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Abstract

Large-scale computing often consists of many speculative tasks to test hypotheses, search for insights, and review
potentially finished products. For example, speculative tasks are issued by bioinformaticists comparing DNA sequences
and computer graphics artists adjusting scene properties. This paper promotes a new computing model for shared
clusters and grids in which researchers and end-users exploring search spaces disclose sets of speculative tasks,
request results as needed, and cancel unfinished tasks if early results suggest no need to continue. Doing so matches
natural usage patterns, making users more effective, and also enables a new class of schedulers.
In simulation, we demonstrate how batchactive schedulers significantly reduce user-observed response times relative
to conventional models in which tasks are requested one at a time (interactively) or requested in batches without
specifying which are speculative. Over a range of simulated user behavior, for 20% of our simulations, user-observed
response time is at least two times better under a batchactive scheduler, and about 50% better on average. Batchactive
schedulers achieve such improvements by segregating tasks into two queues based on whether a task is speculative
and scheduling these queues separately. Moreover, we show how user costs can be reduced under an incentive cost
model of charging only for tasks whose results are requested.



 



1 Introduction

Large-scale computing often consists of many speculative tasks to test hypotheses, search for in-

sights, and review potentially finished products. This work addresses how to reduce or eliminate

user-observed response time by prioritizing work that the user is waiting on and wasting fewer

resources on speculative tasks that might be canceled. This visible response time is the time that a

user actually waits on a result, which is usually less than the time that a speculative task has been

in the system. Our target architecture is a shared cluster [2, 16], distributed server, or computa-

tional grid [5]. Our deployment plan is to replace or augment the extensible scheduling policies

in clustering software such as Condor, Beowulf, Platform LSF, Globus, and the Sun ONE Grid

Engine [7, 4, 17, 10, 21].

Imagine a scientist using a shared computing cluster to validate a hypothesis. She issues a

list of tasks that could keep the system busy for hours or longer. Tasks listed earlier are to answer

pressing questions while those later are more speculative. Early results could cause the scientist

to reformulate her line of inquiry; she would then reprioritize tasks, cancel later tasks, issue new

tasks. Moreover, the scientist is not always waiting for tasks to complete; she spends minutes to

hours studying the output of completed tasks.

This paper promotes a new computing model for such scenarios in which researchers and

end-users exploring search spaces disclose sets of speculative tasks, request results as needed, and

cancel unfinished tasks if early results suggest no need to continue. We call this the batchactive

model in contrast to users that interactively submit needed tasks one at a time and users that submit

batches of both needed and speculative tasks without labelling which tasks are which.

In the batchactive model are batchactive schedulers that order speculative tasks with respect

to conventional tasks and to one another toward maximizing human productivity and minimizing

resource costs. Batchactive schedulers achieve improvements by segregating tasks into two queues

based on whether a task is speculative and scheduling these queues separately, resulting in better

response time at lower resources usage. This organization is shown in Figure 1, in contrast to the

interactive and batch models.

The approach applies best to domains in which several to a potentially unbounded number of

intermediate speculative tasks are submitted and early results are acted on while unfinished tasks
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Figure 1: Models of user and scheduler behavior. Users either request needed tasks one at a time

(interactive), or both request needed and disclose speculative tasks together (batch and batchac-

tive). In the batchactive case, requested and disclosed tasks are segregated into different queues, in

which the requested queue has priority.

remain. Considerable performance improvements are found even when the average depth across

users of disclosed speculative tasks is 3 or 4. The following are several highly-applicable domains:

• Bioinformaticists explore biological hypotheses, searching among DNA fragments, using

similarity search tools like BLAST [1] and FASTA. These tools differ on whether they are

fast and inaccurate or slow and accurate. These scientists share a workstation farm — such

as the 30 machines dedicated for such work by the Phylogenomics Group at the University

of California at Berkeley — and issue series of fast, inaccurate searches that are followed

speculatively by slow, accurate searches to confirm initial findings. The batchactive sched-

uler would enable scientists to explore ambitious ideas potentially requiring an unbounded

amount of resources without fear that resources would be wasted on speculative tasks that

might be canceled after early results were scrutinized.

• Teams of artists creating a computer-animated film, such as at Dreamworks or Pixar, submit

frames for rendering; each frame, having roughly 50 layers can take up to an hour to render.

An artist needs to see intermediate rendered versions of a scene to decide on the finished

product. The artist submits the entire scene at once and requests key frames, those with

more action, for example. With a batchactive scheduler, the artist would be confident that

the scheduler would prioritize the key frames over the speculative, remaining frames. If



upon seeing the output of a key frame the artist changes lighting attributes or moves objects,

speculative frames would not have unnecessarily competed against the key frames of other

artists on the team.

