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Abstract

Privilege separation partitions a single program into two parts: a privileged program called the
monitor and an unprivileged program called the slave. All trust and privileges are relegated to the
monitor, which results in a smaller and more secure trust base. Previously the privilege separation
procedure, i.e., partitioning one program into the monitor and slave, was done by hand [17,26]. We
design techniques and develop a tool called Privtrans that allows us to automatically add privilege
separation to source code, provided a few programmer annotations. Additionally, we propose
optimization techniques that augment static analysis with dynamic information. Our optimization
techniques reduce the number of expensive calls made by the slave to the monitor. We show
Privtrans is effective by integrating privilege separation into several open-source applications.



 



1 Introduction

Software security provides the first line of defense against malicious attacks. Unfortunately, most
software is written in unsafe languages such as C. Unsafe operations may lead to buffer overflows,
format string vulnerabilities, off-by-one errors, and other common vulnerabilities. Exploiting a
vulnerability can subvert a programs' logic, resulting in unintended execution paths such as inap-
propriately running a shell.

Privileged programs — programs that runs with elevated privileges — are the most common attack
targets. A successful exploit may allow the attacker to execute arbitrary instructions with the
elevated privileges. Even if attackers cannot execute arbitrary instructions, they may be able to
change the semantics of the code by disabling a policy of the program. For example, an exploit
may disable or alter an " i f statement that checks for successful authentication.

The typical number of programs that execute with privileges on a system is high, including se-
tuid/setgid programs (e.g. ping), common network daemons (e.g. web-servers), and system main-
tenance programs (e.g. cron). In order to prevent a compromise, every privileged program on a
system must be secured.

Privilege separation is one promising approach to improving the safety of programs. Privilege
separation partitions a single program into two programs: a monitor program that handles all
privileged operations, and a slave program that is responsible for everything else. The monitor and
slave run as separate processes, but communicate and cooperate to perform the same function as
the original program.

In this paper we show how to automatically add privilege separation to a program. The overall
procedure for adding privilege separation to a program is depicted in Figure 1. The program-
mer supplies the source code and a few annotations to indicate privileged operations. Our tool,
Privtrans, then automatically performs static analysis and C-to-C translation to partitions the input
source into the monitor and slave.

Safety between the slave and monitor is provided by process isolation in the operating system.
Thus, a compromise of the slave does not compromise the monitor. The slave and monitor com-
municate via either inter-process or inter-network sockets. Since the slave asks the monitor to
perform privileged operations on its behalf, the monitor can be viewed as interposing between
privileged operations and the main execution in the slave.

1.1 Related Approaches

We discuss related work in section 6. Here we discuss closely-related approaches for the purpose
of comparison.



I Annotations |

Monitor Slave

*

Figure 1: We automatically incorporate privilege separation into source code by partitioning it into
two programs: the monitor which handles privileged operations and the slave which executes ev-
erything else. The programmer supplies a few annotations to help Privtrans decide how to properly
partition the input source code.

System call interposition [1, 4, 13, 15, 25] monitors system calls and decides whether to allow or
deny a call based upon a user-specified policy. Privilege separation is different than system call
interposition because it statically changes the source code of a program. As a result, privilege
separation can interpose on any function call, not just system calls.

Static analysis can be used to find bugs in programs [7, 9, 10, 18, 29, 33, 38]. However, it is
difficult to perform precise static analysis on C programs. Our approach is to use static analysis as
a tool to help partition the input source code. We rely upon process isolation for safety. We also
use dynamic information to augment static analysis to reduce the number of expensive calls made
by the slave to the monitor.

Provos et al. demonstrated the value of privilege separation in OpenSSH [26]. However, they man-
ually edited OpenSSH to incorporate privilege separation. When privilege separation is enabled,
OpenSSH resists several attacks [6, 21, 22]. Our techniques enable automatic privilege separation
for programs.

Privman [17], a library for partitioning applications, provides an API a programmer can use when
adding privilege separation to a program. However, the library can only make authorization de-
cisions and does not provide complete mediation. Further, the programmer must manually edit
the source at every call point to use the corresponding Privman equivalent. Our method uses data
flow techniques to automatically find the proper place to insert calls to the monitor, and allows for
finer-grained policies than access control. Policies are discussed in section 2.3.



