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Abstract

We evaluate the performance of threshold-based job allocation policies in a heterogeneous dis-
tributed computing system, where servers may have different speeds, and jobs may have different
service demands, importance, and/or affinities for different servers. We find that while threshold-
based policies typically yield low mean response time, these policies are not robust with respect
to fluctuations or misprediction of the load. We propose a new adaptive dual-threshold policy and
show that this policy yields low mean response time while also being robust.



 



1 Introduction
A common problem in distributed computing systems is the allocation of server time among
queues of jobs (allocation policy). Specifically, there may be jobs originating at one (heavily
loaded) server which are better off served by some other (more lightly loaded) server. Since
estimating the system load is a difficult task, and in fact the system load often fluctuates over time,
it is desirable that the allocation policy be robust against such mispredictions and fluctuations
of the system load. Allocation policies are necessary, for example, when migrating processes
in networks of workstations [10], when dynamically allocating resources in utility computing
[1, 4, 5], and when assigning tasks in multiprocessor systems [22, 24].

The goal of this paper is to design and evaluate allocation policies for a general heterogeneous
distributed computing system where (i) the jobs originating at different servers may have different
mean size (processing requirement), (ii) the servers may have different speeds, (iii) jobs may
have different affinities with different servers, i.e., a job may be processed more efficiently (have
shorter duration) if run on one server than when run on another server, and (iv) different jobs
may have different importance (weights). Our objective is twofold. First we seek to minimize
the weighted average mean response time (weighted response time), Yli CiPiE[Ri], where a is
the weight (importance) of jobs originating at server z, Â  is the average rate of jobs originating at
server i (type i jobs), pi = A*/ J2j ̂ j is the fraction of type i jobs, and E[Rj\ is the mean response
time1 of type i jobs. Second, we want our policy to be robust against environmental changes,
such as changes in load.

Figure 1 shows the model we consider for the case of two servers. Jobs arrive at queue
1 and queue 2 with average rates Ai and A2, respectively. Server 1 processes jobs in queue 1
with average rate \i\ (jobs/sec), while server 2 can process jobs in queue 1 with average rate fxu
(jobs/sec) and can process jobs in queue 2 with average rate /X2 (j°bs/sec)- We define pi = A1///1,
P2 — ̂ 2/1^2^ and fi\ = Ai/(//i + //i2(l — P2))* Here, fi\ is the load of type 1 jobs assuming server
2 helps server 1 as much as possible, while processing all the type 2 jobs. Note that p2 < 1
and pi < 1 are necessary for the queues to be stable under any allocation policy. Even in this
simple model of just two servers, the optimal allocation policy is not known, despite the fact
that this problem has been investigated in numerous papers [2, 13, 14, 29, 23, 21, 9, 11, 26, 27].
Below we will focus on two servers and two queues with Poisson arrivals and exponential job
size distributions. Extensions to more general cases are discussed in Section 5.

One common allocation policy is based on the C/J, rule [7], where a server processes jobs
from the nonempty queue with the highest c/i value, biasing in favor of jobs with high c (high
importance) and high fi (small expected size2). Under the cfi rule, server 2 in Figure 1 serves
jobs from queue 1 (rather than queue 2) if C1//12 > C2//2, or queue 2 is empty. The C/JL rule is
provably optimal in the limit as job size approaches zero (fluid model) [25]. However Squillante
et. al. [23] as well as Harrison [13] have shown that c/x rule may lead to instability even if pi < 1
and p2 < 1. For example, the CJJL rule may force server 2 to process jobs from queue 1 even
when many jobs are built up at queue 2, leading to instability in queue 2 and under-utilization of
server 1. More recently, the generalized C\A rule, which is based on greedily minimizing the delay

xHere response time refers to the total time from when a job is requested until the job is completed - this includes
queueing time and service time.

2Note that the average size of a job is l//i, where /x is the average service rate.
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Figure 1: A two server model.

functions at any moment, has been applied to related models [18, 17]. However, in our model,
the generalized c\i rule reduces to the c/x rule and hence has the same stability issues.

