
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Quasiconvexification in W ' and
Optimal Jump Microstructure in

BY Relaxation

Christopher J. Larsen
Carnegie Mellon University

Research Report No. 95-NA-024

December 1995

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



University Libraries

15213-389? T/WI A ( A



Quasiconvejdfication in W1'1 and Optimal Jump
Microstructure in BV Relaxation

Christopher J. Larsen
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
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1 Introduction
Given a functional E: T-* R, where T is a function space, a central problem is to understand
what the convergence of un -* it in ^ implies about {U(tzn)} and J5(tx). In particular, the
direct method of the Calculus of Variations can only be applied if E is lower semicontinuous
with respect to the appropriate notion of convergence in T. When there is failure of this
lower semicontinuity, a natural object to look at is the relaxed functional / : F-tR defined
by

I(u) := inf I liminf E{un) : un —¥ u\.

Often, a priori known properties of E and T ensure lower semicontinuity of I.
When E stands for physical energy and T represents states of a physical system, there is

an interesting consequence of this failure of lower semicontinuity: the apparent, macroscopic
state may not accurately reflect the actual, microscopic state or properties of the system.
That is, if the macroscopic view corresponds to u G T, all that is known is that the system
is in a small neighborhood of tx in T. HE were lower semicontinuous, then for small enough
neighborhoods, the state might as well be u, as there is no need to develope microstructure
to lower the energy. Lack of lower semicontinuity suggests that it might be energetically
necessary to develope this infinitely fine detail.

In the case of failure of lower semicontinuity, relaxing the energy has two benefits. First,
it tells us the actual energy of a macroscopic state, since given a macroscopic configuration,
the system will choose a state that is close, but with as low energy as possible. The second
benefit comes from finding integral representations of I. Often, if we let the underlying
domain A for functions in T vary, A *-> I(U\A) is the trace of a measure, in particular, a
Radon measure absolutely continuous with respect to CN -f \Du\, where CN stands for the
N dimensional Lebesgue measure in IR .̂ In finding the density of this measure with respect
to CN and \Du\y one is led to understand the local behavior of optimal approximating
sequences.

We take T to be the space of functions of bounded variation BV(ty Ep), where ficiN

is open and bounded. This space includes Sobolev spaces, yet allows jumps and other kinds
of variation. For u € BV(f2;Rp), \Du\ denotes the total variation measure of Du. We also
set

E{u)~ I W(Vu)dx + HN~l(S(u)),
Jn

where S(u) is the complement of the set of Lebesgue points of u, and *HN~l is the N — 1
dimensional Hausdorff measure. For u € BV(£l\W), we use the representation Du =
VuCN + [u] <g> vHN~x [S(u) -h C(u), where [u] is the jump in u, i.e., tx+ - u~, where u+
and u" are the traces of u on either side of S(u) (see, e.g., [10] and [17]), v is the normal
to 5(u), and C{u) is the so-called Cantor part. If C{u) = 0, we say u € SBV(Q]W),
the space of special functions of bounded variation introduced in [9]. Since functions with
Du = C(u) are dense in L1, if min W = W(0) then the relaxation of J5(-,ft) would reduce
to CN(ti)W(0). We avoid this pathology by only considering sequences in SBV, which is
equivalent to relaxing J5(-, f2)+oo|C(-)|(fi)- This corresponds to allowing macroscopic states
with Cantor part, but not microscopic states.

In [3], Ambrosio analyzed the energy functional on SBV given by

E(u) := / W(x,u,Vu)dx+ f 4(,
u)

under the hypotheses that W is Carath6odory and has superlinear growth in Vu, and under
conditions on <f> that, in particular, allow </> to be any positive constant. A result is that if W
is quasiconvex, and if certain assumptions on <f> are met, then E is L}oc lower semicontinuous
in SBV. This model is particularly relevant in image segmentation, where the issue is the
optimal placement of edges around objects in a photograph, as well as to smooth out each



object and denoise the initial picture. This problem can be formulated as a search for
minimizers of an energy. Specifically, one looks for minimizers of

where g € L°°(Q) is a given function representing the initial photographic image and u €
SBV(il).

In this paper, we assume that W has linear growth and <f> = 1. Physically, this last
assumption corresponds to weighing jumps, or cracks, only by the size of the jump set 5(u),
with no dependence on the orientation v or size of the jump [u]. The analysis of the model
where <f> = 1 and W has superlinear growth was carried out in [11]. The linear growth of
W allows for interaction along the jump set; approximating sequences of u need not jump
at 5(tz), but might have much more complicated behavior consisting of combinations of
smooth growth and jumps. The study of the case where W and <t> both have linear growth
was undertaken in [6] (see also [7]).

The main new contributions in this paper are the expressions for QW in Section 3, a
new method for showing the upper bound inequality for the jump density in Section 4,
Lemma 5.1 in Section 5 which allows us to blow up in such a way that the rescaled variation
measures do not lose mass as they converge weakly *, and finally a method for finding the
optimal jump microstructure for scalar valued functions in Section 6. This last result allows
us to exhibit the optimal behavior of approximating sequences along 5(u). The method is
applicable not only when the jump energy density is a constant, but also when it depends
in a positive homogenous degree one way on the jump (see Theorem 6.6).

This paper is organized as follows: in Section 2 we discuss preliminaries and state the
relaxation theorem, the essence of which is the integral representation

I(u,A) = r(u,A) := / QW(Vu)dx + / h^u^dH^1 + / (QW)°°(dC(u)),
JA JS(U) JA

where QW is the quasiconvexification of W (see Section 2), and h and (QW)°° are defined
in Section 2.

In Section 3 we show that, although QW is defined in terms of sequences in Sobolev
spaces, there are equivalent definitions in terms of certain sequences in BV. In particular,

QW(F) = inf (liminf / W(Vun)dx : un € BV(Q;W),un -> Fx in L1, and
I n-+oo JQ

\D,Un\{Q) -*

and

:=inf(liminf / W(Vun)dx : un € SBV(Q;W),un -¥ Fx in L\ and
I fl-fOO JQ

where D8u is the singular part of Du with respect to £N. An analogous lower semicontinuity
result for superlinear W was obtained by Ambrosio in [3], Theorem 3.3.

In Section 4, and in order to show the upper bound inequality / < /*, we first prove that
/ (u , •) is a finite Borel regular measure, absolutely continuous with respect to CN + |JDU|.

This follows largely from [12]. The remaining issue in this section is the upper bound for
J(u, -)L5(tt), for which we introduce a new argument. There is some difficulty with this
step because WN~X [S(u) is, in general, not a Radon measure, and so taking derivatives
with respect to WN~X [S(u) is not possible. The usual method for showing upper bound
inequalities for jump densities is based on [4] and [5], and involves approximating jump



sets with boundaries of sets with finite perimeter. The technique here is based on looking
at the intersection of the jump set with certain sets of finite perimeter. We consider level
sets Et of the components of tt, such that Et has finite perimeter and \DJU\ := |D,u|[S(u)
concentrates on S(u) D d+Et as we blow-up. We then see that the analysis on S(u) H d*Et

is much easier than on S(u). The rest follows from constructing functions in a reasonable
way, and by using a suitable covering argument.

Section 5 deals with the proof of the lower bound inequality I > /*, which is a modified
version of the corresponding argument in (a draft of) [6]. The changes include choosing
the rescaling factors so that the weak * limit measure /i does not see the boundary of the
rescaled unit cube, and so that as the rescaled variation measures converge weakly * on a
cube, they do not lose any mass (see Lemma 5.1).

In Section 6 we find the optimal microstructure along the jump set of u, for scalar valued
u. The proof relies on a coarea formula and a covering argument. It turns out that the
proof may be easily extended to the case where the jump density is a positive homogeneous
degree one function of [u]i/, and also when the jump density is just a function of the normal.

2 Preliminaries and the Relaxation Theorem
We consider a bounded, open set Q C MN, and we define the Sobolev spaces Wlil(Q) and
W1»oo(n), and the space of functions of bounded variation BV(Q) in the usual way (see,
e.g., [10] and [17]). We denote by pm , or alternatively p€, the standard mollifier, and for
E C Q, XE stands for the characteristic function of E. Given two sets A and B, we define
the symmetric difference AAB := (A\B) U {B\A).