• Computer scientists routinely use clusters to run simulations exploring high dimensional

spaces. Exploratory searches for feature extraction, search, or function optimization, can

continue indefinitely, homing in on areas for accuracy or randomly sampling points for cov-

erage. In our department, clusters are used for, among other things, trace-driven simulation

for studying microarchitecture, computer virus propagation, and storage patterns related to

I/O caching and file access relationships. With a batchactive scheduler, such simulations

could occur in parallel with the experimenter analyzing completed results and guiding the

search in new directions, with the speculative work operating in the background when re-

quested tasks are queued.

Augmenting a shared scheduler with speculative tasks requires rethinking the metrics and

algorithms. In particular, when the system is aware of speculative tasks, the traditional response

time metric should be refined. We introduce visible response time, the time between requesting

and receiving task output, or the time 'blocked on' output. A user only accrues visible response

time after requesting a task that may or may not have already been disclosed. In contrast, and

less usefully, response time accrues as soon as a task enters the system. Beyond the base value of

batchactive scheduling, we think the batchactive model of computing creates an interesting new

challenge for scheduling theory and practice: how does one best schedule speculative, abortable

tasks to minimize visible response time?

The batchactive model also suggests a new cost model. The cost models at deployed com-

puting centers charge for resource usage irrespective of whether a task was needed [13]. We in-

troduce an incentive cost model which charges for only resources used by tasks whose results are

requested. This encourages users to disclose speculative work deeply, and prevents the type of

gaining in which users mark all tasks as high-priority, requested tasks. We show that user costs are

actually reduced under this cost model.

We show in simulation that a scheduling algorithm should discriminate between speculative

and conventional tasks and that such a scheduling algorithm improves on time and resource metrics



compared to traditional schedulers. Over a broad range of simulated user behavior, we show that

for 20% of our simulations, visible response time is at least two times better under a batchactive

scheduler, and that on average, visible response time is improved by about 50%.

2 User and task model

This section describes how our simulator models users and tasks. While we detail speculation, the

reader should keep in mind that the full power of speculation is only leveraged with the batchactive

model. In the interactive model, a user only submits one task at a time, and in the batch model,

the scheduler does not discriminate between requested (demand-driven) and speculative work. The

performance implications are described later.

We model a closed loop of a constant number of users interacting with the system. The number

of users is a parameter varied across simulations.

Users disclose speculative work as task sets, which are organized as simple ordered lists of

tasks. When a user needs a result from a task set, the user requests the task. After some think time,

the user may request the next task or cancel all unrequested tasks and issue a new task set. The act

of cancelation models a user that doesn't need any more results from the task set.

Figure 2 depicts this user interaction with the scheduler, and the scheduler's interaction with

the computing system. Any number of users disclose, request, and cancel any number of tasks. The

scheduling policy decides which and when disclosed and requested tasks run. If a disclosed task

is canceled, it is no longer a candidate. The scheduler communicates decisions to the conventional

clustering software which handles the details of running tasks on the servers and provides task

statistics to the scheduling policy, such as how long a task took to run.

Figure 3 details the states that a task can be in. Each task has a corresponding service time and

resource usage that increases as the task runs. When a task's resource usage equals its service time,

the task is considered executed. If a task is both executed and requested, then the task is considered

finished and the task's output is supplied to the requesting user. If a task executes and was disclosed

but not requested, then the task's output is stored until requested or canceled.

The probability that a given task's results will cause a user to cancel and issue a new task set

is a parameter. This task set change probability is modeled by a uniform random variable whose



task
control

users

processed s.
control

start, preempt,
& remove tasks

cluster resources
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Figure 4: A contour plot of a user's probability of canceling a task set. This degree of specula-

tion is a function of the number of tasks in a task set and the probability that the results of one

task causes the user to cancel unrequested tasks. The higher the degree across users, among other

considerations, the more a batchactive scheduler is beneficial.

lower bound is always 0 and whose upper bound varies across runs. Each user is assigned a change

probability from this distribution for all the user's tasks, so that we simulate users who are more or

less certain about whether they will request their disclosed, speculative work.

The number of tasks per task set is another simulation parameter and is also drawn from a

uniform random variable for each user. Here, the lower bound is always 1, reflecting no disclosure.

A low upper bound reflects shallow disclosure; a scientist planning up to five or so experiments

ahead. A high upper bound, deep disclosure in the thousands, reflects task sets submitted by an

automated process for users searching high-dimensional spaces.

Service time and think time for all tasks, irrespective of user, are varied simulation parameters

drawn from the exponential distribution.

One way to reason about speculation is to combine the change probability, p, and number of

tasks in a task set, n. The probability that a user will cancel a task set before it completes, which

reflects the degree of speculation, is 1 — (1 — p)n~l. Assuming that users either practice speculation,

with a degree of speculation exceeding 0.9, or don't practice speculation, with a degree less than

0.1, then the combinations of task set sizes and task set change probabilities will not be in the

middle of Figure 4.



