
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Fast Kernel Matrix-Vector Multiplication
with Application to Gaussian Process Learning

Alexander Gray

February 2004

CMU-CS-04-llOo

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The author was supported by the NASA Graduate Research Fellowship.

Keywords: Gaussian processes, kernel matrix, matrix-vector multiplication, fast algorithms

Abstract

A number of core computational problems in machine learning, both old and new, can be cast as a matrix-
vector multiplication between a kernel matrix or class-probability matrix and a vector of weights. This
arises prominently, for example, in the kernel estimation methods of nonparametric statistics, many com-
mon probabilistic graphical models, and the more recent kernel machines. After highlighting the existence of
this computational problem in several well-known machine learning methods, we focus on a solution for one
specific example for clarity, Gaussian process (GP) prediction - one whose applicability has been particularly
hindered by this computational barrier. We demonstrate the application of a recent JV-body approach devel-
oped specifically for statistical problems, employing adaptive computational geometry and finite-difference
approximation. This core algorithm reduces the O(N2) matrix-vector multiplications within GP learning
to O(N), making the resulting overall learning algorithm O(N). GP learning for N = 1 million points is
demonstrated.

1 Kernel Matrix-Vector Multiplications in Learning
A kernel matrix $ contains the kernel interaction of each point x^ in a query (test) dataset 2LQ (having size
NQ) with each point from a reference (training) dataset X_n (having size iV^), where the kernel function
K() often has some scale parameter a (the 'bandwidth'). Often the 'kernel function' is actually a probability
density function, such as the Gaussian. In such cases $ is typically a class probability matrix. The query
and reference set can be the same set. Often the core computational cost of a statistical method boils down
to a multiplcation of this matrix $ with some vector of weights w. For example, in the weighted form of
kernel density estimation, the density estimate at the qth test point x_q is

Nn 1 / l l r — T

where D is the dimensionality of the data and Voh = / ! ^ Kh(z)dz, a normalizing constant depending
on D and h. This can be written in matrix notation as

where w is the vector of Nn weights and $ is the NQ by N-R kernel matrix.
Many fundamental statistical methods contain such matrix-vector multiplications, including Nadaraya-

Watson regression, EM iterations for mixture models, radial-basis function networks, Gaussian processes,
and a number of the more recent kernel methods [1], including support vector machines. More discussion of
some important special cases appears at the end of this paper.

Generalized JV-body problems. The main idea here is to observe that, for certain common kinds of
kernel functions, such kernel matrix-vector multiplications contain geometric structure which is not exploited
when the operation is viewed linear-algebraically. We instead approach such operations as AT-body problems,
generalizing from the computational physics problem of efficiently computing all pairwise potentials of a set
of points to a much larger class of problems which can be defined abstractly in group-theoretic terms [6],
unifying a number of important previously unrelated problems. The kind of summation discussed here is
one sub-class of these problems.

2 Gaussian Process Learning and Prediction
In this paper we will consider Gaussian processes, because the appearance of such iV-body problems occurs
in one of the least straightforward ways in this case, unlike many of the other statistical hosts of this kind of
problem. We hope that demonstrating a solution for this difficult case will provide inspiration and insight
for other problems.

Gaussian processes represent both an old and a new statistical technique. They are classical nonpara-
metric techniques from geostatistics, originally called kriging [13], which have attracted recent interest in
machine learning in their Bayesian form [12].

Two matrix-vector multiplications. Despite their appeal, their relevance has been limited to small
datasets by the fact that prediction entails inversion of an N by N matrix, where N is the number of training
data. When performed directly, matrix inversion has O(N3) cost. However, Gibbs and MacKay [5] showed
how an iterative linear-algebraic method proposed by Skilling [17], related to the Lanczos algorithm and
other conjugate gradient methods [15], can be applied to this problem, reducing the cost of the inversion to
O(N2I), where I is the number of iterations (which ranges up to JV, for exact inversion), and the O(N2)
factor arises due to the cost of multiplying an N by N matrix by a vector of length iV, which occurs in each
iteration.

In addition, there is a second major kernel matrix-vector multiplication occurring in GP learning. If
prediction is to be performed for M query (test) points, a second kernel matrix $' must be computed,
consisting of all pairwise kernel interactions between each query point and each training point. This M
by N matrix multiplies the vector $~1t. The main focus of this paper is to show how these matrix-vector
multiplications, which control the complexity of the learning algorithm as a whole, can be executed in O(N)
time, thus reducing the cost of GP learning to O(NI).

