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Abstract
An integral representation for the relaxation in BV (2; RP) of the functional

U / W (Vu(z))dz + HY 1 (S(u))
[1]

with respect to BV weak * convergence is obtained. The bulk term in the integral
representation reduces to QW, the quasiconvexification of W, and it is shown exactly
how optimal approximating sequences behave along S(u), for scalar valued u.
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1 Introduction

Given a functional E: F — R, where F is a function space, a central problem is to understand
what the convergence of u, — u in F implies about {E(u,)} and E(u). In particular, the
direct method of the Calculus of Variations can only be applied if E is lower semicontinuous
with respect to the appropriate notion of convergence in F. When there is failure of this
lower semicontinuity, a natural object to look at is the relaxed functional I: F — R defined
by

f(u) = inf{li'fg’ioréfE(un) tUp — u}.

Often, a priori known properties of E and F ensure lower semicontinuity of I.

When E stands for physical energy and F represents states of a physical system, there is
an interesting consequence of this failure of lower semicontinuity: the apparent, macroscopic
state may not accurately reflect the actual, microscopic state or properties of the system.
That is, if the macroscopic view corresponds to u € F, all that is known is that the system
is in a small neighborhood of u in F. If E were lower semicontinuous, then for small enough
neighborhoods, the state might as well be u, as there is no need to develope microstructure
to lower the energy. Lack of lower semicontinuity suggests that it might be energetically
necessary to develope this infinitely fine detail.

In the case of failure of lower semicontinuity, relaxing the energy has two benefits. First,
it tells us the actual energy of a macroscopic state, since given a macroscopic configuration,
the system will choose a state that is close, but with as low energy as possible. The second
benefit comes from finding integral representations of I. Often, if we let the underlying
domain A for functions in F vary, A — I(u|4) is the trace of a measure, in particular, a
Radon measure absolutely continuous with respect to £V + |Du|, where £V stands for the
N dimensional Lebesgue measure in R" . In finding the density of this measure with respect
to LN and |Dul, one is led to understand the local behavior of optimal approximating
sequences.

We take F to be the space of functions of bounded variation BV (Q; RP), where Q ¢ RV
is open and bounded. This space includes Sobolev spaces, yet allows jumps and other kinds
of variation. For u € BV (2; RP), |Du| denotes the total variation measure of Du. We also
set

E(u) = /n W (Vu)de +HY1(S(w),

where S(u) is the complement of the set of Lebesgue points of u, and H#¥~! is the N — 1
dimensional Hausdorff measure. For u € BV(Q;RP), we use the representation Du =
Vul? + [u] ® vHN-1|S(u) + C(u), where [u] is the jump in u, i.e., u* — u~, where u*
and u~ are the traces of u on either side of S(u) (see, e.g., [10] and [17]), v is the normal
to S(u), and C(u) is the so-called Cantor part. If C(u) = 0, we say u € SBV(;RP),
the space of special functions of bounded variation introduced in [9]. Since functions with
Du = C(u) are dense in L?, if min W = W(0) then the relaxation of E(-,€2) would reduce
to LN (Q)W(0). We avoid this pathology by only considering sequences in SBV, which is
equivalent to relaxing E(-, ) +00|C(-)|(f2). This corresponds to allowing macroscopic states
with Cantor part, but not microscopic states.
In [3], Ambrosio analyzed the energy functional on SBV given by

E(u) :=/W(z,u,Vu)d:z:+/ é(ut,u",v)dHN "1 (z),
Q S(u)

under the hypotheses that W is Carathéodory and has superlinear growth in Vu, and under
conditions on ¢ that, in particular, allow ¢ to be any positive constant. A result is that if W
is quasiconvex, and if certain assumptions on ¢ are met, then E is L} . lower semicontinuous
in SBV. This model is particularly relevant in image segmentation, where the issue is the
optimal placement of edges around objects in a photograph, as well as to smooth out each



object and denoise the initial picture. This problem can be formulated as a search for
minimizers of an energy. Specifically, one looks for minimizers of

B = [ (Val + fu=ol?)do+ BN (S(),

where g € L*(2) is a given function representing the initial photographic image and u €
SBV(9Q). v

In this paper, we assume that W has linear growth and ¢ = 1. Physically, this last
assumption corresponds to weighing jumps, or cracks, only by the size of the jump set S(u),
with no dependence on the orientation v or size of the jump [u]. The analysis of the model
where ¢ = 1 and W has superlinear growth was carried out in [11]. The linear growth of
W allows for interaction along the jump set; approximating sequences of u need not jump
at S(u), but might have much more complicated behavior consisting of combinations of
smooth growth and jumps. The study of the case where W and ¢ both have linear growth
was undertaken in [6] (see also [7]).

The main new contributions in this paper are the expressions for QW in Section 3, a
new method for showing the upper bound inequality for the jump density in Section 4,
Lemma 5.1 in Section 5 which allows us to blow up in such a way that the rescaled variation
measures do not lose mass as they converge weakly #, and finally a method for finding the
optimal jump microstructure for scalar valued functions in Section 6. This last result allows
us to exhibit the optimal behavior of approximating sequences along S(u). The method is
applicable not only when the jump energy density is a constant, but also when it depends
in a positive homogenous degree one way on the jump (see Theorem 6.6).

This paper is organized as follows: in Section 2 we discuss preliminaries and state the
relaxation theorem, the essence of which is the integral representation

I(u,A) = I'(u, 4) = /A QW (Vu)dz + /s RCRLASE /A (QW)>(dC(w)),

where QW is the quasiconvexification of W (see Section 2), and h and (QW) are defined
in Section 2.

In Section 3 we show that, although QW is defined in terms of sequences in Sobolev
spaces, there are equivalent definitions in terms of certain sequences in BV. In particular,

QW (F) = inf { 1‘,{2‘3% W(Vu,)dz : u, € BV(Q;RP),u, = Fz in L', and

IDtunl(Q) - 0}

and

QW (F) = G(F) := in { liminf /Q W (Vun)dz : up € SBV(Q; R°), un — Fz in L', and

HY1(S(ua)) - 0},

where D,u is the singular part of Du with respect to £V. An analogous lower semicontinuity
result for superlinear W was obtained by Ambrosio in [3], Theorem 3.3.

In Section 4, and in order to show the upper bound inequality I < I*, we first prove that
I(u,-) is a finite Borel regular measure, absolutely continuous with respect to LN + |Du].
This follows largely from [12]. The remaining issue in this section is the upper bound for
I(u,-)|S(u), for which we introduce a new argument. There is some difficulty with this
step because HN~!|S(u) is, in general, not a Radon measure, and so taking derivatives
with respect to HN~!|S(u) is not possible. The usual method for showing upper bound
inequalities for jump densities is based on [4] and [5], and involves approximating jump



sets with boundaries of sets with finite perimeter. The technique here is based on looking
at the intersection of the jump set with certain sets of finite perimeter. We consider level
sets E; of the components of u, such that E; has finite perimeter and |Dju| := |D,u||S(u)
concentrates on S(u) N 8, E; as we blow-up. We then see that the analysis on S(u) N . E;
is much easier than on S(u). The rest follows from constructing functions in a reasonable
way, and by using a suitable covering argument.

Section 5 deals with the proof of the lower bound inequality I > I*, which is a modified
version of the corresponding argument in (a draft of) [6]. The changes include choosing
the rescaling factors so that the weak * limit measure p does not see the boundary of the
rescaled unit cube, and so that as the rescaled variation measures converge weakly * on a
cube, they do not lose any mass (see Lemma 5.1).

In Section 6 we find the optimal microstructure along the jump set of u, for scalar valued
u. The proof relies on a coarea formula and a covering argument. It turns out that the
proof may be easily extended to the case where the jump density is a positive homogeneous
degree one function of [u]v, and also when the jump density is just a function of the normal.

2 Preliminaries and the Relaxation Theorem

We consider a bounded, open set @ C RV, and we define the Sobolev spaces W1() and
W(Q), and the space of functions of bounded variation BV () in the usual way (see,
e.g., [10] and [17]). We denote by pp,, or alternatively p,, the standard mollifier, and for
E C Q, xg stands for the characteristic function of E. Given two sets A and B, we define
the symmetric difference AAB := (A\B) U (B\A).

We say that a set E C Q has finite perimeter in Q if xg € BV(2). For such an E, the
measure theoretic boundary in Q, 8, E, is defined as

v LN(B(z,8)NE) o LN(B(z,8)\E)
{een man SEes >0 e St > )

(2.1)
where B(z, 8) is the closed ball in RV centered at z with radius §. We denote by vg(z) the
measure theoretic normal to E at € 8,F (for properties of this normal, see [10] or [17]).
The reduced boundary 8*E is the set of z € 8.F such that z is a Lebesgue point for vg,
with respect to the Radon measure H¥=1|8,E. Given a set E of finite perimeter, we define
on 8, E the following:

H(z) :={y € RN :vg(z) - (y — 7) = 0},
Ht(z):={yeR" :vp(z) - (y — ) >0},

and
H(z) :={y e RN :vp(z) - (y — z) < 0}.

For u € BV(Q;R?), we write Du = D,cu + D,u, where D,.u and D,u stand for,
respectively, the absolutely continuous and singular part of Du with respect to LV. We also
consider the set S(u) of points which are not Lebesgue points for u. We set Dju := D,u|S(u)
and use the representations D,.u = VulN and Dju = [u] ® vHN 1| S(u), where [u] is the
jump in u across S(u), i.e., [u] = u* — u~, where u*, u~, and v are such that

im - +(z)| ¥
— u(y) — z)|F-1dy =0
s—o+ 8N {ueB(z,a)=(u—=)~v(z)>0}l W @
d
an 1

— —u(z)| " dy =
u u(z =0
§—0+ &N (yea(z.a):(,,_z).y(z)<o}| ) (@) y



for #HN-1.a.e. £ € S(u). It is convenient to define C(u) := Dyu — Dju, and if C(u) =0,
then we say u is a special function of bounded variation, and we write u € SBV(Q2). This
space was introduced in [9].