3 Batchactive scheduling

People wish to batch their planning and submission of tasks and pipeline the analysis of finished

tasks with the execution of remaining tasks. Conventional interactive and batch models are obsta-

cles to this way of working.

The salient difference between the batchactive and traditional models is that, in the batchac-

tive model, users are free to disclose speculative tasks and requested tasks take precedence over

disclosed tasks.

In the batchactive model, contrary to the interactive model, tasks can execute while task output

is consumed. Contrary to the batch model, distinguishing between disclosed and requested tasks

enables the user to disclose deeply, knowing that the scheduler will give precedence to users wait-

ing on requested tasks. Endowing servers with knowledge of future work in the form of disclosed

tasks gives the servers an early start, rather than being idle. Thus, users can observe lower visible

response times, making them more productive and less frustrated. The profound effect on schedul-

ing metrics exhibited by scheduling in a batchactive manner is detailed by the simulation results in

the evaluation section.

Note that if a user attempts to gain scheduling priority by requesting instead of disclosing

speculative tasks, then, according to our cost model, the user will be charged for those speculative

resources.

Before discussing our batchactive scheduler, we introduce the metrics that we are interested

in and list several restrictions in scope that are in effect.

3.1 Metrics

Mean visible response time is our main metric. A task with service time S is requested at time

tr and is executed (completes) at time te. Each requested and executed task has a corresponding

visible response time denoted by

Recent work [9, 3, 11] argues that mean slowdown is important to minimize for the following



reasons: (1) slowdown expresses the notion that users are willing to wait longer for larger amounts

of work, and (2) mean slowdown often better reflects the performance of most jobs instead of just a

few large jobs. Thus, in addition to visible response time, we also study visible slowdown denoted

by
T/ ^ M-
•'slow 7; •

Note the differences between these two metrics and the traditional response time and slow-

down metrics. Because disclosed tasks can run before they are requested, visible response time can

be less than service time and visible slowdown can be less than one. (Of course, assuming S > 0,

both visible metrics are at least 0.)

We also measure task throughput. Specifically, we measure the number of finished tasks (tasks

that were requested and executed) over the duration of our simulation. One of our results is that

we improve visible response time without hurting task throughput, and in many cases we improve

both visible response time and throughput.

We introduce a metric that reflects the billed resources wasted on disclosed tasks that were

never requested. In the interactive and batchactive models, only requested tasks are billed, thus this

metric is irrelevant. However, for the batch model, which runs disclosed tasks but does discriminate

between them and requested tasks, it is important for this waste to be measured. Scaled billed

resources is the ratio of the billed resources to the requested resources. For example, if a scheduler

charged for ten seconds of resource time but the user only requested five seconds of resource time,

then his scaled billed resources will be two. Across all users, we report mean scaled billed resources

for the batch model.

For any server, its load (also known as device utilization) is the fraction of time that the server

was running a task.

For any server, requested queue length is the number of tasks in the requested queue. Disclosed

queue length is defined analogously. We count running tasks as in the queue.

Finally, when comparing schedulers, we sometimes report an improvement factor between a

new, batchactive scheduler and some baseline. For example, if a metric is better when lower and if

the baseline scheduler simulation gave 50 as the metric and the new scheduler simulation gave 25,

then the improvement is 2.

We summarize these metrics in Table 1.

8
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metric

visible response time

visible slowdown

task throughput

scaled billed resources

load

queue length

description

blocked time

blocked time over service time

number of finished tasks

billed over requested resources

fraction of server busy time

# of queued and running tasks

Table 1: Metrics reported among schedulers.

3.2 Scope

We make some simplifying assumptions in our evaluation.

Service time is required by SRPT and, thus, we assume that it is predictable with some preci-

sion. There exists much work detailing successful predictions of service time from task parameters.

Spring, et al. show that the service time of the compl ib biological sequencing library is highly

predictable from input size[19]. The service time for the BLAST DNA similarity searcher is de-

pendent on the sizes of the sequences under comparison and the search accuracy. Kapadia et al.

use regression to predict the resource requirements of applications over their parameters and these

predictions are used for allocating resources on a computational grid [12].

A task can only use one resource significantly. For example, a processor-intensive task might

use the disk to load a dataset, but those disk accesses must be an insignificant part of the task's

work. Moreover, we assume that preemption costs are low. Thus, for example, tasks with out-of-

core memory requirements are not ideal candidates. Further, we assume no complex interactions

among tasks, like tasks that contend for shared locks.