Squillante et. al. [23] have proposed a threshold-based policy that, under the right choice of
threshold value, improves upon the CJJL rule and guarantees stability whenever p\ <l and p2 < 1.
We refer to this threshold-based policy as the Tl policy, since it places a threshold value, 7\, on
queue 1, so that server 2 only processes jobs from queue 1 (type 1 jobs) when there are at least
Ti jobs of type 1, or if queue 2 is empty. The rest of the time server 2 works on jobs from queue
2 (type 2 jobs). The motivation behind placing the threshold on queue 1 is that it 'reserves" a
certain amount of work for server 1, preventing server 1 from being under-utilized and server 2
from being overloaded. More formally,

Definition 1 The Tl policy is characterized by the following set of rules, all of which are enforced
preemptively (preemptive-resume):

• Server 1 serves only its own jobs.

• Server 2 serves jobs from queue 1 if either

1. JVi > Ti, or

2. N2 = 0&Nl>2

Otherwise server 2 serves jobs from queue 2.3

Figure 2(a) shows which jobs server 2 processes as a function of the number of jobs in queue
1 (JVi) and queue 2 (N2). Bell and Williams prove the optimality of the Tl policy for a model
closely related to ours in the heavy traffic limit, where pi and p2 are close to 1 from below [2].
Williams conjectures that the Tl policy is optimal for more general models in the heavy traffic
limit [29].

3To achieve maximal effi ciency, we assume the following exceptions. When queue 2 is empty and queue 1 has
only one job, i.e. N\ = 1 and iV2 = 0, the job is assigned to the server with a higher service rate; namely, the job is
processed by server 2 if and only if /ii < ^ i 2 . Also, when 7\ = 1 and N\ — 1, the job in queue 1 is processed by
server 2 if and only if /xi < /ii2 regardless of the number of type 2 jobs.
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Figure 2: Comparison of the Tl policy and ADT policy.

Despite its conjectured heavy traffic optimality, the Tl policy still has two problems. The first
is how to determine 7\. Figure 2(b) shows the weighted average mean response time (weighted
response time) as a function of 7\. The figure shows a common "V shape," where the optimal
Ti is very close to the 7\ values that lead to instability (infinite response time). This is quite
problematic, as an exact analysis has never been derived. Squillante et. al. [23] only provide
a coarse approximation; they then advocate choosing 7\ conservatively (higher than what their
analysis predicts) at the cost of a higher mean response time. A second problem is the sensitivity
of performance to a change in load. It is often the case that the load of a system changes over
time, and even if it does not, estimating the correct average system load is often a difficult task [8].
Figure 2(c) shows the weighted response time as a function of p2 (only A2 is changed) under Tl
policies with two different threshold values. The Tl policy with optimal 7\ (=2) at an estimated
load (pi = 1.12 and p2 = 0.6) quickly becomes unstable at higher p2 values (solid line). The Tl
policy is not robust against a change in pi, either. One can choose a higher 7\ (=20) to guarantee
stability at higher loads, but this will result in worse performance at the estimated load (dashed
line). Thus, the Tl policy exhibits a tradeoff between good performance at the estimated load
and stability at higher loads.

In this paper we will introduce a new policy that allows us to get the best of both worlds, good
performance at the estimated load and increased robustness. To derive our new policy, it helps to
first better understand the Tl policy. Since the Tl policy has only been evaluated by simulation
or by coarse approximation in the prior literature, we begin by introducing a computationally ef-
ficient and accurate evaluation method for threshold-based policies, including both the Tl policy
and our new policy. Together these constitute contributions of this paper.



Contribution 1: We provide a computationally efficient and accurate analysis of the
mean response time under the Tl policy as a function of job size and interarrival time dis-
tributions, server speeds, affinity, and weights. (See Sections 2-3.) Our analysis is technically
an approximation, but can be made as accurate as desired, and appears exact when validated
against simulation. Accurate analysis allows us to quickly find optimal threshold values for the
Tl policy.

The same analysis technique can be applied to other threshold-based policies. For example,
one might argue that the stability issue of the Tl policy with too small Ti is resolved simply by
placing an additional threshold, T2, on queue 2, so that if the number of type 2 jobs, 7V2, exceeds
T2, server 2 works on type 2 jobs regardless of the number of type 1 jobs. We refer to this policy
as the T1T2 policy, since it operates as the Tl policy only when iV2 < T2. This natural extension
to the Tl policy surprisingly turns out to be in general no better than the Tl policy. That is,
the optimal value of T2 is usually oo, reducing the T1T2 policy to the Tl policy. The intuition
obtained through the extensive analysis of these policies leads us to propose a new, adaptive,
threshold-based policy.