We denote by i the precise representative of u defined HV~!-a.e. by

oo ) u(@) if z is a Lebesgue point of u
ie)=] repre v 2 ifz € S(u).

We set Rt := [0,00) and R := R U {~00,00}. We denote the space of p x N matrices
by MP*N | and, for W:MP*N 5 R, we define the recession function W :MP*N R by

W (tF)
pan

W (F) := limsup

t—ro0

We say a function f:MP*N 3R is quasiconvez if
1) < [ 1(v0s

for all ¢ € Fz + C§°(A) and all F € MP*VN | where A is open and LV (4) = 1 (see [15)). We
denote by QW the quasiconvex envelope of W and by CW the convex envelope, i.e.,

QW(F) :=sup{f(F): f < W and f is quasiconvex},
CW (F) :=sup{f(F): f < W and f is convex}.
We know (see [13]) that for W satisfying (2.2) below, we have

QW (F) = inf { lim in /A W (Vun)dz : {un} € W' (4;RP),up = Fz in L}(4; Rp)}

for any open set A with LN (4) = 1.
For a unit vector » € RV, we denote by Q, any open unit cube centered at 0 with two
faces normal to v, and S, is the set

{zeR :|z-v| <1/2}.

If f:MP*N R is positive homogeneous of degree one and x is a MP*¥ -valued measure,

we use the notation p
d -:=/ (—L) d|ul,
/f (du) f dig] [l

where |u| is the total variation measure of p.

Theorem 2.1 Assume that W:MP*N 3Rt is continuous and such that for some Co,Cy >
0 and all F € MP*N

ColF| - 5 < W(F) < Ci(1+IF)). (2.2)
Assume further that there exist m € (0,1),L > 0, and C > 0 such that
weor) - L8| < & (2.3)

Jor all F € MPXN with |F| =1, and allt > L. For A C Q open and u € BV (A;RP), set

E(u, A) := ./,4 W (Vu)dz + HN1(S(u) N A)



and
I(u, A) := inf { lim inf E(un, ) : {tn} C SBV(A;R®), un — u in L}(4; R”)}.

Then
I(u, A) = /A QW (Vu)dz + /S ( )h([u],u)d'HN'l-i- /A Q@W)®(dC),  (2.4)

where : .
h(€,v) := inf { /Q W (Vo)dz + HN-1(S(v)) : v € SBV(Q,; R®),

v=€ifz€dQ, andz-v>0, andv=0ifz € 0Q, andz-u<0}. (2.5)

The proof of this theorem will be carried out in Sections 3, 4, and 5, and will use the
following alternative expression for the density h:

h,) = ha(€,v) o= inf { /Q W (Vo)dz + HN1(S©) N Q) : v € SBVioe(Sy; BP),

. 1 . 1
v(y)=01fy-u=~§,v(y)=£1fy-u=5,

v is 1-periodic in the directions v;,...,vN_3 } (2.6)

Clearly, h > h; since admissible functions for h have the necessary periodicity. The other
inequality follows from the fact that, after scaling, an admissible function for h; will have
the correct trace for h after altering it to jump on a set of small HV~! measure. Specifically,
suppose v is an admissible function for h;. Define v,,, admissible for h,, by

v(nz) ifa:e%S,,
va(z) =14 € fz-v>&

0 fz.v<-2%.
Then / W (Von(z))dz + HV 1 (S(va) N Q) =
Q.
=nN-1 '/:};Qy Wm(an(z))dz + nN—lHN—l (S(Un) n %QV)
=nN-1 /Q nww(w(z))ni,vdz + nN'I#H”“(S(v) nQ.)

- / W (Vo(z))de + HV 1 (S(1) N Q,).
Q.

It is easy to prove that v, has the correct trace for h after modifying it to jump across a
set with %V~ measure of order % near 8Q, N 1S5,.

It will also be useful to consider the function G:MP*N — R+ defined by
G(F) = inf { limnf / W (Vun)dz : {un} C SBV(Q;R®), up — Fa
n—o00 Q

in L'(Q; R®), and HV~1(S(un)) = o}.
As we will see in the next section, it turns out that G = QW.



3 Characterizations of QW for Sequences in BV

The goal of this section is to prove that G = QW. Note the connection to Theorem 4.5 in
[3], where Ambrosio deals with a W with superlinear growth together with a more general
jump density.

We begin with

Lemma 3.1 Suppose that W:MP*N Rt is a Borel measurable function such that Co|F|—
Z; SW(F) < Ci(1 +|F|) for every F € MP*V, and some Cy,Cy > 0. Then

QW (F) = Q"W (F) := inf { h'{l_l,lgfL W (Vun(z))dz : {us} C BV (Q; R?),

n — Fz in L(Q; R") and |Dyun|(Q) 0}
for all F € MPN.

Proof. Although this follows from a straightforward application of the lower semicontinuity
theorem of [13] in BV, we prefer here to provide a direct proof.

We need only show QW < Q*W, since the other inequality follows from the growth
condition on W and standard relaxation theory (see Dacorogna (8] and Acerbi and Fusco
[1]). Let {un} be an admissible infimizing sequence for Q*W(F). The idea is to find a
sequence {v,} C W(Q;RP) such that v, = Fz in L!(Q;RP) and

lim inf / W (Von(z))de < liminf / W (Vun(z))dz, (3.1)

since then the coercivity hypothesis implies that {v,} is bounded in W', and using the
lower semicontinuity theorem of Fonseca and Miiller [13] in W1 for the L! topology, we
have

QW (F) < liminf /Q W (Von)dz.
Let £ > 0 be given. Choose m > 1 such that
[Dsum|(Q) <€ (3.2)

and

/ W (Vu(z))de < liminf / W (Van(z))dz + €.
Q n—» 00 Q

Let i € {1,...,p}. We now use maximal functions to find a good Lipschitz approximation
for (um)i- The following is based on an alteration of the proof of claim # 1 in Theorem 2
of Section 6.6.2 of [10].

For A > 0, set

R = {z €Q: 'D(“"‘)ﬂ,f,B(””)) <Aforallr> o} :

By Vitali’s Covering Theorem, we can choose disjoint balls {B(z;,r;)}32, such that

Q\R* c | J B(z;,5r;)

i=1

and
|D(um)i|(5(zj, r;)) S A

Ty




Then
LN(Q\R*) < LN (U, B(:CJ ,575)) (3.3)

< 5Va(N) }: r]
5Na(N) -~

|D(um)sil (U521 B(=;,75))

5”"‘” 5N, b um)il(Q),

where a(N) is the volume of an N d1mens1ona.l unit ball. Note that we have

¥ (U Blasor) < 252 D)l (@): (3.4
For § > 0, put N
A@) = max {250, 20 5,10

and
B(9) = UB(szrJ)a
Jj=1

where the B(zj,r;) are chosen for A = A(§). By claim # 2 of Theorem 2 in Section
6.6.2 of [10], there exists a Lipschitz function w;s such that w;5 = (um); on R*?® and
Lip(wis) < eX(d) < c(1 + |D(um):|(Q)) for some constants ¢,C depending only on N.
Note, however, that by (3.2), |D(um)il(Q) < |Dac(um)i|(Q) + €, and

Dectnl(@ = [ 1Vumldz < 2= [ (W(Tum) + 5 ) do

which is bounded since {u,,} is infimizing. Hence, Lip(w; s) < % € for a constant C depending
only on N and the sequence {un,}. It follows from (3.4) that £~ (B(6)) — 0 as § — 0%, and
s0

lirfjgp |D(um)i|(B(8)) < |Ds(um)il(Q)-

Note that RM®1) ¢ R ®2) for §; > é,. Hence, we may choose y € Q such that w; 4(y) =
(um)i(y) for all § sufficiently small. Fix § > 0 such that

[D(um)il(B(8)) < |Ds(um)il(Q) +¢
for all i € {1,...,p}, and so that

fE lum(@) = (w1.5), - . wpa(¥))ldz < €

for some y € Q and all E C Q with LV (E) < 2p§5Ne. By (3.3) and the choice of &, we have
LY (Q\RM) < 857 (ID,(um)il(Q) +€) (3.5)
< 2657¢ (by (3.2))

for all i € {1,...,p}. Setting vm(z) := (w1,5(),...,wps()), it follows that vy, is Lipschitz
with Lip(vp) < p? §. Setting T := {z € Q : vm(z) # um(z)}, (3.5) yields LV (T) < 2pd57,
SO

] [Vom(@)lde < £¥(T)Lip(vm)
T
< 2p3C5Ne



and

/ [Um(2) = tm()ldz = / |(9m (@) = m(®)) = (tm(2) — v (¥))1d
T T

< /T lvm(2) = v ()2 + /T lum(2) — v (y)ldz
< LN(T) ma-xlvm(z) - vm(y)l +e€
< LN(T)V/NLip(vm) + €

< 2p3C5N/Ne + €.

From Theorem 3 and Remark (i) of Theorem 4 in Section 6.1.3 of [10], we know that for all
u € BV,
Vu=0L"-ae. on {u=0}.

Hence,
VUm — Vu, =0 LV-a.e. outside T,

and we have

/ W(Vom (@))dz < / Cr(1 + [Vom (2)))dz
{Vom#Vum} T

< CL(LN(T) + 2p3C5Ne)
< C1(2p657e + 2p3 C5Ve).
Since we can do this for a sequence £ — 0, we conclude (3.1). m]

We also need the following lemma in order to show QW = G.