We say that a set E C fi has finite perimeter in Q if \E € BV(Q). For such an E, the
measure theoretic boundary in fi, 8mE, is defined as

0 - d ftnsup ej°™%> > 0 | , (2.1,
+ £A(B(xd)) J

where B(x,S) is the closed ball in RN centered at x with radius 6. We denote by VE{X) the
measure theoretic normal to E at x G d*E (for properties of this normal, see [10] or [17]).
The reduced boundary d*E is the set of x € d*E such that x is a Lebesgue point for i/£,
with respect to the Radon measure HN~l [d*E. Given a set E of finite perimeter, we define
on d+E the following:

:= {y € RN : uE(x) • (y - x) > 0},

and
H- (z ) := {y € MN : vE{x) • (y - x) < 0}.

For tx € BV(Q;W), we write Du = Dacv> + D8u, where Dacu and D8u stand for,
respectively, the absolutely continuous and singular part of Du with respect to £ N . We also
consider the set S{u) of points which are not Lebesgue points for it. We set DjU := D8u[S(u)
and use the representations Dacu = VuCN and DjU = [u] (8> i/"HN"1 [S(u), where [u] is the
jump in u across S(u), i.e., [u] = u + - u~, where u"1", tx~, and i/ are such that

lim ^ / | u ( j / ) -u + ( s ) | *^dj / = O

and
lim -=rr



for ft^^-a.e. x € S(u). It is convenient to define C(u) := D8u - DjU, and if C(u) = 0,
then we say u is a special function of bounded variation, and we write u € SBV(Q,). This
space was introduced in [9].

We denote by u the precise representative of u defined W;v~1-a.e. by

^ J u(z) if x is a Lebesgue point of u
[ V ;2 lfx€5(tt).

We set R^ := [0, oo) and R := R U {-oo, oo}. We denote the space of p x N matrices
by WxN, and, for W :MPxN -»R, we define the recession function W°° :WxN ->R by

t-fOO

We say a function f:MPxN —»R is guastcont/ea; if

for ail </> € Fx + C^(A) and all F € MP*", where 4 is open and CN(A) = 1 (see [15]). We
denote by QW the quasiconvex envelope of W and by CW the convex envelope, i.e.,

QW(F) := sup{/(F) : / < W and / is quasiconvex},

CW(F) := sup{/(F): / < W and / is convex}.

We know (see [13]) that for W satisfying (2.2) below, we have

QW(F) = inf (liminf / W(Vun)dx : {un} C W1A{A;W),un -+ Fx in L ^
L n—foo y ^

for any open set A with £N(A) = 1.
For a unit vector 1/ G RN, we denote by Qv any open unit cube centered at 0 with two

faces normal to i/, and 5,, is the set

If / : M>xN -> R is positive homogeneous of degree one and fi is a Wx^-valued measure,
we use the notation

/«**-/'(£)*"•
where |/x| is the total variation measure of /i.

Theorem 2.1 Assume ihatW:MP*N -*R¥ is continuous and such that for some Co, C\ >
0 and all F € M>xN

(2.2)

Assume further that there exist m € (0,1), L > 0, and C > 0 such that

W(tF)
t

for all F € WxN with \F\ - 1, and allt> L. For Ac SI open and u € BV(A;W),

\dx + nN-1{S(u)nA)



and

/(u, 4) := inf {liminf E(un, A) : {un} C SBV(A; W), un-¥uin

Then

I{u,A) = / QW(Vu)dx+ f h([u),v)<MN-1 + f (QW)°°(dC(u)), (2.4)
JA JS(U) JA

where
ft(£, v) := inf { / W°°(Vv)dx + H^iSiv)) : v <

v = £ifxe dQv and x • v > 0, and i; = 0 if x € 9Q^ and x • v < o | . (2.5)

The proof of this theorem will be carried out in Sections 3, 4, and 5, and will use the
following alternative expression for the density ft:

v(y) = 0 if y - v = --,i ;(y) = f if y • i/ = - ,

v is 1-periodic in the directions i/i,..., I/N-I }• (2.6)

Clearly, ft > fti since admissible functions for ft have the necessary periodicity. The other
inequality follows from the fact that, after scaling, an admissible function for fti will have
the correct trace for ft after altering it to jump on a set of small W.N~l measure. Specifically,
suppose v is an admissible function for fti. Define vn) admissible for fti, by

( v(nx) if x £ ^S,/
£ i f x - i / > ^

JQV

= n" - 1 ^ W°°(Vt;n0r))<ir + n ^ " ^ ^ 1 (s(vn) n i

= nN~1 I W°°(nVv(nx))dx + nN-1'HN-1(-[S(v

Then

- f W^iVv

It is easy to prove that vn has the correct trace for ft after modifying it to jump across a
set with H1^"1 measure of order £ near dQv n ^Su.

It will also be useful to consider the function G:MPxN —•R+ defined by

G(F) := inf (liminf / W(Vun)dx : {un} C SBV(Q;W),un -> Fx
I n-foo J Q

in Ll(Q\W), and Ti^"1 (S(un)) -> o}.

As we will see in the next section, it turns out that G = QW.



3 Characterizations of QW for Sequences in BV
The goal of this section is to prove that G = QW. Note the connection to Theorem 4.5 in
[3], where Ambrosio deals with a W with superlinear growth together with a more general
jump density.

We begin with

Lemma 3.1 Suppose thatW:MPxN -»R+ is a Borel measurable function such that Co|F| —
jjg. < W(F) < Ci(l + |F|) for every F € MPxN, and some COiCx > 0. Then

QW(F) = Q*W(F) := inf f liminf / W(Vun(x))dx : {un} C BV(Q;W),
I n->oo JQ

un -> Fz in L 1 ^;!*) and \D9un\(Q) ->

forallFeWxN.

Proof. Although this follows from a straightforward application of the lower semicontinuity
theorem of [13] in BV, we prefer here to provide a direct proof.

We need only show QW < Q*W, since the other inequality follows from the growth
condition on W and standard relaxation theory (see Dacorogna [8] and Acerbi and Fusco
[1]). Let {un} be an admissible infimizing sequence for Q*W(F). The idea is to find a
sequence {vn} C W^°°(Q;RP) such that vn -> Fx in Z/^QjR*) and

liminf / W(Vvn(x))dx < liminf / W{Vun{x))dx, (3.1)
n""*°° JQ n-+oo JQ

since then the coercivity hypothesis implies that {vn} is boimded in W1*1, and using the
lower semicontinuity theorem of Fonseca and Miiller [13] in W1'1 for the L1 topology, we
have

QW(F) < liminf / W(Vvn)dx.
n-*oo JQ

/
JQ

Let e > 0 be given. Choose m > i such that

\D,um\(Q) < e (3.2)

and

JQ
/ W(Vum(x))dx < liminf / W(Vun(x))dx + e.
Q n~*°o JQ

Let i € {1 , . . . ,p}. We now use maximal functions to find a good Lipschitz approximation
for (um)i. The following is based on an alteration of the proof of claim # 1 in Theorem 2
of Section 6.6.2 of [10].

For A > 0, set

By Vitali's Covering Theorem, we can choose disjoint balls {Bixj,^)}^ such that

Q\Rxc\jB(xJ,5rJ)

311

r?