Contribution 2: We propose the Adaptive Dual-Threshold (ADT) policy that achieves
performance similar to the optimal Tl policy and is robust to changes in load (See Section 4.)
The key idea in the design of the ADT policy is the use of two thresholds, T^ and Tx , on queue
1 with a threshold, T2, on queue 2. The ADT policy behaves like the Tl policy with threshold
Ti ̂  if the number of jobs in queue 2 is less than T2 and otherwise like the Tl policy with a higher
threshold, T[2\ Thus, in contrast to the T1T2 policy above, the ADT is always operating as a Tl
policy, but unlike the standard Tl policy, the value of Ti adapts, depending on the queue at server
2; the different thresholds on queue 1 allow server 2 to help queue 1 less when there are more
type 2 jobs, preventing server 2 from becoming overloaded. This leads to the increased stability
region. The dual thresholds also make the ADT policy adaptive to a change in load (changes in
pi and p2), in that it operates like the Tl policy with threshold T[ ' at the estimated load and like
the Tl policy with a higher threshold T± at a higher load.

Formally, the ADT policy is characterized by the following rule.

Definition 2 If N2 < T2, the ADT policy operates as the Tl policy with threshold Tx = T[l);
(2)

otherwise, it operates as the Tl policy with threshold T\ = T[ \
Figure 2(d) shows which jobs server 2 processes under the ADT policy as a function of iVi and
AT2. When T[l) = T[2) or when T2 = oo, the ADT policy reduces to the Tl policy with threshold
Tx

(1). Also, when T[2) = oo, the ADT policy reduces to the T1T2 policy.
The remaining figures illustrate the robustness of the ADT policy. Figure 2(f) shows the

weighted response time as a function of p2. Here, the ADT policy (solid line) performs just as
well as the optimal Tl policy at the estimated load (pi = 1.12 and p2 = 0.6), and has stability at
higher p2. We will show later that the ADT policy is also robust against changes in pi. Figure 2(e)
shows the weighted response time as a function of T^\ The figure suggests that once Tf2' is
chosen to guarantee the stability at the estimated load, the response time is finite for any Ti . As
we will see, since the performance at the estimated load is relatively insensitive to Ti \ we can
choose a high T^ to guarantee a large stability region. In addition, since the stability region is



insensitive to T^ and T2, we can choose these values so that the performance at the estimated
load is optimized.

In conclusion, the ADT policy is more robust than the Tl policy in two ways, (i) The response
time under the ADT policy is less sensitive to changes in p\ and p2- (ii) The settings of the three
threshold values under the ADT policy are less likely to lead to instability or increased response
time, as compared to the Tl policy.

2 Analysis and validation of analysis

In this section, we first describe our analysis of the Tl policy. The analysis can be extended to
other threshold-based policies, including the ADT policy, as illustrated in Section 2.2

2.1 Analysis of Tl policy

The difficulty in analyzing the mean response time under the Tl policy comes from the fact that
the state space required to capture the system behavior grows infinitely in two dimensions; i.e., we
need to track both the number of type 1 jobs and the number of type 2 jobs. In the literature, there
are two types of approaches to analyze a process such as ours with two dimensionally infinite
state space. The first approach is to resort to coarse approximation. For example, Squillante
et. al. derive an approximate analysis of the Tl policy based on vacation models [23]. This type
of analysis is computationally very efficient, but the accuracy of the solution is typically poor. For
example, the error in the approximation by Squillante et. al. is unbounded, since it mispredicts
the stability region. The second approach includes computational methods that can, in theory,
be made as accurate as desired, but require more computational time. Such methods include
reduction to a boundary value problem [6] and the matrix analytic method [16] possibly with
state space truncation (e.g. [27]). Reduction to a boundary value problem is a mathematically
elegant approach but often experiences numerical instability. The matrix analytic method can be
computationally very expensive without state space truncation, and it is very difficult to determine
where to truncate the state space to guarantee sufficient accuracy [3].

