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Abstract
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1 Introduction
In this note, we use a result of Ambrosio [2] to extend to functions of bounded
variation a well known change of variables formula for continuous mappings.
In recent years, spaces of discontinuous mappings have proven to be useful in
modeling deformations (displacements) of continua which exhibit defects and
fracture (for example, see [4], [5], [7]). Prom the point of view of analysis,
the natural space for the underlying deformation (or displacement) is that of
functions of bounded variation, BV. Recently, De Giorgi and Ambrosio [9]
proposed a smaller subclass for the study of some material instabilities, namely,
the space of special functions of bounded variation, SBV.

Given u € BV(Sl,RN), the functional gradient Vu is the density of the
absolutely continuous part (with respect to iV—dimensional Lebesgue measure
CN) of the distributional derivative Du. Whereas for a piecewise smooth map-
ping this functional gradient behaves, locally, like a true gradient, in general it



may bare no structural resemblance to the classical curl free object. In fact, it
has been shown that jump discontinuities may be dense, while Vu may be any
integrable tensor field (see [1]).

Suppose that u € SBV(Q,RN) denotes the deformation of a body ft. What
information about interpenetration of matter can be inferred from either its full
derivative or its functional derivative Vu? Suppose that we ignore the values
of u at the crack site. Does the determinant of the functional derivative give
any insight into this question? On the basis of the previous remarks, one is
tempted to say no. However, it is well known that the functional derivative
is an approximate differential almost everywhere. Using this fact, together
with a Lipschitz approximation result due to Ambrosio [2], we prove that this
information is still contained in the determinant of the functional gradient, as
long as one is willing to disregard the behavior of the mapping on a certain null
set, which, in particular, encompasses the crack sites (subset of Q on which the
mapping u experiences jump discontinuities).

2 Preliminaries
Let N be a positive integer, and let Q be an open, bounded subset of RN. For
H a (vector-valued) Radon measure, we denote its total variation measure by
||/x||. Q is the open unit cube (—5, ^)N, and Q(a,r) is the open cube centered
at a with side length r, i.e., Q(a,r) = a + rQ. Also, Ql/(a,r) := a + rQv,
where Qv is a unit cube centered at the origin with two of its faces normal to
i/, v € SN~l := {x € RN : |x| = 1}. As usual, HN~l denotes the N - 1-
dimensional Hausdorff measure.

We state some basic definitions and properties of smooth functions, of func-
tions of bounded variation, BV, and of functions of special bounded variation,
SBV. For more details, see Ambrosio [2], Evans and Gariepy [6], Fonseca and
Gangbo [8], and Ziemer [10].

Definition 2.1 Let <j>: Cl —• RN be a continuous function. For x € Q we set

<t>(x + ey) - <t>(x)
L€(y) .= ,

where y € £(0,1). Let L : RN —• RN be a linear mapping.

(i) L is is said to be the approximate differential of (/> at xf and we write
L = (app)d<px, if L€ converges to L in measure on the ball B(0,1), i.e.

lim / (Le(y) - Ly)<p{y) dy = 0

for all tp € C0(B(0,1)).



(ii) L is called the weak differential of <f> at x if L = (app)d<j>x and if there
exists a sequence {em} converging to 0 when m tends to infinity such that
{L€rn} converges to L uniformly on the sphere SN~l.

(iii) / / <j> has a weak differential at CN almost every point of ft, then we say
that <j> is weakly differentiate on ft.

Definition 2.2 A function <j>: ft —> RN is said to satisfy the TV-property if

CN(<f>(E)) = 0

for every E C ft such that CN(E) = 0.

Next, we introduce the space of functions of bounded variation.

Definition 2.3 A function u € L1(ft;RN) is said to be of bounded variation,
u e BF(f t ;R N ) , if for all i,j € { 1 , . . . ,N} there exists a finite Radon measure
fiii such that

for every ip € Co (ft). The distributional derivative Du is the matrix-valued
measure with components fiij. We denote by \\Du\\ the total variation of the
gradient measure, i.e., ||Du||(ft) := ]£ili ll^uill(^)^ where

\\DUi\W) :=sup\ [ Uidivtpdx : tp € C%(n,RN), Moc < 1 ) .

We write
Du = Vu£N +Dsu,

where Vie is the Radon-Nikodym derivative of Du with respect to the N-
dimensional Lebesgue measure CN, and Dsu and CN are mutually singular.
Whenever there is no possibility of confusion, we abbreviate CN(A) as \A\.

We denote by S(u) the complement of the Lebesgue set of u; precisely,
xo £ S(u) if and only if there exists u(xo) € RN such that

/
B(xo,e)

Clearly u is uniquely determined on ft \ S(u).