Lemma 3.2 Let W:MP*N 5 Rt be a Borel measurable function with W(F) < C;(1+ |F)|)
for all F € MP*N and some C, > 0, and let f € L°(Q;RP) and € > 0 be given. Then for
all {u,} C SBV(Q;RP) with ||ua]|L1(Qr?) + |Dactn)(Q) < R for alln € N and some R > 0,
there ezists a sequence {v,} C SBV(Q;RP) uniformly bounded in L>°(Q;RP) such that

S(vg) C S(uy),

llvn = fllr@ire) < llun = fllL1(@ire)s

and

ligigfLW(Vsz))dzSli’ixr_l’ioxéf‘/c?W(Vun(:c))dz+s.

Proof. The proof is a simpler version of the proof of Lemma 3.7 in [6], which relies on a

truncation argument proposed by De Giorgi. Set A := [In(]| f||oo +1)]+ 1, where [-] is integer
part, and fix k € N with k > X. Let i € {),...,k} be given. Define ¢; € W1:>°(RP; R?) by

z if |z| < €!
$i(z) =< X (ﬁ;ll - 1) if e! < |z| < eit?
0 if |z| > e**1.

Set
i
Uy, 1= @; O uy,.

Then ||uf || < €. Since ||V¢;|loc =1 (see Ambrosio [3] and Vol’pert [16]), we have
u, € SBV(Q; R?),



lDacuil(Q) < |Dacun|(Q),
and

S(ul) C S(uy).
Furthermore, by the choice of A we have

o, = fllzsome) = /{ o

Un|<e’

lun(z) — £ (z)ldz + / ' 1i(un(®)) - $:(f(2))ldz
} e'}

nl2
< lun = fllLr(@ire)s
where we used the fact that Lip(¢;) =1 and ¢; o f = f. Now, fix n € N and set
Qi:={z € Q: |in(z)] < €'}.
Note that we have

/Q o, W(Tui @)z < C1(L¥(Q\QY) +1Dert|(@\Q1)

where LV (Q\Q;) < £ and

k k
Z |Dacui;|(Q\Qi) < z |Dacu;|({e‘ < |'l-ln(I)| < ei+1})
i=A =\

< IDacunl(Q)
<R

We now have that

k k
3 / W(Vei(2)ds <3 Ci2 +CiR
Q\Q: i=\ €

=\
<CiR ——1——+1
=1\ —-1)

so that

k
: 1
> /Q W (Ve (2))dz < (k= A+1) /Q W (Vun(2))dz + C1 R (W«?—T) . 1) ,

and by the choice of A,

1 ¢ .
T /Q W (Ve (2))dz < /Q W (Vo (2))dz

CiR 1
Tl + 1] (” (il + Die = 1))'

Choosing k large enough so that

C1R 1 E
k = (In(||fleo + 1)] <1 T e+ D= 1)) <2

we see that there must be an i € {},...,k} so that

/ W (Vi (z))dz < / W (Vun(z))dz + €
Q Q

10



with ||ul||cc < €, where the above choice of k does not depend on n. Hence, this can be

done for all n € N, giving the same L* bound of e*. D

We now recall the definition of G, given in Section 2:

G(F) := inf { lim nf / W (Vun)dz : {un} C SBV(Q; K®),un — Fz
n—00 Q

in L'(Q; R®), and HN~1(S(u,)) — o}.

Proposition 3.3 Suppose that W : MP*N — Rt is a Borel measurable function such that
Co|F| - 31; < W(F) < Ci(1+ |F)|) for all F € MP*N and some Co,C1 > 0. Then

QW =G.
Proof. We need only show that
QW(F) < G(F), (3.6)
since the admissible class of {u,} for G(F) includes that for QW (F), and so QW (F) >

G(F). Choose {u,} C SBV(Q;RP) such that u, = Fz in L'(Q;RP), H¥N1(S(us)) = 0,
and

nlergo/QW(Vun(z))d:c = G(F).
Because ||un||z1(Qr?) = [|FZ||L1(Qrr), We Obtain

S n .Rr) < .
sup llunllzr(@irr) < 00
Furthermore, since W (Vun(z)) > Co|Vun(z)| = &, we deduce that
Dectnl(@) = [ V(@)

<& ( /Q W (Vun(z))dz + gr) S &(eE +4) <o,

sup | Dacttn](Q) < 00.
neN

Let € > 0 and apply Lemma 3.2 to f := Fz, R := sup,en(||tn]|L1(Q:r?) + |Dactin|(Q)), and
the above € and {u,}. We now have

lim / W (Von(z))dz < G(F) +
n—00 Q

for some {v,} with the same properties as {u,} and, in addition, ||vp|lec < M < oo for all
n € N. Hence, |D,v,|(Q) < 2MHN-1(S(v,)) = 0. By Lemma 3.1, we conclude that

QW(F) < Jim [ W(Vou(a)dz < G(F) +.

Since £ > 0 was arbitrary, we have (3.6). ]
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4 Upper Bound

In this section we prove an inequality leading to (2.4). Precisely,
I(u, A) < / QW (Vu)dz + / h([u), v)dHN -1 + / QW™(dC(u)).
A S(u) A

We first need the following result.

Proposition 4.1 Suppose that u € BV (A;RP), where A is a bounded, open subset of ).
Then I(u,-) extends to a nonnegative, finite, Borel regular measure on A which is absolutely
continuous with respect to LV + |Dul.

Proof. By using an argument similar to that for Theorem 3.2 in [12], we know that I(u,-)
is a Radon measure on A. It remains to prove that I(u,-) is finite and absolutely continuous
with respect to £V + |Du|. Let B C A be open. By Theorem 5.3.3 of [17] and Theorem
2 in Section 5.2.2 of [10], we choose u, € C®(B;RP) such that u, — u in L!(B;RP) and
|Dug|(B) = |Du|(B). Since the u, are smooth, we have

I(u, B) < liminf E(un, B)

= liminf / W (Vun)dz
B

n—oo

<liminf [ G, [1 + IVunl]d:c
n—oo B

=liminf G [£¥(B) + | Dun(B)]

=C [LI”(B) + |Du|(B)],

which, in particular, implies that I(u, A) < oo for all u € BV (A; RP). o

Fix A C Q open and u € BV (A4;R?). Note that we have
I(u, A) < inf {hm_’mf/ W (Vup)dz : {u,} € W (A;RP),u, = u in L*(4; R”)} ,
n—oo A
so from [14] we know that

I(w, 4) < /A QW (Vu)dz + /s W= + /A @W)*(dC(w));

(u

hence, it only remains to prove that

I(u,5(w)) < js M) o) (41)

The jump set S(u) is, in general, not so easy to deal with. Indeed, there exist functions
u € BV((0,1)?) with jump set {(z,y) € (0,1)? : z € Q}. Furthermore, although for
such u one has E(u) = oo, we know that I(u) < Ci[l + |Du|((0,1)?)] < co. However,
measure theoretic boundaries of sets of finite perimeter are much easier to handle and, for
our purposes, there are connections between S(u) and certain sets of finite perimeter that
we can exploit.
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Remark 4.2 Let u € BV () and let D C R be dense. Then

S(u) = U Su)No.E, = U 8.E;, N 8. E,,,
teD t1,2€D
t1#t2
where E; := {z € Q : u(z) > t}.

If u € BV(Q; RP), we denote the ¢ level set of u; by Ej. Also, if u € BV(Q), then E; has
finite perimeter for £L1-a.e. t, and {z € S(u) : u=(z) <t < u*(z)} C O.E; (see, e.g., the
proof of Theorem 1 in Section 5.9 of [10]). We also point out that for u € BV(;RP), we
have S(u) = U, S(u;).

If T C N has finite perimeter, then #V~1|8,T is a Radon measure. Since S(u) is HV?
measurable, we conclude that xs(,) € L' (2, #V¥~1|8,T). So, for HN~'-a.e. z € S(u)NS.T
we have

i HN-1(B(z,86) N S(u) N8.T) _ i HN-1(B(z,6) N S(u) N 8.T)

P 4 a(N —1)4N-1 =550+ HN-1(B(z,0)Na.T)
—_ N N-1
= Jlim s XswdH" " |8.T
=1,

where the first equality follows from Corollary 1 (ii) in Section 5.7.2 of [10]. Hence, if
D C R is countable and dense and such that E; has finite perimeter for all t € D and all
i€ {1,...,p}, then for H¥"1-ae. z € S(u), for all t € D N (u] (z),u;} (z)) we have

. HN-Y(B(z,8) N S(u) N B.Ey) e HN-1(B(z,8) N S(u) N8, E;) _
Pt a(N - 1)éN-1 - 61—1»1(111+ HN-1(B(z,8) N8.E;) L (42

Furthermore, since [u] € L*(Q,HN~1|(S(u) N 8,E;)), for H¥N"1-ae. z € S(u), for all
t € DN (u; (z),uf (z)) we have

][ I[u)(v) - [u)(z)ldH" " (y) = 0.
B(z,6)NS(u)N8, E; _

Note that the same is true if B(z,d) is replaced by Q(z,d) := = + 6Q,(;). Hence, for
HN-lae. z € S(u), for all t € DN (u] (z),u] (z)) we have

. 1
61_1’1‘1)1*_ 6N-1

/ Il @)dHN () = |ful (). 43)
Q(z,8)NS(u)N8. E;

On the other hand, for HV-!-a.e. z € S(u),
1
lim ———/ u d'HN-l = |[{u](z)],
50 BT Jo 5nsce [u) ()1 ) = |[u](=)|
which, together with (4.3), shows that for HV=1-a.e. z € S(u), for all t € DN(u] (z),u] (z))
we have
lim IDJuI(Q(Isa)\a‘Et)

=0+ 6N-1

We are now ready to prove (4.1). First, we note that W™ (£ ® v) is continuous since the
limit W is obtained uniformly (see (2.3)), hence h(¢,v) is continuous. Note further that,
for E, as above, [u] and v are HV~1|(S(u) N 8, E;)-measurable, and k < 1, so

h(lu)(), ¥(-)) € LY (Q,HN 1 [(S(u) N 8. Ey)).

