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Abstract: A hyperbasis is a combinatory basis for the lambda
calculus which can represent all lambda terms in
any infinite set of trees. The usual bases are not
hyper. We show that a finite hyperbasis exists.

If C is a set of combinators let C+ be the set of all applicative
combinations of members of C. To each member of C + we assign
a binary tree as follows; for Ae C the tree of A is the one point
tree <>, and the tree of (MN) is <tree of M,tree of N> (it is true
that this definition is in general ambiguous but the ambiguity
is harmless). C is said to be a hyperbasis if, for every infinite
set of trees T , for each combinator N there exists an Me C+ so
that M =p N and the tree of M £ T.
Example 1. The set {S,K} is not a hyperbasis. Let T2 = {<>, « > < » ,
«oox», ««x»ox», }, then any applicative combination
of S, K and x whose tree belongs to T1 has only head w -(3 reducts
which can be written with at most 2 parenthesese. Thus, for
example, Xx. x(xx)(xx) is not definable this way. Compare this
with [ 1 ] 7.4.7.
Example 2. Bohm's one point basis X = Xx. xSKS is not a hyper
basis. For let T2 = {o,«x», « x o o » , «x<xoo>>», } and let A
be any one point basis. Then the sequence A, AA, A(AA),
A(A(AA)), must either omit some combinator or repeat
(modulo p conversion) for otherwise we can solve recursively
the problem of conversion. Thus the sequence either omits
some combinator or it is finite (modulo {3 conversion).
Lemma: Let C be a set of combinators containing I and let

Ti and T2 be as in the previous examples. Suppose
that for each i=l,2 and for each combinator N there

exists ME C+ such that N =p M and the tree of M belongs
to Ti, then C is a hyperbasis.

Proof: Let T be an infinite set of trees and let T be the union
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of all the trees in T. Since T is infinite ,by Konigfs lemma ,T has
an infinite path P. We distinguish two cases
Case 1; P has infinitely many steps to the left.

Then there is an infinite sequence of trees T(1),T(2),...,
T(n),... so that T(n)e T and T(n) has a path which steps left
l(n) > n. Now each left subtree off any path of T(n) can be
(3 reduced to nothing by substituting I for each of its leaves,
and each right subtree off any path in T(n) can be p reduced
to the one point tree by substituting I for all of its leaves
except the rightmost leaf. Thus we can assume that T contains
an infinite subset of TV By a similar substitution for leaves we
can assume that T actually contains Tx and thus by hypothesis
for each combinator N there exists an Me C+ such that N =pM

and the tree of M belongs to T.
Case 2 ; P has only finitely many steps left.

For any tree T define TO by T(°) = T and T<n+D= < T O , < » .
By performing the substitutions of case 1 we can assume that
there is an integer m and an infinite sequence T(O),T(1),...,T(n),
... of members of T2 such that each of the trees T(n)(m> belongs
to T. Again by substitutions similar to those of case 1 we can
assume that for each Te T2 the tree T(m) belongs to T. Let N be
given. By hypothesis there is an M £ C+ with tree Te T 2 so that
K(...(KN)...) =pM. Then N =pMI...I and the tree of MI...I is TO>£ T.

m m m

This completes the proof.
Theorem: The set {B,B',C,K,I,W,C*B,C*B',C*C,C*K,C*I,C*W}

is a hyperbasis.
Proof: Let the designated set of combinators be C. The proof
consists in first showing that for each N there exists an Me
{B,B',C,K,I,W}+ so that N =p M and the tree of M belongs to Tv

Next we observe that A1...An=pC*An(...(C*A2A1)...) and the
theorem follows from the lemma. Let N be given. By Church's
theorem there exists an applicative combination P of B,C,K,I,W
such that N =pP. Now we prove by induction on P that P =p
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A!...An for A;E {B,B',C,K,I,W}. Indeed we have A1...An(A'1...A'm) =p

B(A1...An)(A
I
1...A

1
m.,)AI

m=pBB'A1A2B
IA3...B

IAn.1BAn(A
l
1...A

I
m.i)AI

m.
This gives the induction step and completes the proof.
[l]Barendregt , The Lambda Calculus
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