1.2 Our Contributions

In this paper, we describe our techniques that allow our tool Privtrans to automatically add priv-
ilege separation to programs. The programmer provides a few simple annotations to variables or
functions that could be privileged. Privtrans then propagates attributes, performs static analysis to
find privileged call sites, and performs C-to-C translation to partition the input source code into the
source code for the monitor and slave, Privtrans also automatically inserts dynamic checks which
reduce overhead by limiting the number of expensive calls from the slave to the monitor.

Our contributions include:

• We design new techniques that allow us to develop the first tool for automatic privilege sepa-
ration. Our automatic approach makes it easy to add privilege separation to many programs.
We use the strongest model for privilege separation (section 2). Our approach allows for
fine-grained policies (section 2). With only a few annotations provided by the programmer,
our tool automatically performs static analysis and C-to-C translation to partition a program
into the privilege-separated monitor and slave programs (section 3). As an additional bene-
fit, automatic program translation, as opposed to manually changing code, allows us to track
and re-incorporate privilege separation as the source code evolves.

• We design and develop techniques to augment static analysis with dynamic information to
improve efficiency. Since static analysis of C programs is conservative, we insert dynamic
checks to reduce the number of expensive calls made by the slave to the monitor.

• We allow for privilege separation in a distributed setting. Previous work only considered
the monitor and slave running on the same host [17, 26]. Running the monitor and slave
on different hosts is important in many scenarios (section 2), such as privilege separation in
OpenSSL (section 4).

1.3 Organization

Section 2 introduces the model we use for privilege separation, the components needed for au-
tomatic privilege separation, and the requirements for programmers using privilege separation.
Section 3 details our techniques and implementation of Privtrans. Section 4 shows Privtrans works
on several different open-source programs. We then discuss when our techniques are applicable in
section 5. We conclude with related work in section 6 and a conclusion of our work.

2 The general approach to automatic privilege separation

In this section we begin by describing the model we use for privilege separation. We then discuss
the components needed for automatic privilege separation. Last, we discuss components that need



1. intsndsize= 128*1024;
2. int sock = socket(AFJNET, SOCK_RAW, IPPPROTOJCMP);
3. setsockopt(s, SOLJSOCKET, SO_SNDBUF, & sndsize, &(sizeof(sndsize)));

Figure 2: The monitor must track the socket created on line 2, and relate it to a subsequent call
such as setsockopt on line 3.

to be supplied by the programmer.

2.1 Our model for privilege separation

In our model the monitor must mediate access to all privileged resources, including the data de-
rived from such a resource. Specifically, it is not sufficient for the monitor to only perform access
control. The monitor, and hence privileged data, functions, and resources, must be in an address
space that is inaccessible from the slave. Our model is the same used by Provos et al. [26], but is
stronger than that of Privman [17], since it encompasses both access control and protecting data
derived from privileged resources.

To protect privileged resources it is often insufficient to just perform access control; it is also
important to protect data derived from the protected resource. For example, if a program requires
access to a private key, we may wish to regulate how that key is used, e.g., the key should not be
leaked to a third party. Access control only allows us to decide whether to allow or deny a program
access to the private key. A subsequent exploit may reveal that key to a third party. With privilege
separation, we can make sure the private key is used only by the trusted monitor, and thus is not
leaked. In our model policies can be enforced on both access control and on data derived from
privileged resources.

2.2 Components needed for automatic privilege separation

In order to create the monitor and slave from the given source code, automatic privilege separation
requires:

1. A mechanism for identifying privileged resources, i.e., functions that require privileges or
data acquired from calling a function that requires privileges.

2. An RPC mechanism for communication between the monitor and slave. The RPC mech-
anism includes support for marshaling/demarshaling arbitrary data types that the slave and
monitor may exchange.

3. A storage mechanism inside the monitor for storing the result of a privileged operation in
case it is needed in a later call to the monitor.



The third mechanism, storage, is needed when multiple calls to the monitor may use the same
privileged data. Consider the sequence of calls given in Figure 2. On line 2 a socket is created.
Since the socket is a raw socket, it is a privileged operation and must be executed in the monitor.
At this point the monitor creates the socket, saves the resulting file descriptor "sock", and returns
an opaque index to the file descriptor to the slave. On line 3 the slave calls setsockopt on the
privileged socket. To accomplish this the slave asks the monitor to perform the call and provides it
with the opaque index from line 2. The monitor uses the index to get the file descriptor for "sock",
performs setsockopt, and returns the result.

