2V (53)

Indeed the supremum is attained when

v
Y + w = E,
b (54)
v + aw = D,

_

(55)

from which (53) follows. Notice that the function can be extended to be 0 if a = 6 and D = aE and -hoo
elsewhere.

Lemma 4 follows as one has -(D(n).JE;(n)) + 2(£(n>.v) + 2(L>(n).u>) - M - - 2(v.u;) - a|u;|2 < 0 a.e. in
o

ft for all vyw € iZN, and therefore the same inequality is true with (n) replaced by (oo), and taking then the
supremum in v,w gives (51).

If D = RTMiRE for some fi G SO(N), then elementary arguments of Linear Algebra show that
(D - Ai(Mi)E.D - XN(Mi)E) < 0. Let >i(n) be given by (21) for sequences of characteristic functions
X ^ converging to 0,- in L°°(ft) weak * for t = l , . . . 9 m , let E^ = grad(un) where un solves (20) and
£>(«) = A^EW. If E^ - ^°° ) in L°°(ft; RN) weak • and £>(n) - AtJSE^\ then one can apply Lemma

m
4 with 6n = *%2x?*i(Mi) and an ^^X^siMi), so that fcoo = A_(0) and a^ = A+(0), and Lemma 4

t=i t=i
implies the first part of (32), i.e. if D € K{0) one has (D - \-(0)E.D - A+(0)£) < 0.

Let Ci,C2 be two orthogonal unit vectors. If one creates a laminated material with layers perpendicular
to t\ by using the material M, with proportion 0, and choosing the rotation such that t\ is an eigenvector
for the eigenvalue Ai(Mj) and €2 is an eigenvector for the eigenvalue Ajv(Mf), then any effective tensor
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obtained (as for TV > 3 the rotation is not completely determined) must have t\ as an eigenvector for the
eigenvalue A_(0) and e2 as an eigenvector for the eigenvalue A+(0). For such an effective tensor one has
(D - \-{0)E.D - \+(0)E) = 0 if E is any combination of ex and e2.

The precedings arguments have shown that the set {D = A E : A G K,{0)} is included in the closed ball
of diameter [A_(0)J£, \+(0)E] and contains its boundary. That it also contains its interior follows from the
following convexity result.

Lemma 6. For any E G RN the set {AE : A G K{0)} is a (closed) convex set of RN. More generally, for
any k = 1,... ,7V — 1, a n d E u . . . , E k e RN the set {(AEu...>AEk) : A e K(6)} is a (closed) convex set of
(R»)k.

This follows from the formula for layering two materials with layers perpendicular to the unit vector e.
If one uses material A with proportion 77 and material B with proportion 1 - 77, then the effective tensor is
given by

A.,, = VA + (1 - n)B - V(l - v)(B - * ) _ _ i ® l _ _ ( S - A), (56)

and therefore AejjE = rjAE + (1 — rj)BE if (B — J4)£ is perpendicular to e. For ib < JV — 1, there exists
e ̂  0 orthogonal to (£ - j4)i?t- for i = 1,.. . , i , showing the lemma.

For N = 2, one can have £(0) = {J4 : 7 < A < 2I,det(A) = 2}, which is not convex, and therefore
k = N cannot be allowed in Lemma 6.

Proposition 2 follows easily from Lemma 4. Let 0n be a minimizing sequence converging to 0^ in 0
weak •, let A^ satisfy (37) for 0n, let £*n) = grad(un) and D^ = A^grad(un) where un is the solution
of (20) for A^n\ One can apply Lemma 4 with 6n = /i_(0n) and an = /i+(0n) and as (36) implies that one
will have //-(0oo) < *oo and a^ < Ai+(tfoo)i one deduces that ZJ(°°) = ̂ C00)^00) with some A^ satisfying
(37) for 0oo.

Once one has noticed that the set of (0,A) is convex, Proposition 3 consists in writing that J(A*,6*) <
J(Ae,6£) with $e = (1 - e)0* + £0 and At = (1 - e)j4* + e-A for 0 < e < 1, and compute the derivative with
respect to € at e = 0. As w becomes u* -I- e6u + o(e), £u appears in the expression of the derivative and the
introduction of the adjoint state p* has the effect of eliminating 6u and have only 8 — 6* and A — A* appear,
and (40) is what one obtains by this classical procedure. The rest is interpretation of (40), using elementary
Linear Algebra for the question of maximizing (A grad(u*).grad(p*)) for A satisfying (35) for 0*.

As a final comment, I want to point out that if I have avoided the yet poorly understood question of
characterizing effective properties of mixtures in terms of the proportions used, I have used some general
knowledge about Homogenization which corresponds to what I had taught in my PECCOT lectures in 1977.
The corresponding material is described in the already written part of my lecture notes [26], for which I am
still writing the third part.
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