Then
CN(Q\RX) < ^ ( ^ 5 ( ^ , 5 ^ ) ) (3.3)

where a(N) is the volume of an N dimensional unit ball. Note that we have

/^(U^Bfo.r,)) < Z^lwu^KQ). (3.4)

For S > 0, put

and

where the B(xj,rj) are chosen for A = A(<5). By claim # 2 of Theorem 2 in Section
6.6.2 of [10], there exists a Lipschitz function w^s such that Wij = (um)t on ilAW and
Lip(wi,s) < cA(<$) < j(l 4- |jD(um)t|(Q)) for some constants c,C depending only on N.
Note, however, that by (3.2), \D(um)i\(Q) < \Dac{um)i\{Q) + c, and

+ ^j dxPacUm|(Q) = I |Vum|dx < i -

which is bounded since {um} is infimizing. Hence, Lip^i^) < § for a constant C depending
only on N and the sequence {um}. It follows from (3.4) that C"(B(6)) -* 0 as <S -> 0+, and
so

lim8up|P(um)i|(B(«)) < IIJ.CumJ^KQ).
60

Note that fl^*1) C flA(<52) for <5i > <J2. Hence, we may choose y e Q such that tyit<5(j/) =
(um)i(y) for all <J sufficiently small. Fix S > 0 such that

for all i € {1 , . . . ,p}, and so that

/ \um(x) - (wu{y),...,wpj
JE

for some y € Q a n d a l l J 5 c Q with CN(E) < 2p8bNe. By (3.3) and the choice of <J, we have

CN(Q\RX^) < S5N{\D8{um)i\(Q) + c) (3.5)

< 265Ne (by (3.2))

for all t € {1 , . . . ,p}. Setting vm(i) := (tui,s(x),...,u;p^(x))9 it follows that vm is Lipschitz
with Lip(um) < pi £ . Setting T := {x £ Q : «m(x) # um(x)}, (3.5) yields £N(T) < 2p8SNe,
so

/ |V«m(x)|dx <
JT



and
/ \vm(x) - um(x)|dx = / |(t,m(x) - vm(y)) - (um(x) - vm{y))\dx
JT JT

< [\vm{x)-vm(y)\dx+ [\um(x)-vm(y)\dx
JT JT

< CN(T) max \vm(x) - vm(y)\ + e

<CN(T)VNLip(vm) + e

<2p$C5Ny/Ne + e.
R:om Theorem 3 and Remark (i) of Theorem 4 in Section 6.1.3 of [10], we know that for all
ueBV,

Vu = 0 £N-a.e. on {u = 0}.

Hence,
Vwm - Vum = 0 £N-a.e. outside T,

and we have

/ W(Vvm(x))dx <
}

Since we can do this for a sequence e -* 0, we conclude (3.1). •

We also need the following lemma in order to show QW = G.

Lemma 3.2 Let W:WxN ->R+ 6e o Sore/ measurable function with W(F) < Ci(l + |F|)
/or a// F 6 NFxAr anrf some d > 0, and let f € £°°(<2; Ep) and e > 0 be given. Then for
all {un} C SBV(Q; W) with ||un||Li W ; RP) + \Dacun\(Q) < R for aline N and some R>0,
there exists a sequence {vn} C SBV(Q;RP) uniformly bounded in L°°(Q;RP) such that

S(vn) C 5(un),

and

liminf / T^(Vi;n(x))dx < liminf / W(Vun(x))dx + e.
n-+oo J Q n-fOO J Q

Proof. The proof is. a simpler version of the proof of Lemma 3.7 in [6], which relies on a
truncation argument proposed by De Giorgi. Set A := [ln(||/||oo +1)] +1 , where [•] is integer
part, and fix k € N with * > A. Let i € {A,..., k} be given. Define <& € Wlt0O(W; W) by

if \x\ < e*

Set
u\ := fc o un.

Then IKHOO < e\ Since ||V<fc||oo = 1 (see Ambrosio [3] and Vorpert [16]), we have



\DacKKQ) < \Dacun\{Q),

and
5 ( < ) C 5(un).

Furthermore, by the choice of A we have

IK - /IUi(Q;R.) = / \un{x) - f(x)\dx + / \fa(un(x)) ~ fa(f(x))\dx

^ \\un - / I U ^ Q J R P ) ?

where we used the fact that Lip(^) = 1 and fa o / = / . Now, fix n G N and set

Qi := {x € Q : \un(x)\ < e%

Note that we have

< Ci(£N(Q\Qi) + \Dacui\(Q\Qi))
Q\Qi

where £N(Q\Qi) < $ and

Poc<|({e« < |fiB(x)|
«=A

We now have that

so that
k

<(k-X + l)f W(Vun(x))dx

and by the choice of A,

-4—T j ; / W(V<(x))dx < / W(Vtxn(x))dx

+ k - [ln(ll/ll=o + 1)] V + (ll/lloo + l)(e - 1) J •

fc-A-hl— JQ

Choosing k large enough so that

< *>k - HII/lloo + 1)] V (ll/lloo + l)(e - \)) ^ 2

we see that there must be an i € {A,..., k) so that

/ W{VxJn(x))dx < f W(Vun(x))dx + e
Jo Jo

10



with ||ujj|oo < c*, where the above choice of k does not depend on n. Hence, this can be
done for all n E N, giving the same L°° bound of e*. D

We now recall the definition of G, given in Section 2:

G(F) := inf {liminf / W(Vun)dx : {un} C SBV(Q; V),un -> Fx
I n-+oo JQ

in L1(Q;Kp), and nN^

Proposition 3.3 Suppose that W :MPxN -+R+ is a Borel measurable function such that
C0\F\ - ^ < W(F) < Ci(l + |F|) /or aH F € WPxN and some C0,Ci > 0. TAen

Proof. We need only show that

QW(F) < G{F), (3.6)

since the admissible class of {un} for G(F) includes that for QW(F), and so QW(F) >
G(F). Choose {un} C SBV(Q;W>) such that un -> Fx in L^QjIP), W ^ - ^ S ^ ) ) -> 0,
and

Urn / W{Vun{x))dx = G(F).
n-+oo JQ

Because ||t/n||Li(Q;Rp) -* I I^IUHQJR") '
 w e obtain

<OO.p

Furthermore, since W(Vun(x)) > Co|Vun(x)| - ^ , we deduce that

\DacUn\(Q) = f\VUn(x)\dx
JQ

<00,

so
sup|Dactin|(Q)<oo.
n€N

Let c > 0 and apply Lemma 3.2 to / := Fx, R := sup^jvfllunHx^QjRp) + |Dacun|(<2)), and
the above e and {un}. We now have

lim / W(Vvn{x))dx < G{F)
n-foo JQ

-he

for some {vn} with the same properties as {un} and, in addition, ||vn||oo < M < oo for all
n € N. Hence, |23,vn|(<3) < 2MHN-l(S(vn)) -4 0. By Lemma 3.1, we conclude that

QW(F)< lim / W{Vvn(x))dx<G(F) + e.
n-+oojQ

Since e > 0 was arbitrary, we have (3.6).

11



4 Upper Bound
In this section we prove an inequality leading to (2.4). Precisely,

I(u,A) < f QW(Vu)dx+ f h([u],u)dHN'1 + / QW°°(dC(u)).
JA JS(u) JA

We first need the following result.

Proposition 4.1 Suppose that u € BV(A\RP), where A is a bounded, open subset of ft.
Then I(u, •) extends to a nonnegative, finite, Borel regular measure on A which is absolutely
continuous with respect to £N -f \Du\.

Proof. By using an argument similar to that for Theorem 3.2 in [12], we know that J(u, •)
is a Radon measure on A, It remains to prove that /(u, •) is finite and absolutely continuous
with respect to CN + \Du\. Let B C A be open. By Theorem 5.3.3 of [17] and Theorem
2 in Section 5.2.2 of [10], we choose un € C°°(B;RP) such that un -» u in LX{B\W) and
\Dun\{B) -> \Du\{B). Since the un are smooth, we have

= liminf / W(Vun)dx
n->oo JB

< Urninf / Ci [l + |Vun|]dx

= liminf Ci f£N(B) + |iJtin|(B)l

which, in particular, implies that I(u,A) < oo for all u € BV(A\

Fix A C ft open and u G BV(A; Ep). Note that we have

I(u,A) < inf (liminf / W(Vun)dx : {txn} C W^(A;W),un -f u in L1 (A;

so from [14] we know that

I(u,A) < I QW{Vu)dx +

hence, it only remains to prove that

J(t*,S(tO)<

The jump set 5(u) is, in general, not so easy to deal with. Indeed, there exist functions
tx € BV((0,l)2) with jump set {(x,y) € (0,l)2 : x € Q}. Furthermore, although for
such u one has E(u) = oo, we know that J(it) < Ci[l -f |Pu|((0,1)2)] < oo. However,
measure theoretic boundaries of sets of finite perimeter are much easier to handle and, for
our purposes, there are connections between S(u) and certain sets of finite perimeter that
we can exploit.