Our analysis of the Tl and ADT policies is a near exact method, which can be made as ac-
curate as desired, based on the approach of dimensionality reduction that we introduce in [12].
Advantages of dimensionality reduction include its computational efficiency, accuracy, and sim-
plicity; these allow us to extensively investigate the performance characteristics of the policies
under consideration. The dimensionality reduction technique reduces a 2D-infinite Markov chain
(hard to analyze) to a ID-infinite Markov chain (easy to analyze) by using busy period transitions.
Figure 3 shows the resulting ID-infinite Markov chain for the Tl policy. This chain tracks the
exact number of type 2 jobs. With respect to the number of type 1 jobs, the chain tracks this in-
formation only up to the point where there are 7\ — 1 jobs of type 1. At this point a type 1 arrival
starts a "busy period4," which ends when there are once again 7\ — 1 jobs of type 1. During this
busy period, both servers are working on type 1 jobs, and type 2 jobs receive no service. State
(Ti+, j) denotes there are at least T\ jobs of type 1 and there are j type 2 jobs for j = 0,1, 2,....
The key point is that there is no need to track the number of type 1 jobs during this busy period.

4This busy period is equivalent to an M/M/l busy period serving at rate JJL\ + fi\2.
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Figure 3: Markov chain used for analyzing the Tl policy (T\ = 3).

We approximate the distribution of the duration of this busy period by a 2-phase phase type (PH)
distribution with Coxian representation5 by matching the first three moments of the distributions
[19]. We find that this suffices to achieve a high level of accuracy. Figure 4 validates our analysis
against simulation; we show two of many cases we computed. Note that generating a single data
point via simulation requires 30 minutes, since ten iterations, each with 1,000,000 events, are
needed to stabilize. By contrast, our analysis takes less than a second.

The limiting probabilities of the Markov chain in Figure 3 can be used to calculate the mean
number of jobs of each type, E[Ni] and E[N2], which in turn gives mean response time via
Little's law [15]. The limiting probabilities of the ID-infinite Markov chain can be obtained
efficiently via the matrix analytic method [16]. Deriving E[N2] from the limiting probabilities is
straightforward, since we track the exact number of type 2 jobs. We derive E[Ni] by conditioning
on the state of the chain. Let E[Ni]ij denote the expected number of type 1 jobs given that the
chain is in state (z, j). For i = 0, ...,Ti - 1, E[Ni]ij = i for all j . For i = Tf9 E[Ni]T+d is
the mean number of jobs in an M/M/l system given that the service rate is the sum of the two
servers, /xi + ^i 2 , and given that the system is busy, plus an additional 7\ jobs.

2.2 Analysis of ADT policy

The analysis of the mean response time under the ADT policy follows an approach similar to
the analysis of the Tl policy. Figure 5 shows the ID-infinite Markov chain used for analyzing
the ADT policy. Again, the chain tracks the exact number of type 2 jobs, but with respect to the

5 A PH distribution is the distribution of the absorption time in a continuous time Markov chain. The fi gure illus-
trates a 2-phase PH distribution with Coxian representation, where the ith state has exponentially-distributed sojourn
time with rate fii for i = 1,2. The absorption time is the sum of the times spent in each of the states, starting at state 1.

absorption
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Figure 4: Validation of analysis, where we set pi = 0.9, p2 = 0.6, and JJLI2 = //i = 1.

— 1number of type 1 jobs it tracks this information only up to the point where there are ^
jobs. A type 1 arrival at this point starts a "busy period," which ends when there are T± — 1 jobs

of type 1. State (T± , j) denotes that there are at least T± jobs of type 1 and there are j jobs
of type 2 for j = 0,1, 2,.... The mean response time is again obtained via the matrix analytic
method.

3 Results: Tl Policy

Our analysis of Section 2 allows, for the first time, efficient and accurate analysis of the Tl pol-
icy. In this section we extensively evaluate the weighted average mean response time (weighted
response time) under the Tl policy for various cases, and find the following characteristics of the
Tl policy performance.

1. Setting the threshold 7\ higher yields a larger stability region.

2. When Ci/jiu < c2//2, the optimal threshold with respect to minimizing the weighted re-
sponse time is 7\ = oo, which at the same time achieves the largest stability region. This
is the policy of following the CJI rule, as in this case server 2 "prefers" to run its own jobs
in a CJJL sense.

3. When Ci^i2 > c2//2, the optimal T\ threshold is typically finite; in this case there is a
tradeoff between good performance at the estimated load (p1? p2) and possible instability
at higher pi and/or p2. This is the case where server 2 "prefers" to run type 1 jobs in a c//
sense, but following the c/i rule leads to instability.