=0. (4.4)
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Let zop € S(u) N and t € R be given such that u] (zo) < t < u}(zo), E; has finite
perimeter,
1

61—1>I(1;1+ oN-1 '/Q(zo,J) [Valde=0,
i

lim

S JN- =5 1Diul(Q(z0,8)\8. Er) = 0,

. HNYQ(z0,6) N S(u) N A,E
61_151_‘_ ( (1'0 612, - (u’) t) , (45)

and

1

i, G o @) @) — b ), ne) HY @) = 0. (4)

Note that the above can be done for #¥-1-a.e. z € S(u) (the last three follow from
(4.4) and (4.2)).

Let € > 0 be given and choose 4., € (0,¢) such that if § € (0,4d,), then the above equal-
ities hold to within e. If, given d € (0,4.,) and n € N, we can find v € SBV(Q(zo,9); RP)
such that 1

llv = ullz1 Qo 6yRn) <

and

gg%%%%é_)) < h([u](20), ¥(z0)) + O(e),

then it follows that

I(an(ana)) T I(‘"’)Q(zolé)) h([u](zo),l/(.'l:o))
o0 TD;ul(Qz0, ) oo Tl@)B T = |[l@o)

and so

rwse)s [ AT

and we have (4.1). Let § € (0,6,,) and n € N be given. Choose A C Q(zo,d) open such
that

I[ul(2)ldH ™~ ()

S(u) N8.E, N Q(z0,8) C A and LV (4) < min{e, 1}.
For HN¥-1.ae. z € S(u) N 8.E; N Q(zo,6), choose r, > 0 such that B(z,r,) C A and
r € (0,r;) implies, using (4.2) and (4.6),

N
/ fu(y) — v~ (@)ldy < 2T
B(z,r)NH~(z) 6n

a(N)yrN

fu(y) - u* @)ldy < 28,

L(z.r)ﬂH"'(z)
a(N -1)rN-1

T 1(BENS@na.E) 1| <® 4.7)

and

/ Ih(fu)(w), v(®)) — h([u)(2), v(@)|dHN () < ca(N = )rN-1.  (4.8)
B(z,r)NS(u)N8. E;
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In addition, for HN-'-a.e. € Q(zo,6) N S(u) N 8, E;,

1 [ - _ - 1 -
=/ 3(y) - u~ @IEHN - () = july) ~ u=@ldy = 0
0 JoB(z,r)NH-(z) " JB(z,r)NH- (z)

(4.9)
and similarly for u*(z). So, we consider the set T of those points in S(u) N 8. E; N Q(zo, 6)
such that we can choose r, as above, and (4.9) holds for u~(z) and u*(z). For z € T, set

R, = {r € (0,rz) : / li(y) — u'(Z)Iti’HN'l(y) < esN-1pN-1
8B(z,r)NH-(z)
r is a point of approximate continuity for the function
re |i(y) — v~ (2)|aH " (y),
8B(z,r)NH-(z)

and similarly for u'*’}.

Since the family {B(z,r) : z € T,r € R} is a fine cover of T, by Besicovitch’s Covering
Theorem, there is a finite, disjoint subfamily H such that

HN"Y(T\Upen B) < ¢ (4.10)
and
|Djul(T\ Ugen B) < esN -1, (4.11)

Put k£ := #H. We now extend the diameter of each ball B € H by at most Fﬂﬂ%ﬁﬂ’
obtaining a ball B¢ C A, so that the following hold:

i) the B¢ are mutually disjoint;

ii) HVN-1(S(u) N OB*) = 0;

iii) |i(z) = ™ (zB)|dHN 1 (z) < €6V ~'r§ ! and similarly for u* (zp);

8B*nH- (z5) .
w) [ 8(2) - u=(@a)ldz < XTB:
(B\B)NH-(z5) 12n
Define ug by ug := u on Q(z¢,d)\ Upen B¢, and

, and similarly for u*(zg).

_ [ vt(zp) ifzeB*NH*(zp)
uo(z) = { u-(zg) ifz e BnH-(ag)

Again, by Theorem 5.3.3 of [17] and Theorem 2 in Section 5.2.2 of [10], we can choose
Um = Uo * pm € C°(Q(20,6)\ Upen B; R?)

such that
um — uo in L'(Q(z0,6)\ Upewn B; RP)

and
| Dum|(Q(z0,6)\ Upen B) = |Duo|(Q(z0,6)\ Upen B).
Let m be sufficiently large so that, for all B € H,
1
rBe —Tp > —,
m

HN-1 ({z € 6B (zB,rBe - %) :dist(a:,H(:zB)) < %}) < % (4.12)

|1 Dum|(@(z0,6)\ Usen B) - 1Duol(Q(o,6)\ Usew B)| < e, (4.13)
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/ |um — uldz < ——1—, (4.14)
Q(20,5)\Usen B 3n
and 1
/ - |um — ugldz < —. (4.15)
Upen(Be\B) 6n

We now slightly alter up, as follows: on B(:z:B,rBe - #)\B, we set u,, := ug. Note that
this introduces a jump on H(zpg) nB(ZB,Tﬂe - ;’;)\B, and on {z € 8B(zp,rB — 1) :
dist(z, H(zB)) < 1}. By (4.12), we know this last set is of small #V¥~! measure.

We extend u,, to Upen B as follows: for each B € H, choose vg admissible for
h([u)(zB), v(zp)) such that

]Q W (Vop)ds + H¥ A (S(us)) < h(ful(es) v(zs) + 5. (416)

v(isg)

Put
1
v8,4(z) = va(kz) € SBV (1 Quen)i ).

We can select a; € H(zp) N B such that a; + $Q,(z5) C B and are mutually disjoint, and
HN-1 (H(zB) NB\U; (a; + $Quies))) < O(}). We define
u~(zB) +vBi(z—a;) fz€a;+ -,IEQ.,(,B)
uk (z) :=={ u*(zB) ifre BNH*(zp)\U(a; + %Qy(,a))
u‘(zB) ifa:eBﬂH'(:cB)\U(aj+%Q,(,B)).

Note that as k — 0o, uX, = up in L' (Upey B; RP). Furthermore,
1 1
E(ut,B)= Zj:E(uf,,,a,- +2Quem) + E¥ (B\U; (a5 + 2Quem ) )W O (417)

and

B(uhoos+ 1Quen) = [ W(kVon(ka))do +H¥1(S(a,0)

v(ep)

= /Q W(kvug(z))ki,vdu le_;%N“‘(S(vB))-
v(epg)

Since, by (2.3),

s

) C
W (kVvg(z)) — W (Vvg(z))|dz S/
Ik (kVvp(z)) (Vos( ))I Qu(ep)"{kIVv5|>L} L=k

1
Qu(ep)M{k|Vus|<L} k

v(epg)

+ C1[1+L]
-0

as k — 00, we can choose k so that, setting u, := u¥,, we have

|lum(z) — v~ (zB)|dz < L and similarly for u*(zp), (4.18)

/Uae‘u(BnH'(za)) 12n’
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and, using (4.16) and (4.17),
E(um, B) - [a(N — 1)r¥-h([u)(z5), v(z5)) + a(N)r W(O)] | < -Z- (4.19)
We now have

lum — uldz + / lum — uldz
Q(z0,0)\Upen B*

+/ |um — uldz
Usen(Be\B)

< /u“us lum(z) — u™* (z)ldz + /UBEHB lu(z) — v~ (zB)|dz

“um - u“L‘(Q(zo,J);R”) =/
UpenB

1
+—+/ |u,n—uo|dz+/ |uo — uldz
3n  Jupen(Be\B) Usewn(B\B)

(by (4.14))

1 1 1 1 -
—_— J— —— —_— - D dz
< 6n + 6n + 3n + 6n + -/l‘JBe‘N(B’\B) |u(a:) v (zB)I

(by (4.18) and (4.15))

< 1. (by property iv) of B®)

Finally, we have

|h([u](-’b‘0),u(zo)) - E(u'"‘;NQ__(;C_OL‘s_))’ <
< }h([u](xo),u(xo)) - %E(Um,UBE‘HB)‘ + M%E(Um,Q(zo,J)\ Usen B) = I + I,
and
I < |A([4)(zo), ¥(0)) — 3'1\!1——1 > a(N = 1)rE~ h([u)(zs), v(z8))| + O(€) (by (4.19))
BeM ‘
< |h(fl(@o), v(@o)) ~ gy 3 HNH(B NS N 8. E)h([ul(z5),v(z5))| + O(e)
BeM
(by (4.7))
1 ) —
i o) = ;;L/anw)na.s. h([u)(z), v(z))dHN 1 (z)| + O(€)
(by (4.8))

=2 /.
oN=1 L= JBns(wne.E.

(by (4.5) and (4.10))

< R ([u)(zo), ¥(20)) = h([u)(z), »())|dH" " (z) + O(e)

1

< 58T R ([u)(0), ¥(20)) = h([ul(z), ¥(2))|dH"  (z) + O(e)

/Q(zo.é)nS(u)ﬂB. E,
< O(e); (by (4.6))
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I
B

L =55 [_/Q(ZO'J)\UBE"EW(Vum)dI +HN (S (um) N [Q(20,8)\ Upen B])]

S

IA
I...