Our tool, Privtrans, provides all three mechanisms. The programmer supplies a few annotations
to mark privileged resources. Privtrans then automatically propagates attributes to locate all priv-
ileged functions and data. We supply a base RPC library, drop-in replacement wrappers for com-
mon privileged calls, and the monitor itself including the state store. Thus, the programmer is
responsible only for adding a few annotations and defining appropriate policies.

2.3 Annotations and policies supplied by the user

Annotations Privtrans extends C to include two annotations on variables and functions: the
"privileged" and "unprivileged" annotations l. The programmer uses the "privilege" annotation
to mark when a variable is initialized (or subsequently set) by accessing a privileged resource,
or when a function is privileged and should be executed in the monitor. After the programmer
supplies the initial annotations, propagation infers the dependencies between privileged operations
and adds the privileged attribute as necessary. Propagation is discussed further in section 3.

The annotations are used to partition the source code into the monitor source and the slave source.
If a variable has the privileged annotation, it should only be accessed in the monitor. Similarly,
if a function has the privileged annotation, it should only be executed in the monitor. All other
statements and operations are executed in the slave.

The programmer decides where to place annotations based upon two criteria: what resources are
privileged in the OS, and what is the overall security goal. A resource is privileged if it requires
privileges to access, e.g., opening a protected file.

Annotations can also placed so that the resulting slave and monitor meet a site-specific security
goal. For example, a site-specific goal may state all private key operations happen on a secured
server. With properly placed annotations the source will be partitioned such that only the monitor
has access to the private keys. The monitor can then be run on the secured server, while the slave
(say using the corresponding public keys) can be run on any server.

!Note our annotations are similar to, but not the same as, subtypes.



Policies A monitor policy specifies what operations the slave can ask the monitor to perform. The
monitor policy is written into the monitor itself as C code. We could provide some automatically
generated policies, but application-specific policies should be provided by the programmer. Our
approach guarantees the enforcement of policies since all privileged calls must go through the
monitor.

Examples of useful monitor policies include limiting the privileged operations available to a slave
and checking privileged function call sequences during execution. We can accomplish the former
policy with privilege separation by limiting the API exposed by the monitor. The later can be
accomplished by adding a finite state machine (FSM) to the monitor of allowed privileged call
sequences. Upon receiving a request to perform a privileged operation, the monitor checks to
make sure the call is of the right type, with the right parameters, and in the correct sequence via
the FSM.

We could provide FSM policies automatically using static analysis. For example, others have
shown how to automatically create FSM's and similar structures [7, 14, 20, 28, 31, 36] from the
source code call-graph. We could readily integrate FSM policies into the monitor based upon their
techniques.

Downgrading data Since the monitor mediates all access to privileged data, it is sometimes
useful to downgrade data (i.e. make previously privileged data unprivileged). The purpose of a
downgrade is to allow otherwise privileged data to flow from the monitor to the slave.

Consider a program that reads a file containing a public/private key pair. Accessing the file is
privileged, since it contains the private key. However, the public key is not privileged. With
privilege separation, the monitor has access to the file, while the slave does not. Programmers are
free to define cleansing functions that downgrade data. In the scenario above, the programmer
writes an extension to the monitor that returned only the public key to the slave, while maintaining
the private key in the monitor. Cleansing functions are application specific, and should be provided
by the user.

Downgrades are performed by casting in the source code a privileged variable to unprivileged.
Upon such a cast, the monitor will return the contents of the variable directly to the slave. The
programmer can add a cleansing function if necessary before the return.

3 The design and implementation of Privtrans

We first discuss at a high level the process of running Privtrans on existing source code to produce
the monitor and slave source code. We then discuss how Privtrans implements each step in the
process, and how we reduce the number of calls from the slave to the monitor. We also show how
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1. int __attribute__((priv)) a;
2. __attribute_-((priv)) void myfunctionQ;

Figure 3: Line 1 marks a variable "a" as privileged. If "a" is initialized by a library call "f' (i.e., a
function declared but not defined), then "a" is transmitted to the monitor which executes "f' on the
slave's behalf. If "a" is subsequently used as an argument to a function "g", "g" is also executed by
the monitor. On line 2, we mark a function privileged. Any call to this function will be executed
in the monitor.

the programmer can easily extend Privtrans for new programs using our base RPC library. We
conclude this section by describing the monitor state store.

3.1 High-level overview

We begin by describing the process of adding privilege separation at a high level. Privtrans takes
as input source code that we wish to have rewritten as two separate programs: the monitor source
code and the slave source code.