2.1 Skilling's Method

We now briefly review the Skilling method for GP prediction, following the description given in [5]. The main
computation of interest is the calculation of $~1u, where $ is the kernel matrix and w is a vector. Skilling's
recurrence consists of intermediate vectors </,- and hi and scalars A* and 7* at each iteration i, resulting in a
new approximation y{ to $"1u. It is initialized by g0 =w,ho= go, Vo = 0, and proceeds with the following
updates:

(4)
= gj±1gj±L

9i9i V

ftt-+i = gi+i + 7,-hi (6)

j/i+i = yi + \ihi (7)

The multiplications $fti are our main concern within this procedure.
While we have not shown the recurrence for the lower and upper bounds on the approximation that

are available in Skilling's method (which closely mirrors the above recurrence), it is the case that all of the
computations needed in training/testing (prediction estimate and lower/upper bounds) are governed by the
cost of these two instances of matrix-vector multiplication.

3 TV-Body Approach
Despite the existence of well-known JV-body solvers for problems in computational physics, these approaches
are not generally applicable to JV-body problems in statistical inference.1 In a series of papers [8, 9, 6]
we developed an iV-body approach specifically for the more general setting posed by statistical JV-body
problems (higher dimension, highly non-uniform data), taking a different perspective. State-of-the-art N-
body solutions have two major components - a space-partitioning scheme and a function approximation
scheme. We reverse the emphasis of standard methods, placing more sophistication in the data structure by
drawing from computational geometry, and using a lightweight finite-difference approximation scheme which
accomodates a wide variety of kernel functions in arbitrary dimension.

3.1 Adaptive space-partitioning trees.
fcc?-trees [4] are simple yet effective space-partitioning trees, where each node in the tree defines a distinct
region in the data space using a bounding hyperrectangle (which is maximally tight in each coordinate) and
each split is made along a single coordinate, the one having largest variance [4]. The tree is often built all
the way down to some small predefined number of points p at the leaves.

We can in fact improve the data-adaptivity of kd-trees by removing their axis-parallel restriction. If we
instead partition by selecting centroid points to define the left and right sets of the partitioning (according
to the Voronoi diagram induced by the two points), we can escape this representation problem as well,
effectively replacing axis-parallel hyperplane separators with arbitrarily-aligned hyperplanes. The result is
called a ball-tree [14] or 'metric tree' [3]. As with kd-tvees we augment the structure with problem-dependent
cached sufficient statistics.

Distance bounds. We have O(D) bounds on the distance from a point xq to any point within the node
R due to the triangle inequality:

- cR\\ - sR)2,0} (8)
JThe multipole methods [10] are known to suffer from the large constants inherent in the multipole expansion approximation

strategy, which are exponential in the explicit dimension D of the data. The Barnes-Hut method [2] is more flexible but has
poorer complexity. Both methods, designed for dynamical simulation problems, rely on simple hierarchical grids which are
insensitive to the data distribution and are thus less effective computationally than the adaptive structures which are common
in computational geometry.

Figure 1: Levels of a ball-tree. The bold circles indicate the root (left figure) and the 'middle' layer of nodes occurring in
the anchors construction algorithm (right figure).

max \\xq -xr\\ < (\\xq-cR\\+sR)2

where cR is the centroid of R and SR is its radius, the distance of the farthest point in R to cR.
Dual-tree traversal. Our algorithm will proceed by comparing nodes to nodes, forming a traversal

over two trees, one built on the query set 2LQ and one on the reference set X_n. At all times bounds are
maintained on the sum to be computed for each query, denoted <j>, beginning with maximally pessimistic
estimates at the start of the traversal. Analogous distance bounds can be written for the closest and farthest
distances between two nodes.

3.2 Quadrature, interpolation, and finite differences.
We can regard our problem as a kind of quadrature, or numerical integration problem, where the problem is

to find Ĵ max Kh(S)dS, though we actually want the value at a finite number of evaluation points given by
our data, J2qr Kh(SqrdSqr). Within quadrature is an interpolation problem, namely that of approximation
function values lying between the quadrature points. Taking the simplest form of Newton-Cotes formula,
the two-point form, gives the familiar trapezoidal rule, as shown in Figure 2. Here the function values lying
between the endpoints, the quadrature points in this case, are approximated by a linear function of the
abscissa (polynomial in general). Recalling Taylor's theorem,

p=0 p!

f'(a)(x-a) (9)

we see that this particular choice of interpolation corresponds to the Newton-Stirling formula (using central
differences) or Gregory-Newton formula (using forward differences, shown), finite analogs of Taylor's theorem:

Xi+i —
(10)

This is called the finite-difference approximation and is used in many forms throughout applied mathe-
matics. The basic idea of approximating continuous functions with a finite set of pieces lies at the heart of
all methods for numerical integration and the important special case of solving differential equations.