12



Remark 4.2 Let u 6 £V(fi) and let D C R be dense. Then

S(u) = |J s(u) n d,Et = |J d.Etl n a.Et2)

where £* := {x G ft: u(x) > t}.

If u € BV(ft;Rp), we denote the t level set of u* by E|. Also, if u G BV(ft), then Et has
finite perimeter for ^-a-e. *, and {x G 5(u) : u~(x) < t < u+ (x)} C &25t (see, e.g., the
proof of Theorem 1 in Section 5.9 of [10]). We also point out that for u € BV(il\ W), we

If T C ft has finite perimeter, then W^"1 [9*T is a Radon measure. Since S(u) is
measurable, we conclude that \s(u) € LHn.W^^L&T). So, for HN"l-^e. x € S(u)Dd*T
we have

HN-l(B(x,6)Dd.T)

= Bin / xswrfw^-Ha-r

= 1,

where the first equality follows from Corollary 1 (ii) in Section 5.7.2 of [10]. Hence, if
D c E i s countable and dense and such that El has finite perimeter for all t € D and all
t € {1 , . . . ,p}, then for T i^^a .e . x € S(u), for all* G D n (ut"(x), uf (x)) we have

, <J) n a .E t

Furthermore, since [u] € ^ ( J l ^ ^ K S W n A f i ) ) , for nN^-h.e. x € 5(u), for all
t € D n (u~(x),wf (x)) we have

Note that the same is true if B(x,6) is replaced by Q(x,6) := x 4- &Qv{x)- Hence, for
ft^-^a-e. x G 5(u), for all t € £> n (u~(x),uf (x)) we have

Urn jjL- f IM(y)|dHN-1(y) = |[u](x)|. (4.3)

On the other hand, for 'H^^-a.e. x G S(u),

Km /
Q(x,6)nS(u)

which, together with (4.3), shows that for Ti '^-a.e . x G 5(u), for all t G PD(ut"(x),u+(x))

We are now ready to prove (4.1). First, we note that W°°(£ 0 v) is continuous since the
limit W°° is obtained uniformly (see (2.3)), hence h(£,i/) is continuous. Note further that,
for Et as above, [u] and v are W^"1 [(S(u) O 9* JBt)-measurable, and ft < 1, so
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Let x0 € S(u) fl n and t e 1 be given such that u~(s0) < t < uf(x0), Et has finite
perimeter,

T / |Vu|dx = 0,

Urn

and

lim = 0. (4.6)

Note that the above can be done for 7fAr~1-a.e. x € 5(u) (the last three follow from
(4.4) and (4.2)).

Let e > 0 be given and choose Sxo € (0, e) such that if S € (0, <5Xo), then the above equal-
ities hold to within e. If, given S € (0Ao) and n £ N, we can find v €
such that

and

then it follows that

\DjU\(Q(x0,6)) \[u](xo)\ '

and so

Ku,s(u))<[ » W £ ) ) | [ U ] ( I ) | ^ - 1

and we have (4.1). Let S € (0,5XO) and n € N be given. Choose A C £J(xo,£) open such
that

S(u) Od*Et n Q(xo,6) C 4 and £N(4) < min{e, 1}.

For ft^-^-a-e. x € 5(u) n d*Et D Q(xo,6), choose rx > 0 such that B(x,rs) C ^l and
r € (0,^) implies, using (4.2) and (4.6),

B(x,r)C\H+(x) 6n '

— 1

and

L \H[u](y)Mv)) ~

(4.7)

- l ) ^ " 1 . (4.8)
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In addition, for W^^-a-e. x € Q(xOiS) 0S(u) Dd+Eu

i r f v.i i
—rr / I |t2(j/) —U (x)|rfW (j/)dr = —rr
T JO JdB(x,r)r\H-(x) r JB(x,r)nH-(x)

(4.9)
and similarly for tx+(x). So, we consider the set T of those points in S(u) nd*Etr\ Q(xo,6)
such that we can choose rx as above, and (4.9) holds for tx""(x) and u+(x). For x € T, set

:= {r G (0,r.) : / |fi(y) - u~{x)\dHN~l{y) < e6N~lrN~\

r is a point of approximate continuity for the function

and similarly for n+ >.

Since the family {B(x,r) : x € T,r € i?x} is a fine cover of T, by Besicovitch's Covering
Theorem, there is a finite, disjoint subfamily H such that

)<e (4.10)

and
\Dju\(T\UBenB)<e6N-1. (4.11)

Put k := #%. We now extend the diameter of each ball B € Ti by at most k\\u\(x \i>
obtaining a ball B e C -4, so that the following hold:

i) the Be are mutually disjoint;

iii) / \u(x) - u-{xB)\dUN-\x) < e6N-lr%-1 and similarly for u
JdB*nH-(xB)

iv) / \u(x) - u""(x5)|dx < a^ 1O
 B < , and similarly for u+(xB).

J(B*\B)nH-(xB) lZn

Define txo by uo := u on O(xo,5)\ UBZH B€, and

Again, by Theorem 5.3.3 of [17] and Theorem 2 in Section 5.2.2 of [10], we can choose

«m = Uo * Pm € C°°(Q(xOi

such that
um -> u0 in

and
Pum|(C3(xo,<J)\ UB€K B) -> |J5uo|(G(xo,*)\ UB€W B).

Let m be sufficiently large so that, for all B G W,

1
rB« - r B > —,

m

.rB- - ^ ) : dist(x, J¥(i } )

)! <e<JAr-1, (4.13)
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on

and

(4.14)

(4.15)
UB€-H(B<\B) on

We now slightly alter um as follows: on B\XB,TB* - mJV^* w e s e t Um :== u°* Note

this introduces a jump on H(XB) n i?(x£,r£« - ^ ) \ £ , and on {x G dB(xB,rB* - ~ ) :

dist(x,#(x£)) < ^ } . By (4.12), we know this last set is of small HN"X measure.

We extend um to UsenB as follows: for each
h([u](xB),v(xB)) such that

JQ

?i, choose VB admissible for

%](«fl),"(»«)) + i - (4-16)

Put

We can select aj € H(XB) n B such that a;- + X
1 (H(XB) H B\ Uj {aj + tQ,,(«B))) < O(J). We define

mutually disjoint, and

u (xB)

Note that as k -¥ oo, u£, -» uo in

and

if x € O; + £(

ifx€Bfli3 r +(xB)\U(a j

i fxGBnfT-(x B ) \U(a i

. Furthermore,

(uk
m,aj + i

Since, by (2.3),

dx

(4.17)

as k -4 cx>, we can choose fe so that, setting um := u^, we have

- tx"(xB)|ctr < - r - , and similarly for
12n

(4.18)
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and, using (4.16) and (4.17),

\E(um,B) - [a(N - l)r2-lh([u]

We now have

a(N)r%W(O)] | < | . (4.19)

|um-u|dz

\um-u\dx

\um(x) - u~*( \u(x) - u~>+(xB)\dx

\um - uo|dx +
B)

(by (4.14))

+tn

(by (4.18) and (4.15))

i . (by property iv) of Be)

Finally, we have
E(um,Q(x0,6))

fiN-l

<

and

h{[u]{xo),v{*o)) ~ ^ r r 72,

h < h([u](xo)Mxo)) - ^ E a ( J V - l)r^-1/i([u](xB) O(£)(by(4.19))

- SN-I

(by (4.7))

6N-lh([u](xo),p(*o))-

(by (4.8))

N-\x) +O(e)

< _ ^ _ ^ f - /i([u](x), vix^dH14-1 (x) + O(e)

(by (4.5) and (4.10))

o,6)ns(u)ndmEt

< O(e); (by (4.6))

-h([u)(x)Mx))\dHN-Hx) + O(e)
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W{Vum)dx + H^iSium) n [Q(xo,S)\ UB€H B])]

J
^ Tjvrr / d ( l + |Vum|)dx + 0(e) (by the choice of Be and (4.12))

0 JQ(xo,f)\UBe-HB

lJQ(*o,S)\UBenB

^ B) + O(e) (since <5 < £ and by (4.13))

= j]kiCi [\Du\(Q(xo,S)\UB6HB<) + |Z?uo|(UB€K(Be\S))] + O(e)

(by the definition of u0)

^ SJ7=iCi [\Dacu\(Q(xo,S)) + |C(u)|(g(a!o,«)) + \Dju\{Q(xOtS)\ UB€u B)

+\Dacno\(UBen(Be\B)) + |I>itio|(UB€W(Be\B))] + O(e)

(by the choice of SXo and uo)

< TJ^TCI / KfioKxJIdW^-1^) + O(e)
0 JuB€ndB<

(by (4.11) and the size of the extension Be)

C I
I / \u(x)-u-(xB)\dmN-1(x)

-1^)] + O(e)
J

/
JdB'nH+(xB)

< O(e) (by property iii) of Be)

and we have (4.1).