3.3 Policies

Any scheduler that behaves differently based on whether a task is requested or disclosed is a

batchactive scheduler. Thus, there are many possible batchactive schedulers, such as using any

combination of traditional policies for requested and disclosed tasks.

We wish to minimize the mean visible response time across all tasks. Recall that there are



two queues: the queue of requested tasks and the queue of disclosed tasks. Our approach is to

give the requested queue priority. That is, when there is a processor available and a requested

task available to run, that requested task runs before any available disclosed task. Simply stated,

requested (demanded) work is more important than speculative work. Therefore, borrowing a well-

known result [8, ch. 8], requested tasks are scheduled with SRPT (shortest-remaining-processing-

time).

What remains is to answer how disclosed tasks should be scheduled. The batchactive results

in the evaluation section are from a scheduler that runs tasks in the requested queue according

to SRPT and tasks in the disclosed queue according to FCFS (first-come-first-serve). We term this

scheduler SRPT x FCFS. The motivation behind FCFS for the disclosed queue is to quickly run

tasks that will be requested first. Recall that task sets are ordered lists of disclosed, speculative

tasks. Since our simulated users request tasks in this order, then applying FCFS to the task set order

is a perfect estimate of request order within one user, and a not completely unreasonable estimate

across all users.

Under certain selections of user and task parameters, a different batchactive scheduler SRPT

x SRPT does better than SRPT x FCFS for mean visible response time. However, for this paper

we felt it clearer to only advocate one batchactive scheduler. Of course, when we compare against

baseline schedulers, we pick the scheduler that we have found that provides the most competition

to SRPT x FCFS for the metric under examination.

Figure 5 illustrates batchactive scheduling by showing the lengths of the queues of requested

and disclosed tasks. The length of the requested queue increases when users request tasks and

decreases when these tasks run. The length of the disclosed queue increases when users submit

task sets and decreases when tasks in this set execute, are requested, or are canceled. Moreover,

disclosed tasks only run when there are no requested tasks available to run on an idle server.

In this paper, we focus on demonstrating our central thesis that segregating requested and dis-

closed tasks is highly beneficial. Thus, our choice for a disclosed task scheduler is not critical.

More refined task schedulers for disclosed tasks is an interesting topic for future research. In par-

ticular, there appears to be little existing theory regarding the proper scheduling of speculative,

cancellable tasks with respect to visible response time.

We have implemented two schedulers closer to optimal so that we could estimate what im-
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Figure 5: Shown are the lengths of the queues of requested and disclosed tasks over a three-hour

simulation of SRPT x FCFS. Batchactive schedulers only take from the disclosed queue when there

are no requested tasks available to run on an idle server.

provements can be had by replacing the disclosed task scheduler with something more sophisti-

cated.

The impractical optimal algorithm for tasks in the disclosed queue selects the task that will

eventually be requested with the lowest tr + SWt, where tr is when the user will request the task

and Sieft is the remaining service time before completion. Intuitively, this algorithm gets the most

tasks which will be requested soonest out of the system. Further, the impractical optimal algorithm

would ignore disclosed tasks that will never be requested. The reason why this algorithm cannot

be implemented is because a scheduler cannot know with complete certainty whether or not a

disclosed task will be requested, nor, if so, when it would be requested.

It is difficult to assume task request times for even simulating the impractical optimal algo-

rithm because request times are dependent on when users are in their think times. Instead, we

implemented two algorithms, OFCFS and OSRPT, that give a better lower bound on the perfor-

mance of the impractical optimal algorithm than SRPT x FCFS and they work like FCFS and SRPT

except that disclosed tasks that will never be requested are never run. OFCFS is based on the request

time estimate described earlier and ignores remaining service time. OSRPT schedules according to

remaining service time without attempting to estimate when a task will be requested. Across most

parameters, SRPT x OFCFS outperforms SRPT x OSRPT for time metrics, thus we only use this

scheduler in our measurements.

11



model

interactive

batch

batch

batchactive

batchactive

scheduler

SRPT

FCFS

SRPT

SRPT X FCFS

SRPT X OFCFS

Table 2: Evaluated schedulers. There are two batch schedulers under consideration because one

outperformed the other under different circumstances. The SRPT x FCFS batchactive scheduler is

implementable while SRPT x OFCFS is idealized.

4 Evaluation

We demonstrate that the batchactive user behavior model of disclosing speculative tasks combined

with the batchactive SRPT x FCFS scheduler that segregates requested and disclosed tasks into two

queues provides better visible response time, visible slowdown, task throughput, and scaled billed

resources. These metrics were described in Section 3.1. Evaluation is a scheduling simulation fed

the synthetic tasks and user behaviors described in Section 2. The evaluated schedulers are listed

in Table 2. Time, such as a service time parameter or visible response time metric, is measured in

seconds.

