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Abstract

With the help of continuations, we first construct a transformation T which transforms every A-
term t into a AJ-term T(t). Then we apply the conservation theorem in A-calculus to show that t
is strongly normalisable if T(t) has a /J-normal form. In this way, we succeed in establishing the
equivalence between weak and strong normalisation theorems in various typed A-calculi. This not
only enhances the understanding between weak and strong normalisations, but also presents an
elegant approach to proving strong normalisation theorems via the notion of weak normalisations.

1. Introduction

In A-calculus or some other rewriting systems, a term is said to be weakly normalisable if it can
be reduced to a normal form in some way while a term is strongly normalisable if every reduction
sequence from it terminates with a normal form. Clearly, there exist weakly normalisable terms in
A-calculus which are not strongly normalisable. For instance, (Xx.Xy.y)il for ft = (\x.xx)(\x.xx)
has a normal form Xy.y, but it is not strongly normalisable. On the hand, the conservation theorem
(Church, 1941) states that every A/-term is weakly normalisable if and only if it is strongly nor-
malisable, namely, there is no distinction between weak and strong normalisations in AJ-calculus.
This comparison suggests the following approach to handling strong normalisations.

Given a system in which the weak normalisation theorem holds, i.e., every term t in the system is
weakly normalisable, we try to construct a transformation t *-> T(t) such that T(t) is a AJ-term in
the system for every t and any infinite reduction sequence from / would induce an infinite reduction
sequence from T{t). By the conservation theorem, T{i) is strongly normalisable since it is a weakly
normalisable A/-term. This shows that t is also strongly normalisable. Therefore, the system must
enjoy the strongly normalisation theorem if we can succeed in constructing such a transformation
T, which will be achieved with the help of continuations.

The structure of the paper is given as follows.

• The notions and basics are explained in Section 2.

• In Section 3, we construct a transformation T using continuations, and prove that T has the
properties aforementioned.

• In Section 4, we show how to adapt T into some typed A-calculi, and therefore, prove the
equivalence between weak and strong normalisations theorems in these systems.

• Some closely related work is mentioned in Section 5.

• A formulation of simply typed A-calculus A~~* and system F, with some adjustments made to
suit our purpose, is given in Appendix A.

2. Notions, Terminology and Basics

We give a brief explanation on the notions and terminology used in this paper. Most details, which
could not be included here, can be found in Barendregt (1984) and Girard (1989).

Definition 1 (A-terms and Ai-terms) The set A of X-terms is defined inductively as follows.
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• (variable) There are infinitely many variables x,y,z,... in A; variables are subterms of them-
selves,

• (abstraction) IfteA then (Xx.t) £ A; u is a subterm of (Xx.t) ifu is Xx.t or a subterm oft.

• (application) Ifto,h £ A then (toh) £ A; u is a subterm of (toh) if u is (toti) or a subterm
oft{ for some i £ {0,1}.

The set FV(t) of free variables in t is defined as follows.

{ {x} ift = x for some variable x;

FV(to)-{x} if t = Xx.to;
FV(to)uFV(h) ift = toh.

The set A/ of XI-terms is a subset of A such that, for every term t £ A/, if (Xx.to) is a subterm of
t then x £ FV(t0).

[u/x]v stands for substituting u for all free occurrences of a; in v. a-conversion or renaming bounded
variables may have to be performed in order to avoid name collisions. Also certain substitution
properties are assumed in the following proofs.

Definition 2 ((3-redex, ^-reduction and /3-normal form) A term of form (Xx.u)v is called a (3-
redex, and [v/x]u is called the contractum of the redex; t ^ f stands for a ̂ -reduction step where
tf is obtained from replacing some redex in t with its contractum; a /3-normal form is a term in
which there is no /3-redex.

"/3-" is often omitted if this causes no confusion. Usually there are many different redexes in a
term t; a redex r± in t is left to another redex r2 in t if the first A in r\ is left to the first A in r2.
A leftmost reduction is a reduction step in which the leftmost redex gets contracted.

^ n , ^ + and ~>* stand for reduction sequences consisting of n steps, a positive number of steps
and a nonnegative number of steps, respectively.

Definition 3 A X-term t is weakly normalisable if there exists a reduction sequence t ~^* u such
that u is in (3-normal form; t is strongly normalisable if all reduction sequence from t are finite.