N1 / C1(1 + |[Vup|)dz + O(e) (by the choice of B¢ and (4.12))
Q(z0,6)\Upen B

= -JW].:T [Cl‘CN(Q(zO, 6)\ Ugen B) + Clanc“ml(Q(l'O,(s)\ UBen B)] + O(g)

)

. .
< ﬁ:cllDuol(Q(mo,J)\ Upen B) + O(e) (since § < € and by (4.13))

= 3,_3__101 [1Dul(@(20,6)\ Upen B*) + |Duol(Usen(B\B))] + O(e)

(by the definition of ug)

< 7777 C1 [IDactl(@(@0,4)) + IC(wI(Qz0,)) + 1D;ul(Qz0,6)\ Usex B)

+Dacuol (Upen(B\B)) + |D;uol (Usew (B\B))| + O()
(by the choice of é;, and up)

1

St [ Iel@lH ) + 06

sJ

(by (4.11) and the size of the extension B¢)

__ 1 3(2) — u- (2 dHN -1
—JN-lclBEG%[/BBmH_(mtu<x) u™(28)|dHN (@)

+ / li(z) - u* (z5)|dHY 1 (2) | + O(e)
8B¢NH+*(zp)

< O(e) (by property iii) of B¢)
and we have (4.1). O

5 Lower Bound

In this section we prove that
I(u,Q) > / QW (Vu)dz + / h([u},v)dHN ! + / QW= (dC(u)).
Q S(u) Q

As mentioned in the introduction, we rely heavily on [6], and we use the blow-up method
introduced by Fonseca and Miiller in [14].
Let u, € SBV(Q;RP) be given such that u,, = u in L*(9, R?) and

lim inf [ /ﬂ W (Vu,)dz + HVN 1 (S(un) N n)] =

n—o00

n—o0

lim [ /9 W(Vug)dz + HVN 1 (S(un) N n)] < 0.
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Define a sequence of Radon measures by
<t >i= [ $@W(Vun@)ds + [ pl@)dHNH (o), for all ¥ € Co(@).
Q S(un)

Since sup,, |un|(§2) < oo, there exists a subsequence (not relabeled) and a finite Radon
measure g such that g, = p, i.e., for all Y € Co(Q),

<my>= lim [ /n $(@)W (Vun)dz + /S ( )¢(z)cm"-*] :

The Radon-Nikodym Theorem allows us to write
= pa LN + pyl]HV S () + pelC ()| + b4,

where p, > 0. In view of Proposition 3.3, we need only show that

a) po(zo) > G(Vu(zp)) for LN-ae. 29 € Q,

b) us(zo) > Mﬁ%)x_:ﬁﬂll for HVN-l-ae. 2o € S(u)NQ,

and
€) pe(z0) > G(3G(f (20)) for |C(u)|-2e. zo € 9.
Proof of a):

Let zp € Q be given such that

=0+ € B(z0,¢)

|lu(z) — u(zo) — Vu(zo)(z — 20)ldz = 0,

pa(zo) = lim, -’icg—g”ﬁ"-s-)l exists and is finite,
[ 2aed

and note that the above hold for LN-a.e. £ € Q. Also, since u(Q) < oo we have p(92N

8Q(zo,8)) = 0 except for countably many § > 0, and we choose 6 < % such that Q(zo,6x) C

2 and p(8Q(zo,dx)) = 0. Then

p(Q(Zo, 6k))

Ba(zo0) = kli’ngo oN
k

= lim _1]7 lim / W(Vun(z))dz + HN1(Q(0, k) N S(un))
6k Q(z0,54)

k—o0 n—oo

= lim lim [ /Q W (Vun(zo + Sry))dy + éu"“ (Q n M)] :

k— 00 n—=00 Ok

where the second equality follows from Section 1.9 Theorem 1(iii) of [10] modified for Radon
measures on {2 (the modification being the requirement that B C ).

Define uy, i (y) := ﬂi‘ﬂgfﬂm for y € @, and note that

1, ,n-1/Sun) -2
./QW(Vun(zo + &cy))dy + 6—;;7{ 1 (T ] Q)

= [ W(Tuns@))dy + 3 HYH(S(uns) N Q)
Q k
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Then
lim hm Hunk = Vu(zo)yllLr@rr) =

k—oon
. . 1
= k—roo nli)nc}o ‘6_/ ‘u"’(xo + 6ky) - U(xo) - 6kvu(x0)yldy
}_{{‘;o n;oo = / [un(zo + diy) — u(zo + xy)|dy
+Jim tim = [ o+ 6)  ulzo) — 8. Vulaolyldy
= kli)n;o Ok /Q |u(zo + 6,;;{) - u(Zo) — 8k Vu(zo)yldy
=0,
and

hmsuphmsupE—’HN 1S(upk)NQ) =: M < 0.

k=00 n—oo

Choose a subsequence of d;, not relabeled, such that

[ / W (Vun(zo + 61y))dy + 6—71" Y(S(unk) N Q)] < pa(zo) + -

n-)oo
. 1
Jim (lunk = Vu(zo)yllL: @ws) < 35 and

lim sup —’HN YSuax)NQ) < M +1.

n—o0 51:

Then select ny > k such that each of the above inequalities remains true. It follows that
Uk 1= Un, k — Vu(zo)y in L'(Q; R?),
HN=1(S() N Q) = 0,

and we have
pa(ao) 2 imsup [ W(Vuy)
k=00 JQ

> G(Vu(zo))-

Proof of b):

Let o € S(u) NN be given such that

1

T u™(z) - vt (2)|dHN 1 (2) = Ju (zo) — ut (o),
650+ 8N=1 Js(u)n(20+6Qu(ag)) ! ) ) | l

1
=¥ u(z) — u* (20)| ¥FTdz = 0,
§—0+ N {z€B(z0,6):(z—z0)-¥(z0)>0} l
lim slﬁ / |u(z) — u™ (20)|¥Tdz =0, and
60 {z€B(z0,8):(z—20)-¥(x0) <0}

(2: ) (30 + JQV(ZO))
HITo) = o+ jut — u=|HN -1 S(u)(zo + 6Q.(z0))

exists and is finite,
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and note that the above hold for HV¥-! a.e. z € S(u). For simplicity of notation, we write
Q := Qu(z0) and Q(z0,8) := 7o + 6Q. As in a), choose & < } such that Q(zo,8;) C 2 and
1(8Q(zo,0x)) = 0. Then

(z ) ”(0(3076))
w(Ee) = I e T T[S () (QGer9))
1 1
= lim / d
o) 5% 57T Joqaoay @
1 . 1 . N-1
= lim lim W (Vun(z))dz + H S(u,) N )
|[u]($0)| Emyoo 6N"1 oo [-/Q(zo.&) (Vun(z)) (S(un) NQ(zo k))]
1 N-1 S(up) = 2o )]
__"U](Io)l Jom  lm [6);/ W (Vun(zo + 8iy))dy + H (——_5k nejl.
(5.1)
For y € Q define u, & (y) := u,.(:co + 8xy) and
[ ut(zo) ify-v(ze) >0
uo(y) "{ u(@0) if y-v(zo) < 0.
Since uy, — u in L*(2;RP) we obtain
lim lim / lun,k(y)—uo(y)ldy = lim =5 fu(z) — ut (zo)|dz
&—+oa n=co 6 {z€Q(z0,61):(z—20)-¥(20)>0}
. 1 -
+ khm 5 |lu(z) — u™(zo)|dz
=0 0 J{zeQ(z0,0x):(z~20)-¥(20)<0}

=0.
Note that S(u, i) = &%Z_—z"-. Then, by (5.1) we have

1
[ (@0) = 4 (@0)] Koo oo

4#1@n S(un) + | (8 (520 - wer(vun ) ) ).

s (z0) = [ / W (Vun 4 (3))dy

lim sup lim sup
k=00 n—oo JQN{||Vun.rll<6:L}

W (V;‘"”‘) — W (Vun )| dz
k

+ lim sup lim sup W (V:: L ) - W*®(Vupi)|dz

k=00 n—oo ~/Qn{IIVun.hH>5hL}

< limsuplimsup/ 6xC[1+ L]+ 6L
k=0 n—oo JQN{||Vun k||<sL}

+ lim sup lim sup C||Vup k||~ dy
k=00 n=—00 JON{||Vuni||>8:L}

1-m
< lim sup lim sup CS* (/ ”V‘un,k(y)"dy) =0,

k—oco n—oo

where the last equality follows from the bound on { fQ IVun x(y)||dy} due to (5.1). We now
have
- 1 oo N-1
1o(e0) = ey Ty dm Jim | [ W (T )y + ¥ @0 SCuna)]
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As in a), choose a subsequence of &k, not relabeled, and n; > k such that vi := u,, & = up
in L'(Q; R?) and

1 . . _
w (@) — u (zo)] 4 [/Q WE(Vur(z))dz + HYHQN sm»] :

By (zo) = ]
Since we can assume the trace of v; = the trace of uo (see [13]), it follows that

h([u](z0), v(20))

ut(zo) — u~(zo)|

py(zo0) 2 I

Proof of c):

We will use the following:

Lemma 5.1 Let A be a Radon measure on  C RN. Then, for A-a.e. T € Q, given any
open, bounded convez set C containing the origin, there is a sequence 6; = 0% and a Radon
measure vy on C such that

— )\(.'l: + 6;") .:\ -
X5, () == Nz 1 5.0) v on C, and v(C) = 1.
Proof. We first show that for A-a.e. z €  we have
. . Mz +6C)
lﬁlﬂé{}f 3N >0 (5.2)

for all C as in the statement of the lemma. It is sufficient to consider (5.2) for an open ball
B containing the origin, since § B C C for small enough 8. Put

3N
Let € > 0 be given, and using Besicovitch’s Covering Theorem, choose a countable family
of disjoint balls z; + ;B C € such that A(4\ U (z; + 6;B)) = 0 and A(z; + 6;B) < e6N. It
follows that A(4) < e5w{D, which implies A(4) = 0.
Fix z € Q for which (5.2) is satisfied. Without loss of generality, we can assume z = 0.
Let n € (0,1) be given and set é; := n*. Suppose that