We use simulation in place of an analytic model due to the complexities of our user model

which includes task cancelation and which is based on the preceding realistic scenarios.

Our simulation runs explore a variety of user load, the size and how speculative tasks sets are,

how big tasks are, and how long users think about task output before making their next requests.

Each run ran for two weeks of simulated time after two simulated days of warmup time were

ignored. (See Section 4.3.1 for details about the warmup period.)

The choice of simulation parameters is key to arguing for the batchactive computing model.

We can make batchactive computing look arbitrarily better than common practice by selecting

parameters most appropriate to the batchactive scheduler. However, this would not be a convincing

argument. Instead, we have chosen parameter ranges that not only include what we believe to be

reasonable uses of speculation for our target applications, but also ranges that include little or no

12



parameter

number of users

task set change prob.

tasks in a task set

service time (s)

think time (s)

range

4-16

0.0 to 0.0-0.4 (uni.)

1 to 1-19 (uni.)

20-3,620 (exp.)

20-18,020 (exp.)

Table 3: The parameter ranges used in simulating users. The parameters were defined in Section 2.

Parameters with parentheses indicate random variables (uniform and exponential). Uniform distri-

butions are described by 'lower bound to upper bound,' where the upper bound is a range.

speculation. We show that under no speculation, we do no worse than conventional models.

4.1 Summarizing results

The parameter ranges listed in Table 3 were used for the results reported in this section unless

otherwise specified. For each parameter, we sampled several points in the parameter range. All

told, each of the five schedulers were evaluated against 3,168 selections of parameters.

We simulate one server, and restrict the maximum number of users to 16 concurrently active

users that are issuing task sets into the server. Further, we make the think time range up to about

five hours while the service time reaches only about one hour. Higher think times are better for

batchactive scheduling. The probability that after each task the rest of the task set is canceled ranges

from users that always need their disclosed speculative work to those who cancel task sets 40%

of the time after receiving a requested task's output and thinking about it. Higher task set change

probabilities is better for batchactive scheduling. Tasks per task sets range from no disclosure to

about twenty disclosures deep, reflecting users using their domain-specific experience to manually

plan small to medium-sized task sets. Again, higher values are better for batchactive scheduling.

Service times, which vary from a third of a minute to about one hour are modeled after a

BLAST DNA similarity search run. This application usually takes tens of minutes, but service time

can vary by significantly based on the sizes of the sequences under comparison and how accurate

the search is, which is determined by different convergence algorithms. Think times, which vary

from a third of a minute to roughly five hours, were selected to reflect a user who can make a quick

13
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Figure 6: Cumulative factor improvement of SRPT x FCFS over interactive and batch SRPT for

visible response time. Against both schedulers, batchactive performs at least twice as better for

about 20% of the simulated behaviors. The mean improvement is 1.525 over interactive and 1.537

over batch.

decision about a task's output to one that needs to graph, ponder, or discuss results with colleagues

before deciding to request the next task or cancel and start a new task set.

The first set of results summarize the improvement of using the batchactive scheduler SRPT x

FCFS over other schedulers for several metrics. The figures are cumulative improvement graphs that

show the fraction of runs in which performance was at least a certain factor better than the baseline.

The x-axes are factor improvements and the y-axes are the metrics. For example, in Figure 6,

the solid line intersection with the x-axis of 3 says that in 10% of all simulation parameters, the

ratio of the mean visible response time for interactive SRPT to the mean visible response time for

SRPT x FCFS was at least 3. Because the improvements are not Gaussian, these graphs reflect the

improvement distribution better than reporting the mean and standard deviation.

As an overall summary of visible response time in the batchactive model, Figure 6 shows how

SRPT x FCFS compares to interactive SRPT and batch SRPT. SRPT x FCFS and interactive SRPT

perform the same for about 65% of the runs, while SRPT x FCFS does better than batch SRPT for

many more situations. However, there are more situations in which the batchactive scheduler is be-

tween two and four times better than the interactive scheduler. Against both schedulers, batchactive

performs at least two times better for about 20% of the simulated behaviors. The mean improve-

ment is 1.525 over interactive and 1.537 over batch.

14
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Figure 7: Cumulative factor improvement of SRPT x FCFS over batch FCFS for mean scaled billed

resources. The batchactive scheduler charges much less per resource than batch because under

batchactive, only requested tasks are charged. Batchactive charges at least four times less for about

40% of the runs. The mean improvement is 3.647.