By Konig's Lemma, there exists a longest reduction sequence ~~>n from t if tis strongly normalisable.
Let fi(t) denote the n. The following lemma or its similar version can be easily found elsewhere
such as Barendregt (1984). We present a detailed proof here since this is not only crucial to the
proof of our main theorem, but also motivates the construction of following transformation T.

Lemma 4 Given t = rt\ ...tn, where r = (Xx.u)v is a redex and v is strongly normalisable; if
t* = ([v/x]u)ti.. ,tn is strongly normalisable then t is strongly normalisable.

Proof Suppose that there is an infinite reduction sequence a starting from t. Then we have two
cases.



• a contains no leftmost reductions. Since v and t* = ([v/x]u)ti ...tn are strongly normalisable,
no infinite reduction sequence can start from v or any U• for i = 1, . . . n. Therefore, there
exists an infinite reduction sequence from u. This implies that there also exists an infinite
reduction sequence from [v/x]u, contradicting i* being strongly normalisable.

• a contains at least one leftmost reduction. Then a is of the following form

t ^>* tf = (\x.u')v% ...t'n<v> ([v'/x]u% . . . t'n -v> . . . ,

where u ^»* u', v ~~>* v' and U ^ * /( for i = l,. . .ra. Clearly, we can reduce t* =
([v/x]w)/i . . . / n to ([i//:r]u')^ . . . t'n in an obvious way. This contradicts t* being strongly
normalisable.

Therefore, there is no infinite reduction sequence starting from /, namely, t is strongly normalisable.

Now let us state the conservation theorem for AJ-calculus, on which the entire work is established.

Theorem 5 (Church, 1941) A Xl-term is weakly normalisable if and only if it is strongly normal-
isable.

Proof Please refer to Theorem 11.3.4 in Barendregt (1984). •

In the next section, we will use continuations to construct our transformation. Fisher (1993),
Plotkin (1975) and Reynolds(1972) provide a detailed cover on this subject.

3. Transformation

Our goal is to construct a transformation T from A into A/ such that t is strongly normalisable
if and only if T(t) is strongly normalisable. Given t = (Xx.u)vti ...tn, we know, by Lemma 4, t
is strongly normalisable if and only if both tf = ([v/x]u)ti.. ,tn and v are strongly normalisable.
Hence, we need some kind of reduction which not only /3-reduces the leftmost redex (Xx.u)v but
also verifies if v is strongly normalisable. With the help of continuations, this kind of reduction can
be easily simulated by /^-reduction. To simplify our presentation, we assume that there exists a
constant (,) in A, and (2,) and (to^ti) denote (,)£ and (,)/o*i, respectively. Constant (,) can always
be replaced with a distinct variable without affecting the strong normalisability of terms. For those
who know Plotkin's call-by-name continuation passing style transformation, the following T is a
variation of it but has an ability to verify if the arguments of functions are strongly normalisable.

T(x) = x T(k;x) = xk
T(Xx.t) = Xko.ko(Xx.Xkv(T(t)kux)) T(k;Xx.t) = k(Xx.Xkv(T(t)kux))
T(toti) = Xko.T(tQ)(Xki.kiT(h)ko) T(fc;*o*i) = T(*0)(Aifei.JfeiT(ti)ik)

If (,) is replaced with K = Xx.Xy.x, then Tis /^-equivalent to Plotkin's call-by-name transformation.
The sole purpose of (,) is to verify the strong normalisability of v when (Xx.u)v is contracted.

Proposition 6 T has the following properties.

1. T(t) is a Xl-term for any X-term t.



2. For any proper subterm ts oft, T(ts) is a subterm ofT(t).

3. T(<)*~>* T(k;t); fi{T(t)) < 1 + n{T{k\t)) ifT(k;t) is strongly normalisable.

4. T([h/x]t) = [T(h)/x)T(t).

5. Given r = (Xx.u)v, t = rh... tn, and t' = {[v/x\u)tx... tn; then for some p > 1,

T(t)^XkQ.(T(k0;t%T(v)).

Proof We give proofs accordingly.