5 Lower Bound

In this section we prove that

I(u,il) > [ QW(Vu)dx+ I h{[u),v)dHN~l + / QW°°(dC(u)).
Jn Js(u) Jn

As mentioned in the introduction, we rely heavily on [6], and we use the blow-up method
introduced by Fonseca and Miiller in [14].

Let un e SBV{Q]W) be given such that un -» u in Ll{Vt,W) and

liminf [ / W(Vun)dx + nN^(S(un) n Q)] =n-4 o° Un J

\ r M , 1
lim / W(Vun)dx + ?i^"1(5(itn)nf2)| < oo.n-^°° Un
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Define a sequence of Radon measures by

< //„, V >:= / rp(x)W(Vun(x))dx + f rj){x)dHN-1{x), for all ip G C0(n).
JO, Js(un)

Since supn |jin|(fi) < oo, there exists a subsequence (not relabeled) and a finite Radon
measure \x such that /xn —̂  /x, i.e., for all ̂  E

i, V >= lim

The Radon-Nikodym Theorem allows us to write

fi = /za£" + HJ\[U)\HN-1 [S(u) + /ic|C(u)| + /i f,

where /x, > 0. In view of Proposition 3.3, we need only show that

a) fia(xo) > G(Vu(x0)) for £N-a.e. x0 € fi,

b) w(*d) > M[fuT(^)(ro)) for KN-1-™- *o e 5(u) n n,

and

c) /xc(xo) > ^ ( ^ ( x o ) ) for |C(u)|-a.e. x0 € «.

Proof of a):

Let xo G 17 be given such that

lim - / |u(x) - u(xo) - Vu(xo)(x - xo)|dx = 0,

(a*) = lim ftWfry»g)) exists and is finite,/x0

and note that the above hold for £;v-a.e. x E 17. Also, since /i(fi) < oo we have /x(S7 fl
c?Q(xo, ̂ )) = 0 except for countably many S > 0, and we choose <$* < | such that 0(^0^*) C
n and fjL{dQ(xo,6k)) = 0. Then

= lim i Hm I / WWunWdx + HN-HQixoiStinSiunM
k->oo 6£ n-foo [y<5(,0,^) J

= lim lim [ / W(Vun(x0 + 6ky))dy + j-K*-* f Q n 5 ( t t n j " Xo>)1 ,

where the second equality follows from Section 1.9 Theorem l(iii) of [10] modified for Radon
measures on fi (the modification being the requirement that B c f i ) .

Define unfjb(y) := M»o-*>y)-t»(»o) for y e Q ^ n o t e t h a t

W(Vun(x0 + Sky))dy + 1ft"- 1 f 5 ^ " ^ n

= / W(Vun,k(y))dy + ^ ^
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Then

= lim lim — / |un(x0 + 5ky) - ti(x0) - SkVu(x0)y\dy
k-+oo n—¥oo Ok JQ

< lim lim — / |un(x0 + Sky) - u(x0 + <5iby)|d2/

+ lim lim — / \u(x0 + Sky) - u(x0) - SkVu(x0)y\dy
k-too n-+oo Ok JQ

= lim — / |u(x0 + iikj/) - tx(xo) - 6kVu(x0)y\dy
k->oo Ok JQ

= 0,

and

^ ^ n . O O ) = : M < oo.
n-*oo Ok

Choose a subsequence of <$*, not relabeled, such that

im / W(Vun

lim ||un,fc - VU(XO)2/ | |LI(Q;RP) < T , and

^n{S{un,k)nQ)<M + l.

Then select nk > k such that each of the above inequalities remains true. It follows that

in

and we have
/Ja(zo) >limsup

Proof of b):

Let i 0 € 5(u) n fl be given such that

" 1 ^ ) = |u-(ao) - «+(

lim ^ / |u(x) - u+(x0)|^dx = 0,
+0+ d" J{xGB(x0,6):(x-x0)v(xo)>0)

lim ^ - / |u(x) - u-(xo)\^dx = 0, and

= lim r-z ,^(v°itfpN(/ao)) t^ 7 e^sts ^ ^ finite,
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and note that the above hold for W.N~l a.e. x € S(u). For simplicity of notation, we write
Q := Qu(x0) ^ ^ Q(xoi&) : = 2o + 6Q- As in a), choose Sk < £ such that Q(xo,Sk) C ft and

( ) ) = O. T h e n

Hm lim /
Q

AzIl nQ\]
Sk )\

(5.1)
For y € Q define untk(y) := wn(^o + <JikJ/) and

. - / u+(*o) if y

Since un -+ u in L1 (Q;W) we obtain

lim lim / \unik(y)-uo(y)\dy = lim - ^ /
k-+oon^ooJQ k->oodk J{x

l i m

Note that S(un,*) = g ( ^

= 0.

. Then, by (5.1) we have

Also,

lim sup lim sup /
*—foo n—>oo JQ

+ lim sup lim sup /
Qn{\\Vun,k\\>6kL}

SkW

dx

dx

< lim sup lim sup / SkC[l + L]
*_>oo n - foo •/0n{||Vun,fc||<«5fcL}

5kL

+ limsuplimsup /
•/Qn{||Vun,fc||><J|,L}

< lim sup lim sup C6? ( f 11 Vun,* (y) | \dy) = 0,
A—•» n—•oo V^Q /

where the last equality follows from the bound on {JQ ||Vun,jfc(y)||d2/} due to (5.1). We now
have
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As in a), choose a subsequence of <$*, not relabeled, and n* > k such that v* := unk * -*uo
1 ( Q )

" ^ = K(*o)-u-(xo)l
Since we can assume the trace of v* = the trace of UQ (see [13]), it follows that

»j{Xo) * K(xo)-u-(xo)r
D

Proof of c):

We will use the following:

Lemma 5.1 Let X be a Radon measure on Q C KN. Then, for A-o.e. x € SI, given any
open, bounded convex set C containing the origin, there is a sequence Si -¥ 0+ and a Radon
measure 7 on C such that

Proof. We first show that for A-a.e. x € fl we have

lim inf jz; > 0 (5.2)
a-+o+ 6N

for all C as in the statement of the lemma. It is sufficient to consider (5.2) for an open ball
B containing the origin, since SB CC for small enough S. Put

J 4 : =

Let e > 0 be given, and using Besicovitch's Covering Theorem, choose a countable family
of disjoint balls x{ + S{B C fi such that X(A\ U (x{ + SiB)) = 0 and A(x» + <S*B) < e5?. It
follows that X(A) < ejpfflj, which implies X(A) = 0.

Fix x € Q for which (5.2) is satisfied. Without loss of generality, we can assume x = 0.
Let T? G (0,1) be given and set Si := r;*. Suppose that

lim sup Â^ (j}C) < r)N.

Then we can choose j € N and a € (0,77^) such that if t > j , then

A( W )
A(«7)

We now have

as i -¥ 00, which contradicts (5.2). Hence, we may extract a subsequence, not relabeled,
and choose a Radon measure 7 so that Â ,. -»• 7 on C and \Si(r)C) > a, where a < T}N.
Choose 0 € (T), 1) such that j(d0C) = 0. Then, for a subsequence and a Radon measure 7,
A/jfc -^ 7 on C, and for any Borel set A C C we have

X06i{A) = A p ! c )
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Let e > 0 be given and let D C C be an open neighborhood of d0C such that i(D) < e.
Then

limsupA/jj. \"^nC) < — li
6+ \P ) a

< -

e
a'

Hence,

> lim sup Â ,̂
+ •K)

> liming (c\|)

> l

Prom the arbitrariness of £, it follows that 7(C) = 1.