Annotations First, the programmer adds a few annotations to the source code indicating priv-
ileged operations. Annotations are in the form of C attributes. An annotation may appear on a
function definition or declaration, or on a variable declaration, such as in Figure 3.

Attribute propagation Privtrans propagates the programmer's initial annotations automatically.
After propagation, a call site may either have a privileged argument, or the result may be assigned
to a privileged variable. Additionally, a function callee itself may be marked privileged. We wish
to have the slave ask the monitor to execute any such call on its behalf.

Call to the monitor Privtrans automatically changes a call site that is identified privileged to
call a corresponding wrapper function, called a privwrap function. A privwrap function asks the
monitor to call the correct function on the slave's behalf by: 1) marshaling the arguments at the call
site, 2) send those arguments to the monitor, along with a vector describing the run-time privileged
status of each variable, 3) wait for the monitor to respond, 4) demarshal any results, and 5) arrange
for the proper results to be returned to the slave.

Execution and return in monitor Upon receiving a message from the slave, the monitor calls
the corresponding privunwrap function. The privunwrap function 1) demarshals the arguments
sent to the monitor, 2) check the policy to see if the call is allowed, 3) looks up any privileged
actuals described as privileged in its state store, 4) performs the function requested, 5) if the results

7
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Figure 4: The output of translation partitions the input source code to create two programs:
the monitor and the slave. RPC between the monitor and slave is accomplished via the
privwrap/privunwrap functions. The monitor may consult a policy engine when asked to per-
form a privileged function. Finally, the monitor may save results from a function call request in
case later referenced by the slave.

are marked privileged, hashes the results to its state store and sets the return value of the function
to be the hash index, and 6) marshals the return values and sends them back to the slave.

Starting the monitor Privtrans inserts a call to priv_init() as the first executable line in main().
priv Jnit() can optionally fork off the monitor process and drop the privileges of the slave, or else
it contacts an already running monitor. The slave then waits for notification from the monitor that
any initialization is successful. Initialization of the monitor consists of initializing the state store,
along with any policy-dependent initialization. After priv Jnit returns, the slave can begin main
execution.

This process is depicted in Figure 4. We detail each stage in the following subsections.

3.2 Locating privileged data

Privtrans uses CIL [20] to read in and transform the source code. Privtrans performs static analysis
to locate all potentially privileged call sites. To reduce overhead, Privtrans also inserts run-time
checks to limit the number of calls from the slave to the monitor.



3.2.1 Static analysis and rewriting privileged calls

The programmer annotates a few variables or functions using C attributes. Privtrans uses two at-
tributes, priv and unpriv, used to respectively mark privileged and unprivileged variables or func-
tions. The programmer need only use the unpriv attribute when casting a privileged variable to
unprivileged.

It would be impossible in most circumstances to deduce which variables should be privileged with-
out some initial annotations. A program may rely upon input to choose whether a particular call
needs privileges or not, and thus the location of privileged calls may not be statically determined.
For example, a web-server may rely upon a configuration file (as input) to determine whether to
bind to a privileged port (e.g., port 80) or not (e.g., a high number port). We do not know whether
the bind call is privileged until the configuration file is read at run time. Thus, the programmer
needs to provide a few annotations.

The slave should ask the monitor to execute any call where the arguments, return value, or callee
function is marked privileged. Privtrans rewrites a call to "f' that may be privileged to the corre-
sponding wrapper function "privwrap_f". Wrapper functions such as "privwrap_f' use the under-
lying RPC mechanism to ask the monitor to call a function ("f" in this case), wait for the reply,
and arrange for the proper return values.

Propagation is the process of adding the priv attribute to the results of a call through a wrapper.
Note that pointers supplied as arguments are considered return values since the pointed-to data
may be changed as a result of the call.

Privtrans currently supports simple intra-procedural propagation of privileged attributes. Inter-
procedural analysis is well understood, and can be added. For example, propagation can be done
via inter-procedural type qualifier analysis, such as that done by CQual [12].

The result of the propagation phase is a set of calls that potentially should be executed by the
monitor. Our analysis is conservative, so any call site that may be privileged is considered privi-
leged. In 3.2.3 we explain how we augment our static analysis with run-time information to reduce
unnecessary calls to the monitor.

3.2.2 Polymorphic functions

A function callee may be polymorphic, i.e. some calls to the function are privileged and some are
not. Privtrans uses variable annotations with the priv attribute to support polymorphism. If the
priv attribute appears on a variable used as an argument to a function, or assigned to the result of
a function, then the call is considered privileged and the caller should ask the monitor to perform
the called function.