4. The lower the value of ci/xi, the lower the optimal threshold tends to be, i.e. the closer it
tends to be to the instability region. Hence, the tradeoff between good performance and
stability is more dramatic at smaller
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3.1 Characterizing the optimal threshold

Figure 6 shows the weighted response time when type 1 jobs and type 2 jobs have the same
weight, i.e., c\ = c2 = 1. Different rows correspond to different /ii's and different columns cor-
respond to different /x2's, as labeled. Here, ^ i 2 is fixed at 1. The weighted response time is evalu-
ated at three loads, pi = 0.8,0.9,0.95 (only Ai is changed), and p2 is fixed at 0.6 throughout.6 We
also discuss the effect of lower/higher p2, though not shown in the figure. We consider relatively
high loads, since system performance needs to be improved most in these cases.

Rule 1: If Ci = c2 and /xi2 < //2, Ti = oo is optimal. In the third and fourth columns of
Figure 6, where c2\i2 > C\\x\2 = 1, the weighted response time is a nonincreasing function of 7\;
hence 7\ = oo minimizes the weighted response time. As we will see in Section 3.2, 7\ = oo
also maximizes the stability region. Hence, T\ = oo (i.e., following the C/J, rule) is the best choice
with respect to both performance at the estimated load, (pi, p2), and stability at higher pi and/or
p2. The condition ii\2 < \x2 is achieved when type 1 jobs are large, type 2 jobs are small, and/or
when type 1 jobs do not have good affinity with server 2 (e.g., when type 1 jobs require to access
data stored locally at server 1). The following theorem formally characterizes Rule 1. We provide
its proof in [20].

Theorem 1 Ifci = c2 and JJL\2 < JJL2, T I = OO minimizes the overall mean response time.

Rule 2: I f c i = c2 and //X2 > //2, finite Ti is typically optimal. In the first and second
columns of Figure 6, where c\[i\2 > c2ji2, the weighted response time has minimum at some
finite Ti. Since a larger value of T\ leads to a larger stability region, there is a tradeoff between

6Note that px = 0.8,0.9,0.95 corresponds to pi = 5.92,6.66,7.03 when m = 1/16 (row 1), pi =
2.08,2.34,2.47 when fn = 1/4 (row 2), px = 1.12,1.26,1.33 when fn = 1 (row 3), and Pl = 0.88,0.99,1.045
when /xi = 4 (row 4).

8



good performance at the estimated load, (pi,p2), and stability at higher pi and/or p2. (Note
that the curves have sharper "V shapes" in general at higher p1#) Choosing the right 7\ is further
made difficult by the steep curve to the left of the optimal 7\: as Ti becomes smaller, the weighted
response time quickly diverges to infinity. Therefore, even when p\ and pi are fixed and known,
past works advised choosing 7\ conservatively, as they could not perform accurate analysis. Our
accurate and efficient analysis now allows us to choose the optimal 7\ in such a situation. Though
not shown, we have also investigated other values of p2. When p2 is lower (and hence p\ is
higher for a fixed pi), the optimal 7\ tends to become smaller, and hence the tradeoff between the
performance at the estimated load and stability at higher loads is more significant. This makes
intuitive sense, since at lower p2, server 2 can help more. The condition fiu > //2 is achieved
when type 1 jobs are small, type 2 jobs are large, and/or in the pathological case when type 1 jobs
have good affinity with server 2.

Rule 3: If Ci = C2, lower n\ typically implies lower optimal threshold. In the upper rows
in Figure 6, the optimal Ti's are smaller and at the same time the "V shapes" are sharper. Since
smaller 7\ results in a smaller stability region and larger Ti values significantly deteriorate the
performance at the estimated load, the tradeoff between the performance and stability is most
significant here. Small Hi is achieved when type 1 jobs are large or when server 1 is slow.