A:={zen;nmmf’\(”—+6-@=o}.
=0+

limsup As, (nC) < ™.
8:—0+

Then we can choose j € N and a € (0,7") such that if i > 7, then

A(é:inC)
3GO) <

We now have .
A(4:C) < A(6;C)a*

T
as i — oo, which contradicts (5.2). Hence, we may extract a subsequence, not relabeled,
and choose a Radon measure 4 so that )5, = 7 on C and A, (nC) > a, where a < 7.
Choose B € (n,1) such that v(88C) = 0. Then, for a subsequence and a Radon measure ¥,
Ags; 2 5 on C, and for any Borel set A C C we have
A(B&;A)

A(B6;C)

1 \(B5;A)
a A&:C)

'\56.' (A) =

1
= EAJ.' (ﬂA)
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Let € > 0 be given and let D C C be an open neighborhood of 83C such that (D) < e.
Then

lim sup Ags; (2 n C) < 1 lim sup Ag;, (D)
5i-0+ B a 50+
< =v(D)

<

Rim QR|r

Hence,

10 27 (\5)

s ()
§;—0t ﬂ

From the arbitrariness of ¢, it follows that ¥(C) = 1. m]

|

> limi ‘
2 lim inf Age, (C’\

€
>1—-—.
a

Now let zg € € be given such that

|Dul(Q(20,6)) _
50+ |C(u)|(Q(z0,6))

. |Dul(Q(z0,9)) _ , ;. |Dul(Q@(z0,6)) _
61_1'r(sz+ oN-1 =0, al-lfon+ oN =%
e i Du(Q(z0,9))
" 650+ | Du|(Q(z0,6))
. #Q(z0,8)) _ . _u(Q(z0,6))
elo) = I, [OIQz0,8) — 455+ Dul(@aor )
Note that the above hold for |C(u)| a.e. = € §, where the statements regarding Ay are due

to Alberti [2]. Without loss of generality, assume that v = ey and |a| = 1. Choose & < }
such that, setting

exists and ||Ao|| = 1,40 =a ® v, and

&1 1
Zk(z) = IDul(Qk(zo’ak)) I:U(zo + 6};1‘) - gkﬁ ~/Q(zo,6,,) u'(y)dy] )

the sequence {6} is selected according to Lemma 5.1 so that, with A := |Du| and 7 equal
to the weak * limit of |Dzx|, we have ¥(Q) = limy o |[D2zk|(Q) = 1. Note that, using
notation from the proof of Lemma 5.1, the 6; chosen here are of the form 36;. So, by
choosing an appropriate 3 in the proof of Lemma 5.1, the 6; can also be chosen such that
#(8Q(z0,6x)) = 0 for all k. Then

o w(Q0, )
uel@o) = B D Qzo, 1))
1

¥5% TDul(Q(z0, 50)) n Jaao sy "

w1y N
= Jim s i [ RO I(Q(zo,ak)nS(un»].
(5.3)
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Also,

& ! 1
limlim"——/unz+6:r:—-—/ u,(y)d
k=00 n—seo | Du|(Q(20,6k)) Jo (70 + 8iz) 8Y Ja(zo.sr) (w)dy

1
- [u(zo + 0kz) — W‘/;(z s )u(y)dy]
0+9k

By (5.3) and (5.4), using a standard diagonalization argument, choose a subsequence {uy}
such that

dz = 0. (5.4)

R T ~-
heleo) = . Tl Qe 520 [/Q(zo,a.) W(Tu@de + BTSN Q("”‘s*))]
and .
12k — zellLr (@ire) = 0, (5.5)
where .
S _1
tx(z) := IDUI(Qk(Io,Jk)) [uk(zo + 0k x) oy /Q(zo,a,,)u’c(y)dy] ,
_ & 1
(%) = (5@ o 52)) [”‘“ *82) = /Q(zo,m ““’)d"] '
Setti
e |Dul(Q(zo0, 6))
iy = e
61:
ok = IDUI(QN(SIO761€)) =0
6’:

we conclude that
1 1 _ _
peteo) = Jim [ [ WieeTan(@)de + 51" (5@ nQ).
k—oo [tk Jo 6 »

Then
HN-1(S(@k) N Q) — O (since 6; — 0F) (5.6)
and 1
e(z0)  limsup — / W (tx Vit (z))dz
k— o0 tk Q

= limsup / W (Viie (z))dz (5.7)
Q

k—00
just as in b). Since

L“ma=mea=o

and

ID#|(Q) = |Dz|(Q) = 1,

by (5.5) and Poincaré’s inequality, there exist subsequences (not relabeled) {z¢}, {@ix}, and
there exists ug € BV (Q; RP) such that

2k, 8k — up in LI(Q;RP).

Now,
Du(Q(zo, dx))

Dz(@) = 5ul(@ (o, 6¢))

—“Ap=a®en
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and |Dz|(Q) = 1 so, by Proposition A.1 of [14], it follows that
|Dzy — (Dz - Ao)Aol(Q) — O,
from which we conclude that
|D2y - €|(Q) 2 0fori=1,...,N—-1.

Since
|Dug - ;(Q) < li:ninf |Dz; - €;](Q) =0,
—00

we obtain

w(@) = doan) € BV (=33 ) %)

Note that, in general, if ux = 5, |ux| = 7, and ¥(Q) = limk—eo |1£](Q), then 7(Q) =
limg_, 0 px (Q). Here we have Dz = 7 and (Q) = limg—o0 |Dzk|(Q), so that n(Q) = Ao.
On the other hand, zx — up in L'(Q;R?), which implies that Dup = 7 in Q, and so
Duo(Q) = Ao. Thus, ug(z) — Ao(z) = p(zn) + ¢, where p(-1/2) = p(1/2) = 0, and
uo(z) — Ao can be extended periodically to RY. Without loss of generality, we can assume
that the trace of 41, equals the trace of ug, so that #; — Agz can be extended periodically,
and we call this extension wy. Set

vi(z) = Aoz + %wk(ja:)

and note that, for z € Q; = (—3;,3;)", we have Vui(z) = Vi (jz). By (5.6) we may
choose k(j) > j such that ?{N'I(S(vi(j)) NQ) < }, and we have

vj = vi(j) — Agz in L' (Q; RP)

and
HN1(S(v;)NQ) = 0.

Furthermore,
/Q W (Vo;(@))dz = iV /Q W (Vi z))dz = /Q W (Vi (z))de
and so, by (5.7), we need only show that

G*™(Ap) < ﬁmsup/qW“(Vv,-(z))dz.

J—oo

By (2.3) we have

G*(4o) < limsup = lim sup / W (tV; (z))dz
j—=oo JQ

t—oo ¢

=limsuplimsup/ de
Q

t—00 J—oo

< lim sup lim sup / [W“(ij(z)) + ‘TC:T] + / l01 [1+1I)
tsoo  j—oo | J{t|Vu;|>L) Lm-1t {tIve;1<Ly t

<limsup [ W*®(Vv;(z))dz.
Q

J—o0

25



6 Optimal Jump Microstructure for Scalar Valued Func-
tions

In Section 3 we proved that, for sequences whose energy approaches the infimum G, it is
not necessary to allow a singular part of the variation measures for {u,}, provided we know
that |D,us| = 0, or if we know that #V¥~?(S(u,)) = 0 in the case where u, € SBV. In
other words, there is no gap when considering the infimum over smooth sequences and over
sequences “almost” smooth (see Lemma 3.1 and Proposition 3.3).

The question now is, what behavior is it necessary to allow for admissible functions for
h? That is, how do infimizing sequences behave? Below, we answer this question completely
for scalar valued functions.

Looking at the definition of h(p,v) (see (2.5)), we see that admissible functions may
have both jumps and nonzero gradient. Is this necessary? Is it possible that there is an
admissible function v that jumps and has nonzero gradient, and the energy of v is below
the infimum over functions that just jump, and below the infimum over functions in W1:1?
The answer to this question is “yes”, and we will see that the natural example illustrates
the behavior of infimizing sequences. The square in Figure 2 on page 30 represents @, for
N = 2. Suppose that CW > (pr) > 1 and W (pu) < 1 for some p € R* and unit vectors
v,p € R?, where v - > 0. We then see that a function that is 0 below I' := I'; UT,
and p above, with a jump across I'; and affine growth across a narrow extension of I', has
lower energy than the infimum over functions that just jump (this infimum is 1), and the
infimum over functions in W! (this infimum is CW®(pr)). Note that this example fails if
CW® is isotropic. We show that this behavior is optimal. The idea is this: first, we give a
coarea formula which allows us to consider, for any admissible function for h(p, v), the bulk
energy as an integral over measure-theoretic boundaries of level sets. We may then choose
a “good” level set. Next, we prove that it is energetically better for the jump part of the
boundary, i.e., S(u) intersected with the boundary, to be connected and flat. As we will
show in Lemma 6.1 below, we can assume that W is convex without changing the infimum
of the energy, in which case we will prove that the remainder of the boundary might as well
be flat, and we conclude that Figure 1 on page 30 captures the geometry of minimizing
sequences.

We begin with
Lemma 6.1
hw = how.
Proof. Since CW < W, it follows that hcw < hw. Conversely, let u be an admissible
function for hcw. By the relaxation theorem (Theorem 2.1), we have
16,@ < [ CW(Tu)de + 1Y 1(SWNQ),
Q

where we use the fact that h < 1. It also follows from Theorem 2.1 that

Iew(u,Q) = /Q CW (Vu)dz + /s (u)nthw([u],u)d'HN‘l.

By the lower semicontinuity of I, we have

/ CW (Vu)dz + / haw (ful, v)dHN ! < / CW (Vu)dz + / how (ful, v)aHN 1,
Q S(u)NQ Q S Q

(u)Nn

which implies hw < hew. m]
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Lemma 6.2 Let ) be a finite Borel regular measure on Q and let f:Q — RN be A\ measurable
with || f|loo < 00. Then there is a sequence {fn} C C(Q; RN ) such that f, = f A-a.e. and
[Ifalleo < |Ifllec for all n.