1. int __attribute__((priv)) a ;
2. int b = 0;
3. f2(a); f2(b);
4. if ( some expression ) b = a;
5. b = f(argl,arg2);

(a) The call to "f' should be executed in the mon-
itor when the " i f statement on line 4 is true,
else the call can be executed by the slave directly.
We cannot know statically which case will hap-
pen. Also, on line 3 we encounter the polymorphic
function "f2". The first call to f2 is privileged, the
second is not.

1. int __attribute__((priv)) a;
2. int b = 0;
3. int privvec_f[3] =

{E.UNPRIV,E.UNPRIV,E_UNPRIV};
4. int privvecJ2[l] = {E.PRIV};
5. privwrap_f2(a, privvec J2); f2(b);
6. if ( some expression )

{ privvec_f[0] = EJPRIV; b = a; }
7. b = privwrap_f(argl, arg2, privvecJ);

(b) We add a vector describing the run-time privi-
lege status of the return value and each argument to
"privwrap_P\ Initially, the vector indicates that none
of the arguments are privileged. If the " i f statement
on line 4 is true, we mark "b" as privileged and thus
" f will be executed in the monitor

Figure 5: Privtrans rewrites the code on the left to make use of the monitor, as shown on the right

Consider Figure 5(a). On line 3 there are two calls to function f2. The first call passes "a",
a privileged variable, while the second call passes "b", an unprivileged variable. The attribute
distinguishes between the privileged and unprivileged call. In this example, the first call would be
rewritten as "privwrap_f2", while the second call would remain unchanged.

3.2.3 Improving on static analysis with dynamic information

Since static analysis is conservative, not all potential calls to the monitor are really privileged
during run-time. An example of such a call is given in Figure 5(a). After static analysis, we
determine that "f" may be a privileged call, thus we should invoke "privwrap_f" which calls the
monitor to call "f'.

However, every time the slave asks the monitor to perform a call, the slave suffers the overhead
of 1) marshaling all arguments on the slave and demarshaling them in the monitor, 2) calling the
monitor, which can result in a context switch if the monitor and slave are on the same host, and 3)
marshaling the results in the monitor and demarshaling them on the slave. Thus, we want to make
the slave only ask the monitor to perform a call if absolutely necessary.

In order to limit the number of calls to the monitor, we add an extra vector to the slave for ev-
ery privileged callee (as determined by static analysis). The vector contains the current run-time
privilege status of variables used at a possibly privileged call site we found with static analysis.
Each position in the vector contains one of two values: E _PRIV for privileged or E.UNPRTV for
unprivileged.
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An example is given in Figure 5(b). The vector "privvec-f' describes the run-time privilege status
of the return value and arguments of the call to "f \ read left to right. When the vector contains
only EJJNPRTV, the wrapper "privwrap_f' can decide to make the call locally instead of calling
the monitor.

It is safe to use the dynamic information even if the slave is compromised. Consider the two
cases of a compromise: a privileged call is made unprivileged or an otherwise unprivileged call
is considered privileged. The former case is always safe, since it does not give an attacker any
privileges.

In the latter case, the monitor receives a spurious call that the slave should be able to make itself.
Such spurious calls are also safe. First, since the slave could have made the call by itself, the
slave is gaining no additional information or privileges by asking the monitor to perform the call
on its behalf. Second, if the call conflicts with the monitor's policy it could refuse the call (and
possibly exit if a brute force attack is suspected). The second approach, refusing the call, is the
recommended solution.

3.3 RPC and the wrapper functions

Privtrans supplies a base RPC library implemented as a messaging facility. Variables are added to
a message, which can then be sent between the monitor and slave.

We also supply privwrap/privunwrap wrapper functions for common privileged calls, such as open-
ing a file or creating a socket. The wrappers are reused for each program on which we perform
privilege separation.

We provide wrappers for common privileged calls instead of automatically generating them from
the source because we may not know statically how to wrap a pointer argument to a call. Wrapping
pointers requires knowing the pointer's size. Generally functions that take a pointer argument also
take an argument indicating the pointer's size. Finding this out is easily done by a human, say by
consulting the appropriate man page, but is difficult to do with static analysis alone. The wrapper
functions are created only once, and then can be reused.

Using a shared memory region between the monitor and slave for passing pointers may seem like
an attractive solution, but this approach violates the abstraction boundary between monitor and
slave. The monitor must maintain a separate copy of any pointers it uses similar to the user/kernel
space distinction.