Theorem 2.4 Ifu € BF(ft;RN) t/ien



(i) forCN a.e.

f r 1
\u(y)-u(x)- Vu(x) • (j/ - x) | ̂ T dy \ = 0;

f r< J
fitj /or HN~l o.e. x € S(u), tAene exists a unit vector v{x) € SN~X, normal

to S(u) at x, and there exist vectors u_(x),u+(x) 6 RN, sucft that

lira - ^ / |u(y) -
£-.0+ £ y{v€Ol,(t,(x,e):(v-x)l/(i)>0}

= 0,

lim -jy / |u(y) - u_(x)|^dy = 0;
£-.0+ £ 7

in; forHN~l a.e. xo€S(u)

Q<nSM
> 0,

where Qe := C(Xo)(zo,e)-

In view of the latter theorem, S(u) is called the singular set, or jump set of
u. It is well known that S(u) is N — 1 rectifiable, i.e.,

S(u)=Q*nUAf,
n=l

where ifn is a compact subset of a C1 hypersurface for each n, and HN~l(Af) =
0.

If u € B F ^ j R ^ ) , then the measure Du may be represented as

Du = Vu£ N 4- (u+ - u_) ®vHN~l [S(u) + C(u), (2.1)

where C(u) is the so-called Cantor part. The three measures in (2.1) are mutu-
ally singular: if HN'l(B) < +00 then | |C(U)||(JB) = 0, and there exists a Borel
set E such that CN(E) = 0 and ||C(u)||(J\r) = ||C(u)||(X n E) for all Borel sets
X C Q. A function u € BV{Q,,lkN) is said to be of special bounded variation if
C(u) = 0. We write u € SBl^ftjR^). This subspace of BV was introduced by
De Giorgi and Ambrosio in [9].

Remark 2.5 In view of Definition 2.1 and Theorem 2.4 (i), if u €
then Vu is an approximate gradient, and so (see [6], 6.13, Theorem 3) given

N)
Vu = Vv CN a.e. i € { u = v}.



3 A Change of Variables Formula and Appli-
cations

Let fi be a finite, positive, scalar-valued Radon measure on fi. We define the
maximal function of fi to be

M(v)(x) := sup {^(x)\: 0 < p < dist(x,0fi)} .

This notion was introduced explicitly by Ambrosio [2] (see also [6] Section 6.62
for similar ideas). It can be shown that (see [2])

(3.1)

and so
| { x € f i : M ( M ) ( x ) = +oo}| = 0. (3.2)

The proof of (3.1) is a simple consequence of the corresponding result obtained
by Ambrosio ([2], Proposition 2.2) in the case where fi is a ball, together with
Besicovitch's Covering Theorem (see [2], Theorem 2.1).

Let u eBV(Q,RN) and let

H(x):=M(\\Du\\)(x).

Define

Ex := {x € fi : H(x) < A} and E := {x € fi : H(x) < oc}.

Note that H is measurable and, by (3.2), | f i \£ | = 0.
The following result was obtained by Ambrosio in [2] in the case where fi is

a ball, and the proof for an arbitrary open, bounded set fi may be carried out
exactly in the same way.

Theorem 3.1 Let u € JBF(fi,RN) n L°°(fi,RN), A > 0. Given p > 0, define
fip := {x € fi : dist(z,dfi) > p}. Then there exists a Lipschitz function u\iP :
np -> RN such that

u(x) = ux,P(x) for every x e (fip n Ex) \S(u).

The Lipschitz constant is bounded above by C(N)X + 2\u^x .

We note that the maximal function H is infinite at HN~l a.e. x € S(u).
Hence in the latter theorem (fip O E\) \S(u) reduces to removing from fip O E\
a set of HN~l measure zero. See Remark 3.6 for more details.

Next we state a change of variables formula (see [8], Theorem 5.23) for a
class of continuous functions, where, for a given set A C RN, #{>!} stands for
the number of elements of A if A is a finite set, and is +oo otherwise.



Theorem 3.2 Let ft C RN be an open, bounded set and assume that <f> €
C(Q;RN) has a weak differential almost everywhere, it has the N-property, and
detV<£ € Ljoc(Q). Ifv e L 0 0 ^ ) , then for every measurable set i c f l ,

[ vo<(>(x)\detV<t>(x)\dx= f v(y)N(<t>,A,y)dy, (3.3)
A JRN

where N(<j>,A,y) = |){z € A : <j>{x) = y}.

We note that Lipschitz functions are weakly differentiable and satisfy the
N— property.

Finally, we state and prove a change of variables formula for BV. Roughly
speaking, this is a change of variables formula for a mapping in BV away from
the crack site, in the unfractured zone.

Theorem 3.3 Let u € BV(Q,RN), v € L°°(RN). Then for any measurable
subset A C Q, the function N(u, (E D A)\S(u), •) is measurable in RN, and we
have

[ vou(x)\detVu\dx= [ v(y)N(u,(EDA)\S(u),y)dy, (3.4)
JA JRN

whenever one of the two integrals in meaningful

Proof. It suffices to prove the result for v € L°°(RN; [0,-hoc)). First assume
that u e L°°. Fix A > 0 and let u^ be the Lipschitz function given by Theorem
3.1 with p = j - . Let A be a measurable subset of Q. By Theorem 3.2 and
Remark 2.5,

/ vou(x) |detVu|dx = / v o
J(npnE\)nA J((np)

-L

is measurable. Thus, letting A —• oo we conclude that N(u, (E n ̂ 4)\5(tx), •) is
measurable, and by virtue of the Monotone Convergence Theorem we have

/ v o u{x) I det Vu\ dx= f v(y) N(u, (E n A)\S(u), y) dy. (3.5)
JA JR»

y(y)N(ux, «np n Ex) n A)\S(u), y) dy

v(y) N(u, ((tlp n Ex) (1 i4)\5(tt), y) dy.