>

>t '•

Figure 2: Trapezoidal rule for numerical integration.

Adaptive quadrature rule. Let 5™$ and SQ^ be our bounds on the distance between respective points
in Q and iZ, yielding lower and upper bounds on iTs mass contribution to Q of Kh(Sq^-) and Kh(6Q^),
respectively. An obvious special case of the Gregory-Newton formula is

^TO) + 2 °QR °QR

+O((6QR-6™£)2) (11)

Since we are using SQ^ and SQ^ as our two quadrature points, and the placement of node boundaries
is determined by the distribution of the data, we are in the realm of adaptive quadrature rather than the
familiar fixed-width quadrature.

Intuitively, the closer if/i(£gff) and K^SQ1^) are to each other, the better we can approximate iZ's
contribution by NRK^ where lQ = \{Kh{8^f) + Kh(8$$)}.

Recall that our ultimate aim in this is not really to estimate the integral's value via some mean and
standard deviation, say. Instead, we are interested in hard error guarantees in the current context, and thus
we need bounds on the integral (actually, sum). In principle we could integrate the interpolation polynomial
over the interval, but we don't know the placement of the evaluation points. However with the assumption
Kh{) is monotonic, we can obtain simple bounds. The error of this linear approximation with respect to any
point x_q e Q is

ZQR = Kh(\\xq- xr\\) -Kh\<T^l ^ NR

dQR ~ dQR J6™*
\Kh(5)-Kh

(12)

To ensure that every (j)(x_qYs error eq meets the user-specified e tolerance, or ,?* v < e, we can enforce
t n a t "ifiri - l^e ^ y using the running lower bound 0g i n for (j)(xq), yielding

2eIf /cmin\ is /rmax\ ^ "^Kh (OQR)-Kh {<>QR) < Jj (13)

as a local pruning criterion which ensures the global error tolerance e. It can be seen that exclusion and
inclusion are also special cases of this generalized rule.

Arbitrary weights. For simplicity the algorithm is shown here assuming that all weights are 1. The
generalization to arbitrary positive weights is fairly natural though minor insights are required. The gener-
alization to comletely arbitrary weights is not completely straightforward and more complicated to explain.
However the structure and behavior of the resulting algorithm is similar to that shown.

dl = NRKh(5%%), du = NRKh(6%%) - NR.

f oreach xq E Q, 0™m + = dl, (j)™** + = du.
return,

else,
if leaf(Q) and leaf(-R), GPBase(Q,i?,ft), return.
GP(Q.left,closer-of(Q.left,{iZ.left,ii.right},ft)).
GP(Q.left,farther-of(Q.left,{iZ.left,ii.right},h)).
GP(Q.right,closer-of(Q.right,{ii.left,iJ.right},h)).
GP(Q.right,faxther-of(Q.right,{B.left,B.right},/i)).

GPBase(g,i?,^)
f oreach x_q € Q,

f oreach x_r E i?,
nin + = c, += c.

Figure 3: Dual-tree algorithm, basic form. In the pseudocode a += b means a = a + b. A leaf's left or right child is
defined to be itself. In the actual code repeated recursion cases are prevented.

N

2K
5K

10K
100K

1M

Tree
Build
(sec)

0.3
0.7
1.4
15
90

Skilling
with Direct

Multiplies (sec)
6

89
n/a
n/a
n/a

Skilling
with JV-body

Multiplies (sec)
0.8
1.6
3.3
34

351

Speedup
Factor

7.5
56

n/a
n/a
n /a

Figure 4: Computational comparison.

4 Experimental Example

We illustrate the performance of the approach using subsamples of increasing size from a large astronomical
dataset from the Sloane Digital Sky Survey [16] consisting of two 'color' attributes of sky objects obtained
from different bandwidth filters. We will predict the target variable r-i based on g-r.

Prediction is performed for N query points using iV training points. The parameter a was chosen using
a very large test set, minimizing L\ regression error. Note the tree need only be built once for the lifetime
of each dataset, so its construction cost is amortized over all operations that will ever be done with that
dataset.