Although we supply wrappers for many common functions, a programmer may occasionally need
to define their own. Creating additional privwrap/privunwrap function is not difficult since Priv-
trans provide a base RPC library. The typical privwrap/privunwrap function is less than 20 lines of
code.
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name

ping
thttpd
OpenSSL

src lines

2299
21925
211675

# user an-
notations

7
4
2

# calls au-
tomatically
changed
29
13
7

Table 1: Results for each program with privilege separation. The second column is the number of
annotations the programmer supplied. The third column is the number of call sites automatically
changed by Privtrans

3.4 Execution in the monitor and the monitor state store

The slave uses a privwrap function to request the monitor to execute a function. Upon receiving a
request, the monitor demarshals all arguments. In addition, the monitor receives from the slave the
vector describing the privilege state of each argument and the return value.

If an argument is marked privileged in the monitor's corresponding privunwrap function, then the
argument supplied by the slave is an index to a previously defined privileged value. This fact
follows from the observation that the slave along could not have derived a valid index to data on
the monitor.

We use a hash table to lookup each privileged argument, and return the appropriate reference. If the
index is not valid, the monitor aborts the operation. Assuming a valid index, the monitor executes
the correct call. If the return values (recall pointer arguments are also considered return values)
are cast (statically through user annotations) to unprivileged, then the monitor returns the values
directly. If the return values are privileged, then the monitor stores the results and returns the index
to the slave.

The state store itself is implemented as a collection of hash tables, one for each base C type 2. The
opaque index returned to the slave is an index into the hash table. The opaque indexes are secure
since the client cannot generate a valid index on its own. While there are many methods to create
opaque indexes, we simply associate a random number to each indexed value.

4 Experimental results

To demonstrate Privtrans, we use it to automatically add privilege separation into two open-source
programs and one open-source library: thttpd [24], the Linux "ping" program, and OpenSSL[30].

2Using multiple hash tables reduces the number of type casts done to eventually get the correct type.
12



Table 1 summarizes our results.

4.1 thttpd

thttpd is a small HTTP server written with performance in mind, thttpd requires privileges to
bind() and accept() on port 80. Integrating privilege separation required the user to provide 4
attribute annotations. It took approximately 2 hours from downloading the source to place the
correct annotations. 13 call sites are automatically changed to use calls to the monitor: 1 socket(),
1 bind(), 3 fcntl(), 1 setsockopt(), 4 close(), 1 listen(), 1 accept(), and 1 poll(). Privtrans comes
with wrappers for all functions.

Integrating privilege separation is valuable for thttpd. Although thttpd eventually drops privileges,
privileges are retained for significant initialization, thttpd parses user input, sets up signal handlers,
then creating and binding several sockets before dropping privileges. Thus, if an attacker can
raise a signal before the program calls setuid, the signal handlers will be executed with elevated
privileges. One such signal handler, SIG.ALRM, could cause the program to core dump in /tmp.
With knowledge of the PID, an attacker could overwrite any file in /tmp.

4.2 ping

The ping source is available as part of the iputils package in many Linux distributions, ping is
normally setuid to root in order to create a raw socket. Although ping drops privileges after socket
creation, an exploit could still break policies we may wish to enforce. For example, one may wish
to allow ping to only send a certain number or limit the size of packets sent to a destination. Even
after privileges are dropped such a policy may not be enforced if there is a buffer overflow or other
type-safety violation.

Privilege separated ping is also useful for securing a site that wishes to limit internal ICMP mes-
sages. ICMP messages are commonly used for covert communication in hacker tools [8]. The
normal solution is to use a firewall that disallows ping requests. However, this approach does not
let legitimate internal ping clients ping outside hosts.

Using privilege separation we divide ping into the monitor and slave. The slave is ran on each
internal host, while a single monitor can run from a trusted "ping host". While there are other ways
to accomplish the same objective, privilege separation gives a new alternative. Circumstances may
make such alternatives attractive.

The privilege separated version of ping is created by the user adding 7 annotations to the original
source (with inter-procedural attribute propagation, only one annotation will be needed). It took
approximately 1.5 hours from downloading the ping source to place the proper annotations. 29
call site are automatically changed to use the monitor: 1 socket(), 21 setsockopt(), 1 getsockopt(),
2 ioctlQ, 1 sendmsgQ, 2 recvmsgQ, and 1 bindQ. Privtrans comes with all 14 wrapper functions.