We now turn to resource cost. The interactive and batchactive models only charge for requested

tasks. However, the batch model runs both requested tasks and disclosed tasks that will never

be requested. Since the batch scheduler does not discriminate between requested and disclosed

tasks, it must charge for them all. We compare batchactive with batch in Figure 7 for scaled billed

resources (the ratio of the billed resources to the requested resources) and show that the cost for

using resources is considerably lower under the batchactive model. Batchactive charges at least four

times less for about 40% of the runs. The mean improvement is 3.647. Recall that in the batchactive

model, only requested resources are charged and that disclosed tasks are only run when the server

would otherwise be idle. Enabling the user to run disclosed tasks that are never requested for free

encourages users to disclose deeply, which provides the other scheduling benefits in this section.

We expect that a batchactive model can provide more total billed resources over the same time

period compared to the interactive model. Both models charge only for requested resources. But

since the batchactive model provides better task throughput, there can be more requested tasks

completed in the same time.

We then set SRPT x FCFS to be the baseline scheduler and compare the oracle-like SRPT

x OFCFS against it for visible response time in Figure 8. We see that SRPT x FCFS, although

very simple, performs similarly to a scheduler that knows not to run disclosed tasks that won't

15
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Figure 8: Cumulative factor improvement of SRPT x OFCFS over SRPT x FCFS for mean visible

response time. This shows that SRPT x FCFS performs close to a scheduler that ignores disclosed

tasks that won't be requested. Yet there is potential for improvement for approximately 20% of the

runs.

be requested. Note, however, that the upper bound of batchactive performance is unknown; SRPT

x OFCFS does not take into account task size nor does it know when a task will be requested.

Designing superior schedulers for disclosed tasks will be an interesting area for future research.

For less than 10% the of runs (sometimes less than 0.1%, and sometimes never), batchactive

did roughly 10% worse than the baseline schedulers. Error is introduced due to variations in the

number of finished tasks across runs: While all simulations run for the same amount of virtual

time, during that time different schedulers complete different numbers of tasks. Thus, the mean of

visible response time among two different schedulers running with the user and task parameters

are often comprised of a different number of finished tasks. Although we do not have confidence

intervals across all of our data, a look at the confidence intervals for a small subset in Section 4.3.2

suggest that for all the cases in which batchactive's mean is worse, the 95% confidence intervals

between batchactive and baseline scheduler overlap.

4.2 Per-parameter investigations

At this point we provide a closer look at what affects performance. The following data consists of

slices of the scheduling models, user behaviors, and metrics.
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parameter

number of users

task set change prob.

tasks in a task set

service time (s)

think time (s)

setting

8

0.0 to 0.2 (uni.)

1 to 15 (uni.)

600 (exp.)

6000 (exp.)

Table 4: The base parameters used in comparisons between schedulers. For each run, all save one

of these parameters was held constant at the listed values. Parameters with parentheses indicate

random variables. Uniform distributions are described by 'lower to upper bound.'

The graphs in this section have the same format. Each parameter point is associated with a set

of three bars. The leftmost bar is the batch model, the middle bar is the interactive model, and the

rightmost bar is the batchactive model. The goal is for the rightmost bar to be lowest (or highest,

depending on the metric) as much as possible. Each graph varies one parameter. The parameters

that are not varied are taken from the base parameters listed in Table 4 unless otherwise noted.

Figure 9 demonstrates the effect of varying the number of users on visible response time.

Batch is suited to a small number of users because execution time and think time can be pipelined,

and the load is sufficiently low that one's disclosed but never requested tasks won't interfere with

the requested tasks of others. Interactive is more suited to a high number of users, in which the

load is higher, because the server is always busy with requested tasks. Even though these models

alternate on which is best suited to which scenario, in nearly every case, batchactive performs best,

exhibiting adaptability.

Batchactive is better than batch under low numbers of users because requested tasks never

wait for disclosed tasks; it is better than interactive at the busier end because it consumes any

otherwise idle time by executing disclosed tasks. At the busiest part, interactive and batchactive

are equivalent, because the requested task queue is never empty.

Figure 10 looks at how the number of users affects mean visible slowdown. Recall that visible

slowdown can be less than one (Section 3.1). Batchactive still outperforms the alternatives. The

difference compared to visible response time is that visible slowdown equalizes batch and inter-

active when there are many users. This occurs because the visible response time of the large jobs
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Figure 9: The effect of varying the number of users while holding other parameters constant on

visible response time. At low numbers of users, interactive is better than batch, which at high num-

bers, batch is better than interactive. In nearly all cases, SRPT x FCFS wins, exhibiting adaptability.

have less of an effect on the visible slowdown.

Figure 11 looks at how the number of users affects task throughput (the number of finished

tasks) over the two weeks of simulated time. Batchactive is able to finish more tasks while provid-

ing the better visible response times and visible slowdowns shown in Figures 9 and 10. Only toward

the highest number of users does the throughput of interactive meet, but not exceed, batchactive.