In the above rules we have assumed equal weights; Figure 7 shows the effect of changing the
weights. Here c2 is changed as labeled, c\ is fixed at 1, and the service rates are now fixed at ^ =
A*i2 = A*2 = 1- In terms of C/JL values, the figure corresponds to the third row of Figure 6. Observe
that the curves in Figure 7 have shapes similar, but not identical, to the corresponding curves
in Figure 6. The CJJL rule provides a good basis but does miss some, potentially crucial, system
changes. We find that as a whole, the above three rules continue to characterize the optimal 7\
values in the case of different weights when we replace fix by C1//1, \i\2 by Ci/xi2, and JU2 by c2p2

in the rules. In particular, when c2 is small, i.e., type 1 jobs are more important, the optimal T\
is smaller and the "V shape" is sharper, and hence the tradeoff between the performance at the
estimated load, (px, p2), and stability at higher pi and/or p2 is most significant.

3.2 Stability of Tl policy

Figure 8 shows stability regions under the Tl policy as pi and p2 vary; the queues are stable if and
only if p2 is below the curve. The figure illustrates that higher 7\ values yield a larger stability
region, and in the limit of 7\ = oo, the queues under the Tl policy are stable as long as px < 1
and p2 < 1. The next theorem formally characterizes the stability of the Tl policy. We provide
its proof in [20].
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Theorem 2 Queue 1 is stable under the Tl policy if and only if\\ < /j,i+ //12. Queue 2 is stable
under the Tl policy, when Tx > 1, if and only if

1
1 and

< <
PI

if Pi

ifpi =
(1)

! > /X12, gwewe 2 w 5faMe 2/am/ only if equation (1) holds with T\
< fj,i2, queue 2 is stable if and only if

= 2

<
1

Corollary 1 77*e r/
increases with T\.

of equation (1) is an increasing function ofTx; i.e., stability

4 Results: ADT policy

In this section we examine the adaptive dual-threshold (ADT) policy, which achieves both good
performance at the estimated load and stability at higher loads. Recall from Section 3 that small
Ti achieves good performance at the expense of stability, and large Tx achieves stability at the
expense of good performance. The ADT policy places two thresholds, T[l) and T[2\ on queue 1,
and as shown in this section:

11



1. Performance at the estimated load is well characterized by T[l\ and

2. Stability is characterized by T[2\

Thus we get the best of both worlds. Since the ADT policy requires specifying three thresholds,
7\ , Ti , and T2, one might want to avoid searching the space of all possible triples for the
optimal settings. We show that threshold values set by the following sequential heuristic can
achieve performance comparable to the optimal settings.

1. Set T[l) as the optimal 7\ of the Tl policy at the estimated load.

2. Choose T[2^ so that it achieves stability in a desired range of load.

3. Find T2 such that the policy provides both good performance and stability.

4.1 Stability of the ADT policy

We first consider the stability of the ADT policy. At high enough p\ and p2, N2 usually exceeds
T2 and the policy behaves similar to the Tl policy with 7\ = T^\ the stability condition for the
ADT policy is in fact the same as the stability condition for the Tl policy when 7\ is replaced by
T^\ The following corollary can be proved in a similar way as Theorem 2.

Corollary 2 The stability condition (necessary and sufficient) for the ADT policy is given by the
(2)

stability condition for the Tl policy (Theorem 2) by replacing 7\ by T^ \

4.2 Characterizing the optimal thresholds

Corollary 2 suggests that Tf > should be chosen so that the policy can achieve stability in a
desired range of load. One might argue that setting T± too high degrades the performance at
the estimated load, as does the Tl policy with large 7\ threshold; however, it turns out that this
is not the case for the ADT policy. Figure 9 shows the weighted average mean response time
(weighted response time) as a function of 7i (solid or dashed lines); it also shows the weighted
response time under the Tl policy as a function of 7\ (dotted lines). We set T{2' and T2 as labeled.
The figure shows that choosing high T^ (=40) degrades the performance at the estimated load
(pi = 2.34, pi = 0.9, and p2 = 0.6) only if T2 is too small (dashed line). With a sufficiently
large T2, the ADT policy achieves performance very comparable to the optimal Tl policy at the
estimated load (solid line). Note also that for T^ values below the optimal 7\, the performance
of the ADT remains stable, in contrast to the simple Tl policy.

Figure 9 also suggests that when T2 is appropriately set, the weighted response time is min-
imized by setting T^ close to the 7\ that minimizes the weighted response time, achieving
performance very close to the optimal Tl policy at the estimated load.