4.3 OpenSSL

Integrating privilege separation into OpenSSL adds new avenues for securing a site. Many sites
may wish to reuse certificates for multiple services since certificates are often expensive and are
unique to a host, not a service. For example, a small business may want to use the same SSL
certificate for both a web-server and an IMAP server. The main drawback for using one certificate
for multiple services is that a compromise in any service will reveal the private keys for all services.

In this experiment we add privilege separation into OpenSSL, so that many SSL services (i.e.
slave's) will all use the same monitor to perform privileged RSA private key operations. Thus,
trust is only given to one server, the monitor, while multiple services can use the certificate.

We added 2 annotations for the RSA operations that required the private key: one for RSA_private_encrypt()
and one for RSA_private_decrypt(). It took approximately 20 minutes to find the correct place to
add annotations. Privtrans then rewrites the library so these two functions will be executed in a
monitor, while everything else will be in the slave. 7 call sites were automatically changed within
the library. We then compiled and linked stunnel [16] against our OpenSSL library, stunnel en-
crypts arbitrary TCP connections inside an SSL session. We gave the monitor the private RSA
key, and provided stunnel with only the RSA public key. As a result, all RSA decryptions needed
during an SSL session were done by the monitor instead of in stunnel.

4.4 Performance overhead

Our experiments were run on an Intel P4 2.4 GhZ processor with 1 GB of RAM running Linux
2.4.24. The base overhead for a cross domain call (i.e. between a client and server) vs. a local call
is about 84% on our test machines. Software-based isolation [34] can reduce the cost of a cross
domain call by up to three orders of magnitude.

We performed several micro-benchmarks. In each micro-benchmark we timed a system call done
locally vs. the same call via the appropriate privwrap wrapper. Our results show a performance
penalty factor of 8.83 for a socket() call, 7.67 for an open() call, 9.76 for a bind() call, and 2.17
for a listen() call. The average time difference between a local call and wrapper call is 19 //s
vs. 88 //s. Our results compare favorably to Privman [17], the only other implementation with
comparable wrapper functions. For instance, in Privman the cost of an open call done via their
library is about 19.6 times slower, while our implementation only has a 7.67 performance penalty.
Other measurements are similarly about the same or better than Privman.

We also performed macro-benchmarks for each application tested, thttpd was tested by measuring
the average web-server response time over 1000 iterations to download index.html. For ping, we
tested the time difference between the unmodified program and the privilege separation version
when pinging localhost 15 times. For OpenSSL, we asked the OpenSSL library to decrypt 1000
randomly generated (but constant throughout the experiment) messages. The privileged separated
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OpenSSL library has an additional 15% overhead, ping has an additional 46%, and thttpd only
suffered an additional 6% overhead.

The main cause of additional overhead in ping and OpenSSL is transferring data between the slave
and monitor. With ping, for example, a 4K block of data is transferred twice each time a ping reply
is received: once when calling privwrap_recvmsg from the slave to monitor, and once on the return
from the monitor to slave. Such overhead is unfortunately unavoidable unless the ping source is
rewritten. Alternatively, we could specialize the wrapper functions for ping to eliminate about half
of the overhead.

The overhead from privilege separation is often not a limiting factor since cycles are cheap but
secure software is not.

5 Discussion

In this section we discuss techniques to address potential issues with privilege separation. Certain
programs may need special care for automatic privilege separation.

The setuid and getuid routines may not behave as expected in the original program. For example,
since the privilege-separated version drops all privileges immediately, a call to getuid will return
the uid of the unprivileged user. This may break programs that expect to be setuid and checks for
certain privileges through the getuid call. Thus, such calls may need to be manually deleted from
the source. We can detect such calls statically and notify the programmer of the potential issue.

File descriptor numbering will also be different due to the socket between the slave and monitor.
For example, with the select() call the first argument is an integer indicating the highest number
file descriptor to check for a change in status. If the slave asks the the monitor to perform a select()
call, the highest file descriptor argument supplied by the slave may not coincide with the correct
file descriptor in the monitor. To solve this problem select() calls should be rewritten as poll(),
since the poll() call contains the list of actual file descriptors to check for a change in status.

Previous work has also reported issues around fork() [17]. For example, consider a file descriptor
opened by the monitor for a slave. Suppose the slave forks off a new child process, which asks
the monitor to close the file descriptor. In the slave the parent process expects the file descriptor
open, while the child expects to have the file descriptor closed. Thus, with privilege separation,
we must distinguish in the monitor between the file descriptors owned by the child process in the
slave from the parent process in the slave. Our solution is to fork off a new monitor when a new
slave is forked.