1. This simply follows from the definition.

2. A straightforward structural induction on t yields the result.

3. This simply follows from the definition.

4. A straightforward structural induction on t yields the result.

5. Let us proceed by induction on n.

• n = 0.
T{t) = Xk

-v* Xko.{([T(v)/x]T(u))ko,T(v))
-v Xko.{T([v/x]u)ko,T(v)), by (4)
= Xko.(T(t')ko,T(v)) ^ * Xko.(T(ko;t'),T(v)}, by (2)

• 7i > 0. Let th = rt\ . . . tn-\ and t'h = ([v/x]u)ti... tn-\. Hence,

T(th)^
+ Xk.(nt'h)k,T(v)),

by induction hypothesis. Note

T(t) = \ko.T(th)(\k1.k1T(tn)ko)
-v*+ XkQ.(Xk.{T(t'h)k, T(t;)))(Aibi.ifeir(tn)Jfco)

= Xko.(T(ko;t'htn),T(v)) = Xko.{(T(ko;t'),T(v))

Theorem 7 (Main theorem) Given any \-term t; if T(t) has a normal form then t is strongly
normalisable.

Proof Assume that T(t) has a normal form. By the conservation theorem, T(t) is strongly
normalisable since T(t) is a AJ-term. Now let us proceed by lexical induction on fi(T(t)), the
number of steps in a longest reduction sequence from T(2), and the structure of T(i).

• t — Xx.tQ. By induction hypothesis, 2o is strongly normalisable since T(to) is a subterm of
T(t). This implies that t is strongly normalisable.



• t = xt\ ...tn for some variable x. By induction hypothesis, for i = l , . . .n , U are strongly
normalisable since T(U) are subterms of T(t). This yields that t is strongly normalisable.

• t = rti . . . t n , where r = (Ax.w)v. Since T(v) is a subterm of T(t) by Proposition 6 (2), v
is strongly normalisable. Note * ̂  *' = ([v/a:]ti)ti.. .tn and T(t) -^p \k.(T(k,t'),T(v)) for
some p > 1 by Proposition 6 (5). Hence, 1 + /z(T(M')) < /*(?*(*))• T h i s implies fi(T(t')) <
1 + fj,(T(k,t')) < n(T(t)) by Proposition 6 (3). By induction hypothesis, t' is strongly
normalisable. Therefore, t is strongly normalisable by Lemma 4. •

Given a system closed under transformation T, i.e., for every term t in the system, T(t) is also a term
in it. If all the terms in the system are weakly normalisable, then they are strongly normalisable
by the main theorem. This motivates the following applications to typed A-calculi.

4. Applications

Now we are ready to show that some typed A-calculi are closed under transformation T. This
amounts to showing how to type term T(t) when given a typed term t in these systems. Since this
has been thoroughly studied by Meyer and Wand (1985), Griffin (1990), Harper and Lillibridge
(1993a, 1993b), we will simply mention the results. A formulation of simply typed A-calculus A"*
and system F can be found in Appendix A, where some adjustments have been made to suit our
purpose.

Since type abstraction and application in F are treated the same as abstraction and application
on terms, we have to extend the definition of T to handle types so that all terms in F can be
transformed correctly.

Definition 8 Type transformation | • | and T are defined as follows.

{ a if a is an atomic type or a type variable;

\OLQ\ -* |ao| ifa = ao-> ax;
VX.|ao| 2/aand

|a| = (T(a) —• unit) —> unit

Notice that | • | is also called Kolmogorov's double negation embedding, which is used to translate
classical logic into intuitionistic logic. Clearly, Theorem 7 still holds in this new setting. For a
context F of form x\ : e*i,... ,#n : an, T(F) is of form x\ : |c*i|,... ,xn : |an |.

Theorem 9 IfT\-t:ais derivable in A"*, then T(T) h T(t) : \a\ is also derivable in A~\

Proof This is due to Meyer and Wand (1985). Under propositions-as-types interpretation, the
proof corresponds exactly to Kolmogorov's double negation embedding for propositional logic. •

Corollary 10 If all terms in A~* are weakly normalisable, then they are strongly normalisable.



Proof Given t 6 A"~\ we know T(t) e A"" by Theorem 9. Hence T(t) is weakly normalisable. By
Theorem 7, / is strongly normalisable. •

It can be readily shown that all A~* are weakly normalisable by a well-known method originally
due to Turing according to Gandy (1980), which can also be found in Andrews (1971) and Girard
(1989). Therefore, the simply typed A-calculus enjoys strong normalisation theorem.