Now let XQ € fi be given such that

|Pti|(Q(g0J))

)) '

sl^+ S ^ l - 0 ' A V ~

Ao := A i^iwS^) e x i s t s ^ Po"= lf Ao=

Note that the above hold for \C(u)\ a.e. x e fl, where the statements regarding Ao are due
to Alberti [2]. Without loss of generality, assume that v = ejq and \a\ = 1. Choose <$* < £
such that, setting

the sequence {(5 }̂ is selected according to Lemma 5.1 so that, with A := \Du\ and 7 equal
to the weak * limit of \Dzk\, we have i{Q) = lim*_>oo |Z?^|(Q) = 1. Note that, using
notation from the proof of Lemma 5.1, the Sk chosen here are of the form @6i. So, by
choosing an appropriate 0 in the proof of Lemma 5.1, the Sk can also be chosen such that
n(dQ(xo,Sk)) = 0 for all k. Then

A )

(5.3)
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Also,

- ti(*o + <***) - -™ / u(y)dy dx = 0. (5.4)

By (5.3) and (5.4), using a standard diagonalization argument, choose a subsequence {uk}
such that

\Du\{Q{xo,ok))

Setting

= lim f f / W(tkVuk(x))dx + i^-HSCuk) n Q)] .

/*c(so) = h -

and
ll̂ ik - ZkWviQjtr) -* 0, (5.5)

where

we conclude that

Then
H^iSfak) n Q) -+ 0 (since 6h -> 0+) (5.6)

and
/xc(x0) > limsup— / W(tkVuk(x))dx

= lim sup / W°°(Vufc(x))dx (5.7)

just as in b). Since

J' 2jk(x)dx = / Ujk(x)dx = 0

and
Pfifcl(Q) = \Dzk\{Q) = 1,

by (5.5) and Poincar '̂s inequality, there exist subsequences (not relabeled) {z*}, {tijk}, and
there exists u0 € BV(Q;W) such that

Now,
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and \Dzk\(Q) = 1 so, by Proposition A.I of [14], it follows that

\Dzk-(Dzk-Ao)Ao\(Q)-4 0,

from which we conclude that

\Dzk • ei\(Q) -+ 0 for i = 1, . . . , N - 1.

Since
\Du0 • ei\(Q) < liminf \Dzk - a\(Q) = 0,

we obtain

Note that, in general, if /x/k —̂  77, |/x*| -^ 7, and 7(Q) = l im*-^ |/x*l(Q)> then
lini*-+c» Pk{Q)- Here we have Dzk -^ 77 and 7(Q) = lim*-+oo \D*k\{Q), so that rj(Q) = Ao.
On the other hand, zk -> uo in LX(Q;RP), which implies that Duo = 17 in Q, and so
Duo(Q) = Ao. Thus, uo(x) - AQ{X) = p(x^) + c, where p ( - l / 2 ) = p(l/2) = 0, and
uo{x) — Aox can be extended periodically to RN. Without loss of generality, we can assume
that the trace of Uk equals the trace of uo, so that t2* — AQX can be extended periodically,
and we call this extension w*. Set

v{(x) := AQX -h -wk(jx)

and note that, for x € Qj := (— j^ , ^ ) N , we have Vu^(x) = Vdik(jx). By (5.6) we may
choose k(j) > j such that ^ " ^ ( v j y ) ) n Q) < j , and we have

Vj-.= viu)->Aox in Ll(Q;W)

and

Furthermore,

/ W^(Vvj(x))dx^jN f W~{Vum{jx))dx= I W°°(VukU)(x))dx
JQ jQj JQ

and so, by (5.7), we need only show that

G°°(Ao) < limsup /
Q

By (2.3) we have

G°°(4o) < lim sup - lim sup / W(tVvj(x))dx

,. ,. /* W (̂tVVj(x)) ,
= lim sup lim sup / ax

t-+oo j-*oo JQ t

(r r c ^ r 1 1
< lim sup lim sup < / ^°°(Vtfr(g)) + 4- / -Ci[l + L]>

t-foo j->oo ^{tlVtii^L} L ^ m *J J{t\Vvj\<L} t J
< lim sup / W°°(VVJ\

JQ
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6 Optimal Jump Microstructure for Scalar Valued Func-
tions

In Section 3 we proved that, for sequences whose energy approaches the infirmim C?, it is
not necessary to allow a singular part of the variation measures for {un}, provided we know
that |JD,txn| -» 0, or if we know that W ^ " " 1 ^ ^ ) ) -^ 0 in the case where un € SBV. In
other words, there is no gap when considering the infirmim over smooth sequences and over
sequences "almost" smooth (see Lemma 3.1 and Proposition 3.3).

The question now is, what behavior is it necessary to allow for admissible functions for
ft? That is, how do infimizing sequences behave? Below, we answer this question completely
for scalar valued functions.

Looking at the definition of h(p,v) (see (2.5)), we see that admissible functions may
have both jumps and nonzero gradient. Is this necessary? Is it possible that there is an
admissible function t; that jumps and has nonzero gradient, and the energy of v is below
the infirmim over functions that just jump, and below the infimum over functions in W1*1?
The answer to this question is "yes", and we will see that the natural example illustrates
the behavior of infimizing sequences. The square in Figure 2 on page 30 represents Qv for
N = 2. Suppose that CW°°(pu) » 1 and W°°(pfi) < 1 for some p € K+ and unit vectors
*/, fi € K2, where v • // > 0. We then see that a function that is 0 below F := Fi U F2
and p above, with a jump across Fi and affine growth across a narrow extension of F2, has
lower energy than the infimum over functions that just jump (this infimum is 1), and the
infimum over functions in W1*1 (this infimum is CW°°(pv)). Note that this example fails if
CW°° is isotropic. We show that this behavior is optimal. The idea is this: first, we give a
coarea formula which allows us to consider, for any admissible function for ft(p, i/), the bulk
energy as an integral over measure-theoretic boundaries of level sets. We may then choose
a "good" level set. Next, we prove that it is energetically better for the jump part of the
boundary, i.e., S(u) intersected with the boundary, to be connected and flat. As we will
show in Lemma 6.1 below, we can assume that W°° is convex without changing the infimum
of the energy, in which case we will prove that the remainder of the boundary might as well
be flat, and we conclude that Figure 1 on page 30 captures the geometry of minimizing
sequences.

We begin with

Lemma 6.1

hw = hew-

Proof. Since CW < W, it follows that hew < hw Conversely, let u be an admissible
function for hew- By the relaxation theorem (Theorem 2.1), we have

Q

where we use the fact that ft < 1. It also follows from Theorem 2.1 that

Icw(u,Q) = / CW{Vu)dx /
JQ Js(u)nQ

By the lower semicontinuity of 7, we have

/ CW(Vu)dx+ f hw{Hv)dHN~l < f CW(Vu)dx+ f
JQ Js(u)nQ JQ Js(u)nQ

which implies hw < hew-
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Lemma 6.2 Let X be a finite Borel regular measure on Q and let f:Q-+ RN be X measurable
with H/lloo < oo. Then there is a sequence {fn} C C§°(Q;RN) such that fn -> / X-a.e. and
||/n||oo < H/lloo for all n.

Proof. By a corollary to Lusin's Theorem (see Corollary 1 to Theorem 2 in Section 1.2 of
[10]), for each e > 0 there exists a continuous function fe:Q-*RN such that

A({*€Q :/*(*) 5*/(*)})<£,

and, by truncation, we can assume that ||/e||oo < ll/lloo- By Theorem 1 (ii) in Section 4.2.1
of [10], there exists {/£} C C°°(<3;R") such that U/'Hoo < II/IU and

/* -> fe uniformly on compact subsets of Q.

Choose an increasing sequence of compact sets Cn C Q such that A(<2\Cn) < ̂ . By cutting
off /£ outside Cn so that ft e Cg°(Q; RN), we have

ft -> f£ A-a.e.

It follows that we can extract a diagonal subsequence {/n} such that

/„ -> / A-a.e.