Additional insight into batchactive scheduling is found by comparing Figures 9, 10, and 11

with Figure 12, which is the same run except that load is plotted. The load under the batch and

batchactive models are similar. As their loads increase, batchactive does better than batch with re-

spect to visible response time because batchactive favors requested tasks. Batchactive does better

than interactive with respect to visible response time and slowdown because batchactive pipelines

disclosed tasks with think time. Counterintuitively, when batchactive's load is higher than inter-

active, it performs better than interactive. What matters isn't merely load, but the fraction of load

made up of tasks that have been or will be requested. Only when the batchactive and interactive

loads approach one (near 14 users), do their visible response times slowdowns begin to match.

In Figure 13, we vary the upper bound of the task set change probability from 0.0-0.4. As

expected, this parameter has no significant effect on the interactive model, since it does not submit

disclosed tasks. We notice a greater dependence on this parameter by the batch model compared

to the batchactive model because the batchactive model avoids speculative tasks when requested
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Figure 10: The effect of varying the number of users on visible slowdown, holding other parameters

constant. Note: visible slowdown can be under one.
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Figure 11: The effect of varying the number of users on task throughput (number of finished tasks)

over the simulation run, holding other parameters constant. Batchactive provides the best or equals

the best task throughput.
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Figure 12: The effect of varying the number of users on load (utilization). This graph illustrates

that load in itself does not fully convey batchactive behavior: what matters is the fraction of load

that is made up of tasks that have been or will be requested.

work remains.

Now we show the effect of large task sets, such as those submitted by an automated process

reflecting users searching high-dimensional spaces. We varied the upper bound of the tasks per task

set uniform distribution from 1-1024 in multiples of 2. We also set the task set change probability

to 0.1 so that task sets are not canceled as often.

The results with respect to visible slowdown are in Figure 14. When all task sets have only

one task, then all models provide the same visible slowdown. Task sets as small as several tasks,

which is easily realizable by users performing exploratory searches, provide good improvement

over interactive. As the task set size increases, both batch and batchactive provide visible slow-

downs less than one. This occurs because there is now user think time that can be leveraged to

run disclosed tasks. Soon batch performance becomes unusable as its single queue is overwhelmed

with speculative tasks. The interactive model is immune to the task set size because each user will

only have one task (a requested task) in the system at any time.

In Figure 15, we vary service time to see its effect on visible response time. As the service time

increases, the load increases and the performance of interactive and batchactive become the same.

As a limiting case, this shows that when a server is always running requested work, the batchactive

model does not help performance.

The remaining parameter is think time. It works inversely to service time: the more think time,
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Figure 13: The effect of varying the task set change probability on visible response time. The

probability is a uniform random variable and shown on the x-axis is the average of the lower and

upper bounds of this distribution. The interactive model is unaffected by this parameter, while the

batchactive model is affected less than the batch model.
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Figure 14: The effect of varying the tasks per task set on visible slowdown. Note that this graph

is log-linear. The tasks per task set is a uniform random variable and shown on the x-axis is the

average of the lower and upper bounds of this distribution. Batch is unusable at a task set size with

an upper bound of 100. (At an upper bound of 1024 tasks per task set, the batch visible slowdown

is over 170.)
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Figure 15: The effect of varying service time visible response time. At low service times, there is

more opportunity for the batchactive model to improve performance.

the more opportunity for the batchactive scheduler to order tasks to reduce visible response time.

Of course, once the ratio of think time to service time is sufficiently high, which results in a low

load, batchactive performs no better than batch. We omit graphs on think time to save space.

4.3 Simulation details

4.3.1 Warmup period

When the simulation starts, all users begin submitting tasks. Only after task results are received

do users enter their think times. Thus the queue length near the start of the simulation is not

representative of the behavior of the system over steady-state. The most extreme example that we

found after looking at several runs is illustrated in Figure 16. We avoid including such warmup-

data in our reported metrics by conservatively dropping all data in the first two days of simulation

time. Since each run simulates 16 days, our metrics reflect two weeks at steady-state.

4.3.2 Confidence intervals

Varying simulation parameters clearly indicate that the parameters have a significant effect on

scheduling metrics and that batchactive scheduling performs best nearly all of the time. To rein-

force these observations, we took confidence intervals of mean visible response time for a small

interactive SRPT run in which service time was varied in six minute increments while other pa-
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Figure 16: The queue length of requested tasks for an extreme selection of simulation parameters

only stabilizes after approximately 10 hours of simulated time. For this reason, all reported metrics

ignore the first two days of simulated time.

rameters were held constant (Figure 17). Each reported visible response time mean and confidence

interval was the result of 40 simulations that were started with different random seeds. Out of ten

selections of service times, only one pair of 95% confidence intervals overlapped, and all con-

fidence intervals were less than 5% of their respective mean visible response times. A normal

probability plot (not shown) of the response times for each service time was sufficiently Gaussian

to suggest that the confidence intervals are reliable.