By Theorem 5.5 in [8],

N(ux, ((np n £ A ) n J4 ) \S (U) , •) = N(u, ({np n £ A ) n A)\S(u), •)



It remains to remove the L°° constraint on u. To this end let u € BV(Q,RN)
be arbitrary and for each positive integer n we define the Lipschitz function

{ x if |x| < n

fijfj if |x| > n.

Let A C B be measurable. For each n, we have

[v(<f>n o u(x))\ det V{4>n o u)|dx = / v(y)N{(<f>n o u), (E n 4)\S(<£n o u),

because 0n(RN) = ^(0 , n). By the chain rule formula, valid for the composition
of Lipschitz functions with BV functions (see [3]), and since detV0n(y) = 0 if
|y| > n, we obtain

/ v(u(x))|detVu(x)|dx= / v(y)N(u,(E DA)\S(u),y)dy.
An{\u(x)\<n) JB(0,n)

Letting n —> oo on both sides of the above equation, we conclude (3.4) for
arbitrary u € BF(fi, RN) . •

As an immediate consequence of (3.4), we have

Corollary 3.4 Let u € BV(Q,yR
N). Then detVu e Ll(Q) if and only if

N(u,E\S(u),y)eL1(RN).

In particular, if det Vu is not integrable then there is no representative of
u, u, for which N(u,Q, •) is bounded and CN(u(ft)) < -foe. It is well known
that there are functions u € W M ( f i , RN) C W ( f i , RN) for which det Vu is not
integrable. Corollary 3.4 characterizes this failure in terms of the integrability of
the multiplicity function calculated on the "continuous" representative u, with
domain set E \ S(u).

Corollary 3.5 Let u 6 BV(Cl,RN). Assume that |detVu(x)| = 1 for a.e. x €
n and \u(E\S(u))\ = |£\S(t/)| = |fl|. Then for any measurable set A C E\S(u)
we have

\u(A)\ = |^|.



Proof. By Theorem 3.3, given a measurable set A C E\S(u), the function
N(u,A,y) is measurable, and so u(A) = {N(u,A,•))~1(0,+oo) is measurable.
Using Theorem 3.3 with v = 1 we have

= / |de tVu |dx
JA

N{u,A,y)dy

> \u(A)\. (3.6)

Similarly,
\AC n (E \ S(u))\ > \u(Ac n (E \ 5(u)))|. (3.7)

If either (3.6) or (3.7) were strict inequalities then

|ft| > \A\ + \Acn(E\S(u))\

> |u(i4)| + |u(j4en(£\S(u)))|
= |ri(£:\S(U))|,

contradicting the hypothesis. •

Corollary 3.5 implies that the mapping u cannot destroy volume but may
create it, depending on whether the iV-property holds on the complement of
E\S(u).

Remark 3.6 It follows from Theorem 2.4 that, setting

(u) := < x € S(u) : u+(x),u-(x) exist,

and ton ( K ~ *-\*y
e-0 eN J

then
n(u) n E = 0, andHN~l(S(u) \ R(u)) = 0.

Therefore, formula (3.4) may be reformulated as

/ v o u(x) | det Vu| dx = / v(y) N(u, (E n ̂ )\(5(u) \ ft(u)), y) dy.

Given that there is no natural way of extending BV functions to sets of HN~X

measure zero, we may rewrite this formula as

/ vou(x)|detVu|dx= / v(y)N(u*,EnA,y)dy,
JA JRN



where
( u(x) iixeQ\(S(u)\n{u))

vT(x) := {
[ o tixeS(u)\n(u).

In order to simplify even further the change of variables formula in such a way
(3.4) may be written as (3.3), i.e. E 0 A may be replaced by A, one has to
redefine u on the complement of the set E. Clearly, CN(EC U S(u)) = 0; setting
u to be 0 on Ec U S(u), and denoting this representative of u by u, we would
obtain

I vou\detVu\dx= [ v(y)N(u,A,y)dy,
JA JRN

for any A C £2 measurable, v € L°°(RN). However, there may be too much
information, present in the original representation u, which is lost after per-
forming this redefinition. For example, let u be the Cantor-Vitali function.
Here, Vu = 0, S(u) = 0, and the range of u is the entire unit interval. After
redefinition, N(u,A,y) = 0 a.e. for every A C [0,1] and £x(^([0,1])) = 0. This
is an example where the iV-property fails on the complement of E. Indeed, Ec

is the Cantor middle third set, and by (3.4) we have

0= / N(u,E,y)dy
J(0,l)

implying that Cl(u{E)) = 0, and so Cl(u(Ec)) = 1.
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