However, determining the appropriate T2 is a nontrivial task. If T2 is set too low, the ADT
policy behaves like the Tl policy with threshold Ti = T[2\ degrading the performance at the
estimated load, since T^ is larger than the optimal 7\. If T2 is set too high, the ADT policy
behaves like the Tl policy with threshold Tx = T^. This worsens the performance at loads
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Figure 9: The weighted response time under the ADT policy as a function ofTi (solid or dashed
lines) and the weighted response time under the Tl policy as a function ofT\ (dotted lines). Here
we assume p\ = 0.9, p2 = 0.6, C\[i\ = 1/4, Cijii2 = 1, and C2/J,2 = 1/16, corresponding to the
second graph in the first column of Figure 6.

higher than the estimated load. Although a larger stability region is guaranteed by setting T[^
higher than the optimal 7\, the weighted response time at higher loads can be quite high, albeit
finite.

Our efficient and accurate analysis of the ADT policy in Section 2 can be used as the kernel
of a search algorithm to determine a good value of T2 swiftly and easily, once we determined T^
and T2 . Figure 10 shows the weighted response time for different c\x values, as a function of p\
in column (a) and as a function of p2 in column (b). Dashed lines show the weighted response
time under the Tl policy, using the threshold 7\ that minimizes the weighted response time at
the estimated load (pi = 0.9 and p2 = 0.6). Dotted lines show the weighted response time under
the Tl policy with 7\ = 20. Solid lines show the weighted response time under the ADT policy,
where 7\(1) is set at the optimal 7\ at the estimated load, Tx

(2) = 20, and T2 is chosen so that it
achieves good performance both at the estimated load and at higher pi and higher p2. We find
"good" T2 values manually by trying a few different values, which takes us a few minutes.

Figure 10 shows that the ADT policy has at least as good performance as the better of the Tl
policies throughout the range of loads (pi and p2). When \ix is large relative to ^12 (bottom rows),
the difference in the weighted response time at the estimated load is small between the optimal
7\'s and larger 7\'s. Therefore a high threshold, such as 7\ = 20, is a reasonable choice in this
case, implying that a good T2 is typically small. This case corresponds to the case when type 1
jobs have good affinity at server 1, or the case when server 1 is faster.

When IJLI is small relative to JJLI2 (top rows), stability region is less sensitive to 7\, since small
Ti can achieve relatively large stability region. Therefore, the optimal 7\ at the estimated load
is a good choice, and T2 is typically large. These rows correspond to the case when server 2 is
faster, or type 1 jobs have good affinity on server 2.

The advantage of the ADT policy over the Tl policy is most significant when \xx is close

13
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Figure 10: The weighted response time under the ADT policy (solid lines) and Tl policy (dashed
and dotted lines) as functions of (a) pi (only Ai is changed; p2 = 0.6) and (b) p2 (only A2 is
changed; pi — 0.8). Threshold 7\ is chosen so that the weighted response time is minimized at
pi = 0.8 and p2 = 0.6 (dashed lines) or 7\ = 20 (dotted lines). For the ADT policy, T\(1) is set as
the optimal 7\, T^ = 20, and T2 is chosen so that it achieves good performance and stability.
All graphs assume C1//12 = 1, c2/J>2 = 1/16, and c\ = c2 = 1, corresponding to the first column
of Figure 6.
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to //12. In this case, small 7\ provides good performance at low pi and at low p2 but has a
significantly smaller stability region, while large 7\ provides a larger stability region but has
significantly worse performance at low pi and at low p2- The ADT policy performs just as well
as the Tl policy with small Ti at low pi and p2, just as well as the Tl policy with large 7\ at high
pi and p2, and better than any of the two Tl policies at intermediate values of pi and p2-

5 Conclusion

Providing good performance at the estimated environment parameters such as loads, arrival rates,
and job sizes has been a central goal in designing allocation policies and schedules in computer
systems. However, estimating environment parameters is a difficult task, and furthermore these
parameters typically fluctuate over time.

We propose the Adaptive Dual-Threshold (ADT) policy that provides good performance in
the estimated environment and yet is also robust against changes in load. The key idea in the
design of the ADT policy is the use of dual thresholds; autonomously choosing the right threshold
depending on the system state, and hence adapting to changes in the environment. We show the
effectiveness of the ADT policy in the case of two servers; however, the ADT policy could be
applied to any more general distributed computing system where a threshold-based policy is
effective. We hope that the intuition obtained in our study of the two server case is also useful in
choosing the correct threshold values in more general systems.