Theorem 11 IfThtiais derivable in F, then T(T) h T(t) : \a\ is also derivable in F.

Proof The proof corresponds exactly to Kolmogorov's double negation embedding for second-order
propositional logic. •

Corollary 12 If all terms in F are weakly normalisable then they are strongly normalisable.

Proof Parallel to the proof of Corollary 10 •

It is first shown by Girard (1971) that all terms in F are weakly normalisable. Though it is
proven later that all terms in F are strongly normalisable by Prawitz (1971), the formulation of
reducibility candidates gets complicated accordingly. This comparison can also be done with a
sharp weak normalisation proof for the theory of species (Martin-Lof, 1971), where the concise and
perspicuous formulation of reducibility candidates certainly enhances the understanding. With
Corollary 12, we can keep the merits in proofs for weak normalisation theorems while establishing
the results for strong normalisation.

For those know system Fw, it can be verified that system F^ is also closed under transformation T.
This simply follows from the typing properties of CPS conversion for F«, (Harper and Lillibridge,
1993a). Hence, the weak normalisation theorem in F^ implies the strong normalisation theorem in
it.

5, Related work and Conclusion

Ideas of transforming strong normalisation into weak normalisation can also be found in Neder-
pelt (1973), Klop (1980), de Groot (1993) and Kfoury and Wells (1994). To some extent, our
transformation T is related to the controlling erasure in the literature, which, in addition to con-
tracting /?/-redex, only reduces (\x.\y.u)v to \y.(\x.u)v when u contain no free occurrences of y.
In this way, the conservation theorem for Alif-calculus can be called to establish results for strong
normalisation upon the corresponding ones for weak normalisation.

The typing properties of continuation-passing-style transformation were first studied by Meyer and
Wand (1985), and extended to polymorphic type systems by Harper and Lillibridge (1993a, 1993b).

The formulation of transformation T makes use of continuations, which not only avoids introducing
other uncommon reductions such as the ones used by de Groot (1993) and Kfoury and Wells
(1994), but also reveals an intimate relation between types and normalisations. With some known
results on typing properties in various typed A-calculi, we can readily claim that these systems
are closed under transformation T. Therefore, it becomes unnecessary to complicate methods for



the purpose of proving strong normalisation theorems in these systems since weak normalisation
theorems are equally strong. This is particularly helpful if such theorems are to be proven with the
help syntactical methods such as the one used to show all terms in A"~* are weakly normalisable.
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A Formulation of A"* and F

A judgement of form h a : type states that a is type; a context T is of form xi : c*i,... ,xn : an,
where xi,...,xn are distinct variables; a judgement of form r h t : a states that t is of type a
under context F.

Definition 13 (\~* -calculus) The rules for formulating simple types are given below, unit is
simply used to facilitate the presentation, and it can be replaced by any other atomic type, or by
VX.X in the polymorphic setting.

• (Formulation of atomic type) If a is unit or other given atomic types,

h a : type

• (Formulation of function type)

h a : type h /? : type

h a - * / ? : type

• (Variable)

h a : type

F, x : a h x : a

• (Constant)

h unit —> (a —• unit) : type

r h (,) : unit -• (a -» unit)

• (Abstraction)

T,x :a\-t:P

T h Xx.t : a

• (Application)

T\~ to:a -> (3

r h toti :



Let A"* be the set of all terms t such that T h t : a is derivable in A""* for some T and a.

Definition 14 (System F) In addition to the rules for simple types, the following ones are needed
to formulate polymorphic types.

• (Formulation of type variable) If X is a given type variable,

hX : type

• (Formulation of polymorphic type)

h a

h MX.a : type

In addition to the rules for terms in A"*, the following ones are needed to formulate terms in F.

• (Constant)

h unit —• VX.unit : type

r h ( , ) : u n i t ^VX.un i t

• (Quantification)

T\-t:a

T h XX.t : MX.a ,

where no types in T contain a free occurrence of X.

• (Instantiation)

r h t : VX.a h 13 : type

r h t/3 :

where [(3/X]a is obtained from substituting (3 for every occurrence of X in a.

t is a term inF ifY\-t:a is derivable in F for some T and a.
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