We now recall some notation: for u € BV(Q), set

Et := {x € Q : u{x) > i).

For x G d+Et C Q (see (2.1)), we denote by VE%{X) the measure theoretic unit inner normal
(see Theorem 1, Section 5.8 of [10]), i.e.

/ div<t>(x)dx = - / <f>(x) • vEi {x)dUN-1 (x)
Et Jd.Et

Lemma 6.3 (Coarea Formula) Let u € BV(Q) be given, and let f: Q x M l x N -» E be
a Caratheodory function, where measurability is with respect to \Du\, and positive homoge-
neous of degree one in the last variable. Assume further that fix, jjjjffi*^ ) € L°°(Q, \Du\).
Then

/ /(x,dDu(x))= / / / ( ^ ^ j p ^ W A (6.1)

Remark 6.4 Note that for fixed u E SBV{Q), if we have a Caratheodory function g :
Q x R x M l x A r - > R , where measurability is as above, and which is positive homogeneous of
degree one in the last variable, then we can take / in the coarea formula to be

assuming u is \Du\ measurable and g(x,u(z), jjfcffj)) € L°°(Q, \Du\).
If we want to consider a representative u of u, it must be defined |Du|-a.e. and be \Du\

measurable. For example, we could take u to be the precise representative of it, or just the
precise representative of u on Q\S(u) and u+ or it", or even [u] on S(u). In the former
case, and if u € SBV, we have

g(xiu(x),dDu{x)) = Xg\5(u)^(^>ti(x),
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so that (6.1) reduces to

p(x,u(x),Vu(x))dx

, t, ** ( x ) ) ^ " - 1 (x) + / p(x, u(x), vEx {x))dHN~l (x) 1 <ft.

Proof of the Coarea Formula. First we show that for any \Du\ measurable set A C 17,

\Du\(A) = 0 implies nN^(A n d.Et) = 0 for ^-a-e. t. (6.2)

Note that for all B C Q open (see Theorem 1 (ii) of Section 5.5 of [10])

\Du\(B) = / \8Et\(B)dt

= [ nN-l(Bnd.Et)dt.
JR

So,
\Du\(A) = inf

B ripen

= inf IUN-l{BC\d.Et)dt
open

= 0
which implies that

inf nN~l(B n d.Et) = 0 for ^-a-e. t,
B open

and so
= 0for£1-a.e. t.

We know (see claim 1 in the proof of Theorem 1, Section 5.5 in [10]) that

/ u(x)div<£(x)dz = / / div<f>(x)dxdt
JQ JR JEX

for all <f> € Cl(Q)RN). Hence,

-c{x)d\Du\{x) = / / <̂ (x) • vEt(x)ctHN-1(x)dt (6.3)
JR Jd.Et

for all <£ € C<UQ;RN), where

"™~d\Du\{xY
We now show that for £1-a.e. t € R, we have

<r(x) = i/^ (x) for W^-a -e . x € a*£7t. (6.4)

Using Lemma 6.2, choose an € C^(Q;R2) such that <rn(x) -> a(x) |Du|-a.e. (and so, by
(6.2), HN-1\d.Et-&.e. for ^-a-e. t) and \<rn\ < 1. Note that an • vEt is ^ " H ^ B t
measurable since uEt is, and

/ <rn(x)-i/jg;1(x)cmw-1(x)= / div<rn(x)dx
Jd.Et JE,
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is Cl measurable (see, e.g., the proof of Lemma 1 in Section 5.5 of [10]). Then, by (6.3) and
the dominated convergence theorem,

/ / ' 1 ( x ) d t = l i m / / an{x) ^ E t
N l

JR Jdm Et
 n~*°° JR Jd. Et

= lim / an(x) - a(x)d\Du\(x)
n-+oo JQ

= / d\Du\
JQ

JK Je.Et

Since a • VE, < 1, we have (6.4).
Using Lemma 6.2 once more, choose <f>n € CQ(Q;RN) such that <f>n{x) -¥ f(x,a(x))a(x)

|£>u|-a.e. and H^Hoo < ||/(-»*(0)ll«>. Then, as above,

/ f(x,dDu(x)) = I }{x,a{x))d\Du\{x)
JQ JQ

= / f(x,a(x))<r(x)-cr(x)d\Du\(x)
JQ

= Urn I <t>n{x)-a{x)d\Du\(x)
n-*ooJQ

= J ^ J J <t>n(x) • vBt (x)dnN~1 (x)dt (by (6.3))

= / / f{x,uEl{x))dnN-Hx)dt. (by (6.4))
Jft Jd.E,

Now we introduce another infimum, similar to ft, but which includes only very simple
functions in its admissible class. Given v € SN~1, we consider the family Ql of squares
with unit edge length, centered at zero, with two edges normal to v (with v in the plane of
the square). Without loss of generality, we will assume v = e^. Now consider the square
S £ Ql with the remaining two edges having normal e\ (in the plane of the square), and
we consider all curves T C 5 of the form T = Fi U F2, where Fi is the line segment from
( - 1 / 2 , 0 , . . . , 0) to some point p in the square, and F2 is the line segment connecting p to
(1 /2 ,0 , . . . ,0 ) (see Figure 1). For other 5 € Ql, with two edges not having normal ei, we
consider analogous F C S. Set

5 G (?£,F C 5 is as above, and /x is the unit normal to F2 such that // • v > 0}.

Remark 6.5 Note the following:

i) H(p, v) < 1 since we can take F = Fi.

ii) The infimum H is attained since CW°° is continuous.

iii) If CW°° is isotropic, then the minimizing F equals Fi or F equals F2.
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Figure 1: admissible "function" for H

Theorem 6.6 Ifp = 1 then

Proof. By Lemma 6.1, we may assume that W = (CW)°°. Furthermore, (CW)°° is convex,
since if A,B € MlxN and A € (0,1), then

=limsup
CW(t[XA + (1 - A)B])

ACW(iA) .. (l-A)CW(tB)
< hmsup ^ - ^ + hmsup —-

t->-oo £ t-+oo *

= X(CW)°°(A) + (1 - A)(CW)°°(B).

Hence, in the sequel we will take W to be convex and positive homogeneous of degree one.

Step 1. We show that h < H.

Case a) N = 2.
Fix 5 € £?£ and T C 5 as in the definition of H, and consider functions in SBV(S\ R) that
are zero below F, p above, jump at Fi and are affine across a narrow extension of F2, with
another jump connection near the intersection of the boundary with F2, and we see that these
functions are admissible for h(p,v) and their energy E approaches ^ ( F i ) + l

(see Figure 2).

Figure 2: h < H

Case b) N > 2:
Again, let any 5 and F as in the definition of H be given. Choose Qv such that the re-
maining normal to S (besides u) is normal to Qv. Extend F to Qv by f := {x € Qv :
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proj(ar) onto 5 € F}. We then construct functions as in the case N = 2, where here there is
a jump connection near the intersection of f 2 with the face of Qv having the same normal
as 5. By (2.6), these functions have the necessary periodicity to be admissible for h{p,v).
Again, we see that the energy E approaches W}(Ti) +

Step 2. We now show that h > H.

Let u be an admissible function for fc(p, i/), i.e.,

u€ SBV(Qv\R),u ^ptixedQv andx-i/>0, and u = 0 if x € dQy andx-v <0.

For simplicity, we refer to Qu as Q. Applying Lemma 6.3 to

f(x9dDu(x)) := XQ\sw(*)W(dDu(x)),

W(Vu(x))dx= f f W{vEt(x))dHN-l(x)dt.
JR Jd.Et\S(u)

/
JQ

Choose t0 € (0, p) such that

/ W(vEtQ (x))dHN-x (x) < I f W(Vu(x))dx. (6.5)

Note that the coercivity of W guarantees that d+Eto has finite perimeter. Set

P := HN-1(P*Et0\S(u)) and v := \ f uBto{x)dHN'l{x)

so that, by Jensen's inequality,

PW{9) < f W{vEio(x))dHN-l{x). (6.6)
Jd.Eto\S(u)

We can assume v = ex and v • e» = 0 for i € { 2 , . . . , N - 1}. Note that we can also assume
that Q has e\ normal to two of its faces, for the following reason: let Q\ be a cube with
normals ex and e\. We can rescale Q and tz, and almost cover {x e Q\ : XN = 0} with the
cubes a* + <JQ, where a* G {x € <3i : xjv = 0}. Define v € SBV(Qi) by

:= { 0 if xN < 0 and x & U(a» +
P if £/v > 0 and x ^ U(OJ +

Using the homogeneity of Wy we now have E(v,Qi) - E(u,Q) < HN~l{{x € Qi : xN =
0 } \ U» (oi + <JQ)), yet P, defined as for u, remains unchanged.