We also provide a computationally efficient and accurate performance analysis framework
that is widely applicable to threshold-based policies, including the ADT policy. This analysis
allows us to determine threshold values so that the policy provides good performance and ro-
bustness. Our analysis is useful in investigating the characteristics of threshold-based policies
in general; in fact we have studied many threshold-based policies, including the Tl and T1T2
policies. The intuition obtained in the study of these degenerate cases led us to propose the ADT
policy.

We have described our analysis in the case of two servers and two queues with Poisson ar-
rivals and exponential jobs sizes, but this can be extended to more general cases. Job size and
interarrival time distributions can be extended to general distributions using PH distributions as
approximations (see [11]). It is also straightforward to extend our analysis to more than two
servers but with only two queues. Extension to more than two queues is not trivial, but in certain
cases the recursive dimensionality reduction that we propose in [28] may be applied.
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A Proofs of theorems

A proof of Theorem 1

By Little's law, minimizing the mean number of jobs in system results in minimizing the mean
response time. Thus, it is sufficient to prove that the number of jobs completed under the Tl
policy with Tx = oo is stochastically larger than those completed under the Tl policy with
Ti < oo at any moment. Let N'm{(t) = (iV{nf (£), 7Vjnf (t)) be the joint process of the number of
jobs in queue 1 and queue 2, respectively, at time t when Tx = oo; Let Nfin (t) = (Nfn (t), Nfn (£))
be defined analogously for Tx < oo. With Tx = oo, server 2 processes type 2 jobs as long as
there are type 2 jobs, and thus N[ni(t) is stochastically larger than Nfn(t) for all t. This implies
that the number of jobs completed by sever 1 is stochastically smaller when Tx < oo than when
Ti = oo at any moment, since server 1 is work-conserving.

As long as server 2 is busy, the number of jobs completed by sever 2 is stochastically smaller
when Ti < oo than when Tx = oo at any moment, since ^ i 2 < n2. The only time that server 2
becomes idle is when there are no jobs to be processed in either queue; at these epochs iVjnf (t) =
N'f(t) = N'f(t) = N'f(t) = 0, and the number of jobs completed (either by server 1 or by
server 2) becomes the same for Ti = oo and Tx < oo. This implies that the number of jobs
completed (either by server 1 or by server 2) under the Tl policy with T\ = oo is stochastically
larger than that completed under the Tl policy with T\ < oo.

A proof of Theorem 2

We prove only the case when T\ > 1. The case when Ti = 1 can be proved in a similar way. Let
N = (JVi, N2) be the joint process of the number of jobs in queue 1 and queue 2, respectively.
Consider a process N = (N\, iV2), where N behaves the same as N except that it has no transition
from N2 = 1 to N2 = 0. Then, Ni and N2 are stochastically smaller than JVi and iV2, respectively.
It suffices to prove the stability of TV.

First consider Ni. The expected length of a "busy period," during which Ni > Ti, is finite if
and only if Ai < ^i + n\2. This proves the stability condition for queue 1.

The strong law of large numbers can be used to show that the necessary and sufficient con-
dition for stability of queue 2 is p2 < F, where F denotes the time average fraction of time that
server 2 processes jobs from queue 2. Below, we derive F. Consider a semi-Markov process
of JVi, where the state space is (0,1,2,...,Ti — 1,^+). The state n denotes there are n jobs in
queue 1 for n = 0,1, ...,Ti — 1, and the state Ti+ denotes there are at least T\ jobs in queue
1. The expected sojourn time is 1/Ai for state 0, l/(Ai + fii) for states n = 1, ...,Ti — 1, and
b = I/(MI+A*I2) for s t a t e JH- w h e r e 5 is ^ e mean duration of the busy period in an M/M/l
queue, where the arrival rate is Ai and the service rate is /xi + \i\2. The limiting probabilities for
the corresponding embedded Markov chain are 7rn = (1 + p i jp?" 1 ^ for n = 1, ...,Ti — 1 and
TTT+ = pfVo, where

' , m-D if Pi 7^1
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In N, server 2 can work on queue 2 if and only if Ni <T\. So, the fraction of time that server 2
can work on queue 2 is

F =
7T0/Ai + (1 - 7T0 ~ 7Tr+)/(Ai

- 7T0 -

This proves the stability condition for queue 2.
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