The experiments were performed on a 1999-era Linux 500-MHz Pentium desktop workstation with 768Mb
of RAM. The Skilling method with direct multiplies was not able to perform GP learning for 10,000 data and
beyond as the explicit kernel matrix calculation required more RAM than available. The greater memory
efficiency of the TV-body method allowed prediction of 1 million test points with 1 million training points
well within RAM limits (in fact datasets of several million are possible even on this machine).

Only 3 Skilling iterations were performed for both methods. At this number of iterations the test set
error was the same for the Skilling method with direct matrix-vector multiplies and the proposed method
with JV-body matrix-vector multiplies, and furthermore was not significantly improved by increasing the
number of iterations. In fact, in many cases the Skilling method (even with exact multiplies) degenerated
numerically when many iterations were used. Fortunately, the early iterations are exactly those which can
tolerate the small loss of accuracy introduced by our approximate method. We speculate that this behavior

is fairly typical of the Skilling method in general, as it occurred in the several other datasets with which we
experimented.

The computational behavior of the algorithm in terms of the data dimensionality, the size of the band-
width a, the form of the kernel function K(), and diversity of datasets is effectively explored in previous
publications [8, 6] as the underlying algorithm is the same.

To summarize those studies, they demonstrate efficiency in dimensionalities up to 784, as ball-trees are
sensitive to the instrinsic dimension of the data rather than the explicit dimension. The high performance of
the method displays robustness across orders of magnitude in the range of bandwidth settings and various
kernel functions such as the Gaussian, spherical, and Epanechnikov kernels. The primary limitations of this
family of algorithms are their assumption that the datasets can fit comfortably in RAM, and the necessary
property of low to moderate intrinsic dimension (arguably a property that typical real-world datasets tend
to possess).

5 Conclusion
We have presented an approach for Gaussian process prediction which can scale to millions of points. We
chose the GP example because the applicability of an TV-body approach is not as obvious as it might be for
other statistical models. We hope that our solution for GP's also serves to illustrate a more general kernel
matrix-vector multiplication mechanism as well as motivate various special-case variants.

At least two other popular models deserve particular attention along these lines. The EM algorithm
represents a dynamical form of iV-body problem, much like the iV-body problem of physics, where the
moving class parameters pose the problem of efficient tree updates. A solution treating this problem is
shown in [7], in the context of computational fluid dynamics. SVM prediction represents a special case of
kernel matrix problem because the actual underlying problem (binary classification) does not strictly require
the actual per-class summations, only a decision about which is larger. An approach taking advantage of
this property has been submitted to this conference [11].

References
[1] B. Schlkopf and C. Burges and A. Smola, editor. Advances in Kernel Methods - Support Vector Learning.

MIT Press, 1999.

[2] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature, 324, 1986.

[3] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Proximity Searching in Metric Spaces.
ACM Computing Surveys, 33:273-321, 2001.

[4] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3):209-226, September 1977.

[5] M. Gibbs and D. J. C. MacKay. Efficient Implementation of Gaussian Processes, unpublished
manuscript, 1997.

[6] A. G. Gray. Bringing Tractability to Generalized N-Body Problems in Statisical and Scientific Compu-
tation. PhD. Thesis, Carnegie Mellon University, Computer Science Department, 2003.

[7] A. G. Gray. Linear-time Smoothed Particle Hydrodynamics, to be submitted, 2003.

[8] A. G. Gray and A. W. Moore. Nonparametric Density Estimation: Toward Computational Tractability.
In SIAM International Conference on Data Mining 2003, 2003.

[9] A. G. Gray and A. W. Moore. Rapid Evaluation of Multiple Density Models. In Artificial Intelligence
and Statistics 2003, 2003.

[10] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal of Computational
Physics, 73, 1987.

[11] T. Liu, A. Moore, and A. G. Gray. New Algorithms for Efficient High Dimensional Non-parametric
Classification, submitted to NIPS 2003, 2003.

[12] D. J. C. MacKay. Gaussian Processes: A Replacement for Supervised Neural Networks? NIPS 1997
tutorial lecture notes, 1997.

[13] G. Matheron. Principles of Geostatistics. Economic Geology, 58:1246-1266,1963.

[14] S. M. Omohundro. Bumptrees for Efficient Function, Constraint, and Classification Learning. In R. P.
Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems 3. Morgan Kaufmann, 1991.

[15] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., 1996.

[16] SDSS. The Sloan Digital Sky Survey, www.sdss.org.

[17] J. Skilling. Bayesian Numerical Analysis. In W. T. G. Jr. and P. Milonni, editor, Physics and Probability.
Cambridge University Press, 1993.