Proof. By a corollary to Lusin’s Theorem (see Corollary 1 to Theorem 2 in Section 1.2 of
[10]), for each € > 0 there exists a continuous function f¢:Q—R" such that

Mz €Q: f(z) # f(@)}) <&,

and, by truncation, we can assume that ||f¢||oc < ||f|lco- By Theorem 1 (ii) in Section 4.2.1
of [10], there exists {f5} C C*(Q;R") such that ||fglleo < |Ifllco and

f& — f° uniformly on compact subsets of Q.
n

Choose an increasing sequence of compact sets C, C Q such that A(Q\C») < L. By cutting
off f¢ outside C,, so that f¢ € C$°(Q; RN ), we have

fa— f€ Aae.
It follows that we can extract a diagonal subsequence {f,} such that

Jn— f Aae.

We now recall some notation: for u € BV (Q), set
E,:={z€Q:u(z) >t}

For r € 8,E; C Q (see (2.1)), we denote by vg, (z) the measure theoretic unit inner normal
(see Theorem 1, Section 5.8 of [10]), i.e.

/ divg(z)dz = — / é(z) - vg, (z)dHV 1 (z)
E; 8. E;

for all ¢ € C3(Q; RV).

Lemma 6.3 (Coarea Formula) Let u € BV(Q) be given, and let f:Q x M**N 5 R be
a Carathéodory function, where measurability is with respect to |Du|, and positive homoge-
neous of degree one in the last variable. Assume further that f (:c, ;l%%l((%) € L>(Q,|Dul).
Then

/ f(z,dDu(z)) = / / f(z,v5, (@) MV (2)dt. 6.1)
Q R J8.E;

Remark 6.4 Note that for fixed u € SBV(Q), if we have a Carathéodory function g :
Q xR x M!*N 4 R, where measurability is as above, and which is positive homogeneous of
degree one in the last variable, then we can take f in the coarea formula to be

f(za ) = g(zy ﬁ(z)r ')1

assuming 4 is | Du| measurable and g(z,ﬁ(:c), dD: L ) € L*=(Q,|Dul).

If we want to consider a representative @ of u, it must be defined |Dul-a.e. and be |Du|
measurable. For example, we could take @ to be the precise representative of u, or just the
precise representative of u on Q\S(u) and u* or u™, or even [u] on S(u). In the former
case, and if u € SBV, we have

g(:c, ﬁ(z)) dDu(z)) = XQ\S(u)g(x) ﬁ(x)’ dDu(z)) + XS(u)g(zs 17"(m), dD“(x))
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so that (6.1) reduces to

/ 9(z,4(z), Vu(z))dz +/ g(z, i(z), [u)(z)v(z))dH N (z) =
Q S(u)

[ [ / oz, t, v, (2))dHY 2 (z) + / oz, 5(z), vE, (2)aH ~ (z) | dt.
R 8.E:\S(u) 8.E:NS(u)

Proof of the Coarea Formula. First we show that for any |Du| measurable set A C ,
|Du|(A) = 0 implies H¥N "} (AN 8,E;) = 0 for Ll-a.e. t. (6.2)
Note that for all B C Q open (see Theorem 1 (ii) of Section 5.5 of [10])

|Du|(B) = /; |6E,|(B)dt

- / HN-1(B N 8.E,)dt.
R

So,
IDul(4) = inf IDu((B)
B Open
= inf / HN-1(B N 6.E,)dt

BDA
B open”R

=0
which implies that
inf HN-Y(BNO.E;) =0 for Ll-ae. t,

BDA
B open

and so
HV-Y(ANB.E;) =0 for Ll-ae. t.

We know (see claim 1 in the proof of Theorem 1, Section 5.5 in [10]) that
/Q w(z)dive(z)dz = /R /E divo(z)dedt
for all ¢ € C}(Q; RV). Hence, |
[ 6@ -o@apui@ = [ [ ¢(e)-ve, @) @yt (63)
Q R J8.E;

for all ¢ € C}(Q;RY), where
(z) = dDu(z)
TE T Ay

We now show that for £1-a.e. t € R, we have
o(z) = vg, (z) for HV '-ae. z € 8.E;. (6.4)

Using Lemma 6.2, choose o, € C3(Q;R?) such that o,(z) = o(z) |Dul-a.e. (and so, by
(6.2), HN-1|8.E;-a.e. for Ll-ae. t) and |o,| < 1. Note that o, - vg, is HVN"!|8.E;
measurable since vg, is, and

t on(z) - vE, (2)dHN Y(2) = / divoy(z)dz
8.E; E,
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is £ measurable (see, e.g., the proof of Lemma 1 in Section 5.5 of [10]). Then, by (6.3) and
the dominated convergence theorem,

~/l;'/8.E| 0'(.17) * VE, (z)d}{N_l(z)dt = lim AL.E‘ O’n(z) - VE, (z)d’}{N—l(z)dt

n—00

I
3

on(z) - o(z)d|Duj(z)

n—»o00 Q

=/ d|Du|

Q

=/ dHN " (z)dt.
R J8.E;

Since 0 - vg, <1, we have (6.4).

Using Lemma 6.2 once more, choose ¢, € C3(Q;RV) such that ¢,(z) = f(z,0(z))o(z)
|Dul-a.e. and ||¢nlloc < If(:,0(-))|loc- Then, as above,

/ f(z,dDu(z)) = / f(z,0(z))d|Du(z)
Q Q

- /Q f(z,0(z))o(z) - o(z)d|Dul(z)

lim [ ¢én(z) - o(z)d|Dul(z)
n—oo Q

n—00

= lim /R /8 | 6ole) v ()IH 7 @) by (63)

/ / f(z,vE, (z))dHN "1 (z)dt. (by (6.4))
R JO.E;
m]

Now we introduce another infimum, similar to h, but which includes only very simple
functions in its admissible class. Given v € S¥—!, we consider the family Q2 of squares
with unit edge length, centered at zero, with two edges normal to v (with v in the plane of
the square). Without loss of generality, we will assume v = ey. Now consider the square
S € Q2 with the remaining two edges having normal e; (in the plane of the square), and
we consider all curves I' C S of the form I' = I'; UT'2, where I'; is the line segment from
(-1/2,0,...,0) to some point p in the square, and I'; is the line segment connecting p to
(1/2,0,...,0) (see Figure 1). For other S € Q2, with two edges not having normal e;, we
consider analogous I' C S. Set

H(p,v) := inf{HY(T1) + pH} (T2) CW>=(u) :
S € Q2,T C S is as above, and p is the unit normal to I'; such that p- v > 0}.

Remark 6.5 Note the following:
i) H(p,v) < 1 since we can take ' =T',.
ii) The infimum H is attained since CW is continuous.

iii) If CW is isotropic, then the minimizing I" equals I'; or I equals I',.
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Fl r2

Figure 1: admissible “function” for H
Theorem 6.6 If p=1 then
h=H.

Proof. By Lemma 6.1, we may assume that W = (CW)*. Furthermore, (CW ) is convex,
since if A, B € M**¥ and A € (0,1), then

CW (A + (1 - \)B))
P t

(CW)*(A+ (1~ NB) =limsu

< lmeup XWEA) |y oo (1= NCW(B)

t—00 t—00 t
= ACW)*®(4) + (1 - X)(CW)*>(B).
Hence, in the sequel we will take W to be convex and positive homogeneous of degree one.

Step 1. We show that h < H.

Case a) N =2.

Fix S € Q2 and I C S as in the definition of H, and consider functions in SBV(S;R) that
are zero below I, p above, jump at I'; and are affine across a narrow extension of I'p, with
another jump connection near the intersection of the boundary with Iy, and we see that these
functions are admissible for h(p,v) and their energy E approaches H!(I';) + pH (F2)W (1)
(see Figure 2).

4
r

1 T
Figure 2: h< H

Case b) N > 2:
Again, let any S and T as in the definition of H be given. Choose Q, such that the re-
maining normal to S (besides v) is normal to Q,. Extend T'to Q, by T := {z € Q, :
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proj(z) onto S € T'}. We then construct functions as in the case N = 2, where here there is
a jump connection near the intersection of I'; with the face of Q, having the same normal
as S. By (2.6), these functions have the necessary periodicity to be admissible for k(p,v).
Again, we see that the energy E approaches H!(I';) + pH! (T2)W (u).
Step 2. We now show that h > H.

Let u be an admissible function for h(p,v), i.e.,

u€ SBV(Q,;R),u=pifz€8Q,andz-v>0, andu=0ifz€9Q, andz-v <0.
For simplicity, we refer to @, as Q. Applying Lemma 6.3 to

f(z,dDu(z)) = xqQ\s(u)(z)W (dDu(z)),
so that lf(:c, ﬁ%)

/ W (Vu(z))dz = / / W (v, (z))dHN 1 () dt.
Q R J8.E\\S(u)

< C, we get

Choose ty € (0, p) such that

/ Ws, @)Y @) < 5 [ W(Tu()d. (6.5)
8. Eyx\S(u) pJQ
Note that the coercivity of W guarantees that 8. E;_ has finite perimeter. Set

B := HN1(8, B;,\S(u)) and 7 := v, (2)dHV 3 (z)

" B Ja.Eg\s(w)

so that, by Jensen’s inequality,

BW(5) < / W (v,, (2))dHV " (z). (6.6)
8. Eiy\S(u) °

We can assume v = ey and 7-e; =0 for i € {2,..., N — 1}. Note that we can also assume
that @ has e; normal to two of its faces, for the following reason: let Q; be a cube with
normals en and e;. We can rescale Q and u, and almost cover {z € @; : zy = 0} with the
cubes a; + 8Q, where a; € {z € Q; : zy = 0}. Define v € SBV(Q,) by

u(25%) ifz€a;+6Q
v(z):={ O if zy <0 and z € U(a; + 6Q)
p ifzy > 0and z & U(a; + 6Q).