We first wish to show that

and
/ vEtr, (

x) * esdHN"1(x) = 1. (6.8)
/ o IT °
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Prom Theorem 1 (ii) of Section 5.8 in [10], we know that if E C RN has locally finite
perimeter in RN, then

/ div0(x)dx = - / 4>{x) • vE{x)dHN-1 (x) (6.9)
JE Jd.E

for all <j> e C&(RN;RN), where, as before, VE is the inner unit normal. Define E C RN by

E := Et0 U {x € RN\Q :x-eN>0}.

Then E is locally of finite perimeter in RN, and we claim that

W7V-1([^^]AC) = 0, (6.10)

where C := d«Eto U{x €RN\Q : x - eN = 0}. It is clear that C C & £ and that

(amE)\c c ag,
so the idea is to show that UN~l {dQ nd+E) = 0. Let x e 8Q be given such that x • e^ > 0
and

K m / |t*(y) - p|dy = 0. (6.11)
r-+°JB(x,r)r\Q

We need only show that

since then x ̂  d+E. We have

Um s u p ^ (g (g»0 \g ) = U m s u p *cN(B(x\r) D{y£Q: u(y) < to})
r-+0 r r-*0 r

< lim sup -JJ - T / \u{y) - p\dy

= 0.

Since, by Theorem 2 of Section 5.3 of [10], (6.11) holds HN-l-&.e. on the upper half of dQ,
and, dealing with the case x • eN < 0 similarly, we find UN"l{dQ n &£) = 0.

Choose </> € C£ (EN; RN) such that & = 0 for all i € {2,...,TV}, <\>x = 1 on Q. Clearly,
div<£ = I^J-, div̂ > = 0 on Q, and vE = ê v on RN\Q. So, JE diw4>(x)dx = 0. For example, we
can take <f> := pi * X2QCi. By (6.9), (6.10), and the fact that E is locally of finite perimeter,
we have

o = / <f>(x)^E(x)(mN'1(x)

e! • vEio{x)dHN-\x)

and we conclude (6.7).

Equation (6.8) follows by considering, for e > 0, <f> G C,J((-l/2 - e,l/2 + e)N;RN)
such that ^i = 0 for all i < Ny <j> = — e;v on Q and —1 < ^ • ê r < 0. For example, take
<t> := -p£ * X(-i/2-e,i/2+e)*e;v. By (6.9) and (6.10) we have

f div<t>(x)dx = / eN • i/^o (z)dW"-1 (x) - / 0(x) • eNdHN~l(x).
J£ ^a.Ft0 J{x-eN=0}\Q
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By the choice of ^, we know that, writing x = (X',XN), if (z',0) € <?, then

and, for (s',0) € ( - 1 / 2 - c, 1/2 + e)N\<2, we have

We then see that

and

1 < / di
IE

It <f>(x)-eNdHN-1(x)

The arbitrariness of e yields

We now recall some facts about sets of finite perimeter (see [10]), which we apply to Eto:

d'Et0 C d.Et0, HN-l{d.Et0\d'Eta) = 0,

and if x € d*Eto, then we have

a{N - l jr*"1

lim = 1

and

where a(iV — 1) is the volume of an N — 1 dimensional ball with radius 1. Let e > 0 be
given. Since HN~l [d*Et0 is a Radon measure, we can choose an open set A C Q such that

J4 D (S(u) O a*£t0) and HN-1((A\S(u)) 0 9*£ to) <

For each x € d*Eto n 5(u), let rx > 0 be such that 0 < r < rx implies

— 1 <e

and

t
(6.12)

(6.13)

The family {B(x, r) C A : x € fl'-Eto D 5(u),r € (0,rx)} is a fine cover of d*Eto D S(u). By
Besicovitch's Covering Theorem, choose a countable, disjoint subcollection Q such that

HX-^d'Et, n S(u)\ UB6C B) = 0.

We now do some calculations to show that
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For B eQ, denote the center of B by XB and the radius by TB- From (6.7) we have

f N-l
Je-Et0\s(u) Bt°

/
d-B,onS(u)

and so

Bnd'E,0

Bee

(6.14)

•e%N-l(d'Et0) (by (6.13))

+ 2enN-1(dtEt0). (by (6.12))

Similarly, from (6.8) we have

\l-0D-eN\ =

and so

1 - eN • i uEt0 {x)dHN~1 (*) = eN • f vEta (x)dHN-1 (x)
J8-Et0\S(u) Jd'E,or\S(u)

Bnd'E,

B€G

(6.15)

(by (6.13))

N-Hd'Et0) (by (6.12)).

Finally,

n

^ " 1 ^ n a*E'o) " £ (by the choice of A)
B€G

a(N - l)r£-x - e - eUN-\d'Eto) (by (6.12))

Bee
+(ejv • VEt0 (XBM - e

(E
\B6C

1/2

- e -> (09P • e i )
2 + (1 - 0P • ejv

(by (6.14) and (6.15))
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hence, letting e -> 0, we conclude that

n^Wu)) > [{fip • d ) 2 + (1 - 09 • e*)2]1/2. (6.16)

Suppose that v • c^ < 0. Then (6.16) implies that nN^(S(u)) > 1. Therefore, E(u,Q) >
1 > H(p,v). Assume now that v • CN > 0. Consider the square in the ei-ejv plane with
normals e\ and e^ and, suppressing et for t € {2,. . . , N - 1}, take r = I \ U F2, where T2 is
the line segment with right endpoint (1/2,0), unit normal T|J, and length |P|/? (if /?P-ew > 1,
redefine /3 := ^ - ) . Fi is then the line segment from the left endpoint of T2 to (-1/2,0).
Note that the length of Tx is [(/?P • e2)2 + (1 - &v • e*]2)1/2, and so, by (6.16), we have
WiTx) < UN-l{S{u)). Finally, by (6.5) and (6.6), we conclude that

<-L>Q

Due to the arbitrariness of u, we have h>H. •

Remark 6.7 Suppose that the energy of the admissible functions for h is given by

E(u,Q) = / W(Vu)dx+ f <t>{[u)v)dUN-1,
JQ JS(U)

where W and <p are convex and positive homogeneous of degree one. Then the conclusion
of Theorem 6.6 holds. Taking

f(x,dDu) := XQ\S(u)W(dDu) + xs(u)4>{dDu)

we have
/ f(x,dDu) = / W(Vu)dx + /

JQ JQ JS(
/ / /

JQ JQ JS(U)

and, by Lemma 6.3,

= f
Ju

\f W(yEt(x))dKN-1 + / <t>(vEt(x^dH*-1] dt
[JdmEt\S(u) JdmEtr\S(u) J

The rest of the proof of Theorem 6.6 follows with the obvious alterations.

Remark 6.8 (Behavior of Infimizing Sequences) Let {un} be an infimizing sequence
for /i(p, 1/). Then there is a subsequence and a minimizer F for H (p, v) such that

(6.17)

and
' W°°(Vun)dx -• pHHrjCW00^ (6.18)LIQ

Indeed, for each un, using Lemma 6.3 as in the proof of Theorem 6.6, choose a "good" level
set Etn, and construct Fn as above. We refer to the points separating Fn,i and Fn>2 as pn

and the squares containing them as Sn> Then the pn's have a limit point, p, and the Sn's
have a corresponding limit square, 5. We do not relabel the corresponding subsequence of
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{un}. By the continuity of CW°°, p determines a minimizer T C S of if(p,i/). By the
constructions of Fn , we know that

and
/ W°°(Vun)dx > p-Hl{Tnt/

JQ

Since {un} is infimizing, and using Theorem 6.6, we have (6.17) and (6.18).
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