4.3.3 Implementation

Our scheduler simulator was written in C and runs on Linux and Darwin. The simulator is broken

up into modules that simulate user, task, and server behavior and contains a large number of checks

which give us confidence that the results are accurate and that there are no bugs in its operation.

One Perl script executes large numbers of this program to explore the simulation parameter space1

and stores its results into a MySQL relational database. Other scripts query this database, analyze

the results in conjunction with MATLAB, and process them for visualization.

All runs were performed on a set of 2.4GHz Pentium IV machines each with 512MB of

memory. Most runs took tens of seconds and less than 100 MB of memory to simulate 16 days of

ironically, we found ourselves desiring a computing cluster equipped with a batchactive scheduler during the

exploration of our simulator's five-dimensional parameter space.
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Figure 17: Confidence intervals for a small run suggest that our results are significant. Plotted is

the mean visible response time across ten service times. The 95% confidence intervals were from

40 runs using different random seeds at each service time.

virtual time. A small percentage of runs with parameters causing many more tasks to be created

took roughly ten minutes to run.

5 Related work

Speculation to improve performance is a pervasive concept across all areas of computing including

architecture, languages, and systems. Speculation is found at the level of I/O requests, program

blocks, and instructions. We bring this notion to the level of tasks for the processor resource. In

this section, we focus on the closest related work in systems whose experience and potential have

inspired our work.

In the storage realm, Patterson et al. have shown in the TIP system how application perfor-

mance can increase if the application discloses storage reads in advance of when data is needed [15].

While their work focussed on storage questions, such as how to balance cache space between

prefetches and LRU caches, our work applies the same concepts and terminology to the processor

resource at the granularity of tasks.

In the network realm, researchers have sought to discriminate between speculative and re-

quested network transmissions. Padmanabhan et al. have shown a tradeoff in visible response time

and fractional increase in network usage when varying the depth of their web prefetcher [14]. In
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the approach of Steere et al., people manually construct sets of web prefetch candidates and the

browser prefetches as much as three such candidates simultaneously until all are fetched, or until

the person initiates new activity [20],

In the database realm, Polyzotis et al. built a speculator that begins work on database queries

during the user think time in constructing complex queries. [18]

We have not found a direct analogue of our work for the processor resource. Speculation has

been used for process scheduling in the context of estimating task runtime and deciding when to

power down low-powered devices to maximize battery power and performance metrics. But we

have not found approaches explicitly for scheduling among requested and disclosed tasks.

One way to organize speculative approaches is by whether they require a user or agent working

on behalf of the user to disclose speculative work, or whether the system automatically generates

speculative work. In our work, Steere's system, and the TIP system, speculative work is generated

externally. In the systems of Padmanabhan et al. and Polyzotis et al., the system constructs spec-

ulative work in addition to scheduling between disclosures and requests. An extension to TIP by

Chang et al. introduces automatic I/O disclosure generation [6]. As opposed to these automatically

speculating storage, network, and database examples, it does not seem possible to do the same for

the processor resource without domain-specific knowledge or specialized user agents.

6 Conclusion

Ideally, a cluster task scheduler would run speculative tasks while users were analyzing completed

tasks, minimizing the blocked time that the users experience. The catch is that speculative tasks

will take contended resources from users who are waiting for requested tasks unless the two types

of tasks can be discriminated.

The solution we promote is a new computing model of users who disclose sets of specula-

tive tasks, request results as needed, and cancel unfinished tasks if early results suggest no need

to continue. We observe that not all tasks are equal — only tasks blocking users matter — lead-

ing us to introduce the visible response time metric which measures the time between a task be-

ing requested and executed, independent of when it was speculatively disclosed. Our batchactive

scheduler segregates requested and disclosed tasks into two queues, giving priority to the requested
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queue, toward minimizing mean visible response time.

We simulated a variety of user and task behaviors and have found that for several important

metrics our batchactive model nearly always does better than conventional models in which tasks

are requested one at a time (interactively) or requested in batches without specifying which are

speculative. We have found that for 20% of the runs, our scheduler performs at least two times

better for visible response time. Compared to a batch scheduler, for about 40% of the runs, the

average simulated user pays for a fourth of the resources.

Given the benefits of task speculation we have presented, one may wonder why this idea is not

widely deployed. We surmise that the enabling technologies have only recently been in place, and

that there is an initial learning curve to be surmounted. First, the benefits of speculation require

that not all resources are consumed by requested tasks; this is increasingly true in resourceful

cluster and grid environments. Second, users must be able to anticipate, with a minimum degree of

accuracy, tasks that they might need. These points are related: the better users separate disclosures

from requests, the more resources are available to a batchactive scheduler.
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