Using the homogeneity of W, we now have E(v,Q;) — E(u,Q) < HV-1({z € Q; : zn =
0}\ U; (a; + 8Q)), yet 7, defined as for u, remains unchanged.

We first wish to show that

[ vB(@)-ertui) =0 (6.7)

0

/ Vg, (2) -endHNY(z) = 1. (6.8)

0
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From Theorem 1 (ii) of Section 5.8 in [10], we know that if E C RM has locally finite
perimeter in RV, then

/ dive(z)dz = ~ / $(z) - vi(z)dH 1 (2) (6.9)
E 8.E

for all ¢ € C}(RV; RV ), where, as before, vg is the inner unit normal. Define E ¢ RN by
E:=E U{ze€RV\Q:z-exy > 0}.
Then E is locally of finite perimeter in RV, and we claim that
HN-Y([8.E]AC) =0, (6.10)
where C := 8,E,, U{z € RN\Q : z-en = 0}. It is clear that C C 8.F and that
(6.E)\C C 0Q,

so the idea is to show that HVN~1(8Q N 8. E) = 0. Let z € 8Q be given such that z-ey > 0
and
lim u(y) — pldy = 0. 6.11
lim B(z,r)nol (v) — pldy (6.11)
We need only show that
LN(B(z,r)\E) _

lim sup N 0,

r-+0

since then z € 8, E. We have

N
lim sup M)_ = lim sup -IWCN(B(z',r) N{yeQ:uly) <to})
r—0 r r—0 T
1
< limsup v ——— u(y) — pld
=S N ot B(z,r)hQ‘ ) - pldy
=0.

Since, by Theorem 2 of Section 5.3 of [10], (6.11) holds #~~!-a.e. on the upper half of 4Q,
and, dealing with the case z - ey < 0 similarly, we find HV-1(8Q N 8.E) = 0.

Choose ¢ € C3(RV;RV) such that ¢; =0 foralli € {2,...,N}, ¢; =1 on Q. Clearly,
divgp = —g%}, divg =0 on Q, and vg = ey on RV \Q. So, fE divg(z)dz = 0. For example, we
can take ¢ := py *x2q€1- By (6.9), (6.10), and the fact that E is locally of finite perimeter,
we have

0= / 6(z) - ve(@) KN (z)
8.FE

= / &1 - v, (2)HN 1 (z) + / $(z) - end = (z)
8.E, {z-en=0}\Q

= [ e v @),
8.Ey,
and we conclude (6.7).
Equation (6.8) follows by considering, for ¢ > 0, ¢ € C3((-1/2 — £,1/2 + &)V;RV)

such that ¢; =0 forall it < N, ¢ = —ey on Q and -1 < ¢-enxy < 0. For example, take
@ 1= —pe * X(~1/2—¢,1/2+c)¥EN- By (6.9) and (6.10) we have

[awo@z= [ en-ve @ant-i@) - [ 8(z) - endH" 1 (2).
E 8.E;, {z-en=0}\Q
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By the choice of ¢, we know that, writing z = (z',zn), if (z',0) € Q, then

it a¢N ' —
‘55;(2 )y =1

and, for (z',0) € (—1/2 —¢,1/2+€)V\Q, we have

°°8¢N '
os/0 @y < 1

We then see that
1< / divg(z)dz < (1+26)N?
E

and

<(1+2)N 11

[ $(z) - endH = (z)
{z-en=0\Q

The arbitrariness of € yields
/ en - Vi, (2)dHN1(z) = 1.
a. Eto

We now recall some facts about sets of finite perimeter (see [10]), which we apply to E,:
8*Ey, C 8.Eyy, HN"1(8.E,\0"Ey,) =0,
and if z € 8*E,,, then we have

y a(N - 1)rN-1

r0 HN-1(B(z,r) N0 Egg) 1

lim vE,, W)dH" " (y) = vE,, (2),
r+0/5+ B, NB(z,r)

where a(N — 1) is the volume of an N — 1 dimensional ball with radius 1. Let € > 0 be
given. Since HN—1|8*E,, is a Radon measure, we can choose an open set A C Q such that

AD (S(u)N 8 Eyy) and HN1((A\S(u)) NO*E,,) < €.
For each z € 8*E;, N S(u), let r; > 0 be such that 0 < r < r, implies

a(N - 1)rN-1

AN 1Bz No°Ey)

<e (6.12)

V VE,, (y)mN—l (y) = VE,, (I)
8* E;,NB(z,r)

The family {B(z,r) C A:z € 8°E,, N S(u),r € (0,r:)} is a fine cover of 3*E,;, N S(u). By
Besicovitch’s Covering Theorem, choose a countable, disjoint subcollection G such that

<e. (6.13)

#HN=1(8"E,, N S(u)\ Upeg B) = 0.
We now do some calculations to show that

HN=1(S(u) 2 [(B7 - e1)® + (1 - B7 - en)?)V/2.
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For B € G, denote the center of B by zp and the radius by rg. From (6.7) we have

|87 - e1] = |ex - / VE,, (2)dHN " (z)
8% Eeo\S(u)

e - / vE,, (2)dHN (@),
8*EiyNS(u)

and so

po-al <|Te- [ ve,@dH @) (6.14)

Beg BnB‘E.o

< Z e1- Vg, (zg)HN-Y(BNJOE,,)
Beg

+eHN-1(8*E,,) (by (6.13))

+2eHN Y8 Ey,).  (by (6.12))

<|>_ e1-vg,(@B)a(N - 1)ry~
Beg

Similarly, from (6.8) we have

Il—ﬂl-/‘ejvl =

l-en- / VE,, (.‘r)d’HN—l (=)
8* B4\ S(v)

en - / v, (2)dHN " (z)
8* EyyNS(u)
and so

p-prenl <|Sen- [ vp,@aH" @)

Beg Bna'Ego

(6.15)

<|3 en-vE, (z8)H N (BN " Ey,)| + eHN 1 (8°Ey,) (by (6.13))

Beg

< z en - Vg, (zB)a(N - 1)ry~?
Beg

+2eHN Y8 Ey,)  (by (6.12)).

Finally,
HN=1(S(u)) > HN(B"E,, N S(u))

> S #N"}(BNBE,,) — & (by the choice of 4)

Beg
>3 a(N-1)rg™ —e—eH"N"Y(8"Ey,) (by (6.12))
Beg
> Y l(er-ve,(@B)a(N - 1)r5 ™)’
Beg

+(en v, (zB)a(N = Dry 7 )’I/? — e — eWV 1 (8 By

> [ Z e1 - Vg, (zB)a(N — l)rg'l)
(34

97 1/2

! (Z en Vi, (@p)a(N ~ g 'l) —e— N1 (0" Ey,)
Beg
>[(B7-e1)? + (1 - B7 - en)’]'/? — e — 5eHN=1(0" Eyp),

(by (6.14) and (6.15))
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hence, letting € = 0, we conclude that
HN 1 (S(u)) 2 [(B7 - €1)* + (1 - B7 - en) ]/ (6.16)

Suppose that 7 - ey < 0. Then (6.16) implies that H#V~!(S(u)) > 1. Therefore, E(u,Q) >
1 > H(p,v). Assume now that 7 -ey > 0. Consider the square in the e;-enx plane with
normals e; and ey and, suppressing e; for ¢ € {2,...,N—1},takeI' =T'; UT';, where I'z is
the line segment with right endpoint (1/2,0), unit normal {Z;, and length |7|8 (if B7-en > 1,
redefine 8 := 73£). T is then the line segment from the left endpoint of I' to (-1/2,0).
Note that the length of T; is [(87 - €;)2 + (1 — 87 - en]?)*/?, and so, by (6.16), we have
HY(T;) < HN-1(S(u)). Finally, by (6.5) and (6.6), we conclude that

H(p,v) < pl7|BW () + H*(T1)

< pBW (7) + HN=1(S(u))

< / W (Vu(z))dz + HV 1 (S(w).
Q

Due to the arbitrariness of u, we have h > H. O

Remark 6.7 Suppose that the energy of the admissible functions for h is given by
Bw@ = [ W(Vudz+ [ o(u)an™,
Q S(u)

where W and ¢ are convex and positive homogeneous of degree one. Then the conclusion
of Theorem 6.6 holds. Taking

f(z,dDu) := xq\su)W (dDu) + xs(u)$(dDu)

we have

/ f(z,dDu) = / W (Vu)dz + / ¢([uv)dH ! = E(u,Q),
Q Q S(u)
and, by Lemma 6.3,

= N-1 N-1
E(s,Q) /R[ / RO / sy SE N ]dt.

The rest of the proof of Theorem 6.6 follows with the obvious alterations.

Remark 6.8 (Behavior of Infimizing Sequences) Let {u,} be an infimizing sequénce
for h(p,v). Then there is a subsequence and a minimizer I" for H(p,v) such that

HV1(S(uy)) = HY(TL) (6.17)
and

/Q W (Vun)dz — pH (T3)CW™ (). (6.18)

Indeed, for each u,,, using Lemma 6.3 as in the proof of Theorem 6.6, choose a “good” level
set E; , and construct I'y, as above. We refer to the points separating I'n ; and I'y, 2 as p,
and the squares containing them as S,,. Then the p,’s have a limit point, p, and the S,’s
have a corresponding limit square, S. We do not relabel the corresponding subsequence of
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{un}. By the continuity of CW™, p determines a minimizer I' C S of H(p,v). By the
constructions of I'y,, we know that

HN"Y(S(un)) > H (Tn1) = HU(TY)

/Q W (Vup)dz > pH (Tn2) CW™® (ug) = pH (T2)CW ™ (1).

Since {un} is infimizing, and using Theorem 6.6, we have (6.17) and (6.18).
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