Another important issue is resolving which elements of a data structure contain privileged and
unprivileged data, such as an array that contains both types. The opaque identifier returned during
privileged data creation can help identification, even though this may not work in all cases. For



example, in thttpd poll() is called with file descriptors owned by the monitor and the slave, which
must be distinguished. Our opaque identifiers start at 100, so we can distinguish between a file
descriptor owned by the slave, which will be less than 100, and one owned by the monitor, which
will be over 100.

We do not perform any pointer analysis. This leads to potentially two problems. First, there may
be a pointer in the slave to an opaque index, which is later used in an operation. We cannot know
of such an operation without full pointer analysis. Second, since we don't know the liveliness of
pointers we do not know when it is safe to free a variable in the monitor. Thus the monitor never
frees memory for a privileged value. In our experience, neither has been a problem, i.e. the slave
never tried to use a opaque identifier and the monitor's memory usage was modest.

Last, there is no simple way for a program that accumulates state as the unprivileged user to become
another user. To solve this problem, we suggest inserting a kernel module that allows a process
with the uid of the superuser to set the uid of any other running process. This is justified since root
could always run the program itself. Other techniques are explored by Kilpatrick [17] and Provos
et al [26].

6 Related work

While privilege separation can drastically reduce the number of operations executed with privi-
leges, it is even more important to write applications securely from creation. Programs should be
developed with the principle of least privilege, which states every operation should be executed
with the minimum number of privileges [27].

VSFTPD [11] and Postfix [32] use separate processes to limit the damage from a programming
error. Both programs were created from the ground up following the principle of least privilege.

Provos et al. demonstrated the value of privilege separation in OpenSSH [26]. However, they man-
ually edited OpenSSH to incorporate privilege separation. When privilege separation is enabled,
OpenSSH resists several attacks [6, 21, 22]. Our technique entails automatic privilege separation.

Privman [17], a library for partitioning applications, provides an API a programmer can use to
insert privilege separation. However, the library can only make authorization decisions, and cannot
be used for fine-grained policies. Further, the programmer must manually edit the source at every
call point to use the corresponding Privman equivalent. Our method uses data flow techniques to
find the proper place to insert calls to the monitor, and allows for fine-grained policies.

Several different mechanisms exist for dynamically checking system calls such as Systrace [25],
GSWTK [13], Tron [4], Janus [15], and MAPbox [1]. Dynamically checking system calls does not
allow for fine-grained policies on regular function calls, although this technique does not require
program source code. Another drawback is that dynamic techniques cannot optimize the number
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of checks. Our approach works for arbitrary function calls, allows for fine-grained policies, and
optimizes the number of expensive calls to the monitor.

Type qualifier propagation has been used to find bugs in C programs [29, 38] . We use attributes
as type qualifiers, and use them to guide rewriting the code. Type qualifiers are used to identify
potentially sensitive data in Scrash [5]. CIL is used in this work to rewrite the application so that
sensitive data may be removed from a core file.

JFlow/JIF [19, 37, 39] and Balfanz [3] show how to partition applications by trust level in Java.
Since Java is type-safe it is less vulnerable to malicious attacks. Instead, JHow/JIF and Balfanz
focus on preventing unintentionally leaking information in a program.

Operating system mechanisms [2,23,35] can provide ways to reduce the privileges of applications.
However, these mechanisms do not have access to the internals of a program, and thus cannot be
used for arbitrary function calls as with privilege separation.

Static analysis can be used to find bugs in programs [7, 9, 10, 18, 29, 33, 38]. Our goals are
different: we wish to limit the damage from an unknown bug. However, we use static analysis as
a tool to automatically find privileged operations.

7 Conclusion

We have shown how to automatically add privilege separation into source code. We consider the
strongest model of privilege separation where accessing privileged resources is relegated to the
monitor. The monitor can enforce policies on data derived from a privileged resource in addition
to access control. Our tool Privtrans uses static techniques to rewrite the C code, and inserts dy-
namic checks to reduce overhead. Privtrans requires only a few annotations from the programmer,
typically less than 10.

We ran Privtrans on several open-source programs successfully. Privilege separation has unique
benefits for each program. The overhead due to privilege separation was reasonable. Thus, Priv-
trans is applicable to a wide variety of applications.
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