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1 Introduction

This paper is intended to assist the reader learn, or even better, teach a course
in pcf theory. Pcf theory can be described as the journey from the function
H — the second letter of the Hebrew alphabet — to the function N, the first
letter. For English speaking readers the fewer the Hebrew letters the better,
of course; but during 1994-95 it seemed that for a group of 6 post doctoral
students in Jerusalem learning pcf theory from Shelah required knowing all
22 Hebrew letters, for Shelah was lecturing in Hebrew.

This paper offers a less challenging alternative: learning pcf in a pretty
relaxed pace, with all details provided in every proof, and in English.

Does pcf theory need introduction? This is Shelah's theory of reduced
products of small sets of regular cardinals. The most well-known application
of the theory is the bound NW4 on the power set of a strong limit Nw, but other
applications to set theory, combinatorics, abelian groups, partition calculus
and general topology exist already (and more are on the way).

The essence of pcf theory can be described in a few sentences. The the-
ory exposes a robust skeleton of cardinal arithmetic and gives an algebraic
description of this skeleton. Shelah's philosophy in this matter is plain: the
exponent function is misleading when used to measure the collection of sub-
sets of a singular cardinal.

The right way to measure the size of, say, [N^]*0 is by cf ([N ]̂**0, C), the
cofinality of the partial ordering of all countable subsets of Kw ordered by
inclusion.
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The usual N °̂ is obtained from that number by multiplying by 2Ko. While
2Ho is "wild" and cannot be bounded in ZFC, a great discovery of Shelah's is
that cf ([*V|*0,C) is bounded in ZFC. This way of looking at K*° separates
chaos from structure: puts the chaotic exponent 2 °̂ aside, and clears the
way for the study of the structure of [H^]^0.

Shelah approximates cf ([Nw]No,C) by an interval of regular cardinals,
whose first element is Nw+i and whose last element is cf ([K^]^0, C), and so
that every regular cardinal A in this interval is the true cofinality of a reduced
product Y\ B\/J<x of a set B\ C {Nn : n < cv} modulo an ideal J<A over u.

When this reduction is done, the study of of [N ]̂**0 can be continued
algebraically within pcf theory: the theory of reduced products of small sets
of regular cardinals.

This approach to cardinal arithmetic can be thought of as "algebraic set
theory" in analogy to algebraic topology. The information provided by this
view of cardinal arithmetic is enormous, and influences almost every branch
of mathematics in which the notion of cardinality is important.

For example, a recent application of pcf theory is taking a construction,
due to M. E. Rudin, of a certain topological space of cardinality N °̂ and re-
enacting it on one on those approximations. The construction goes through
and the result is space with the original properties whose cardinality is com-
putable in ZFC (see [4]).

1.1 The relation of this paper to Shelah's book
Shelah's Cardinal arithmetic book (henceforth "the book") was published
about a year ago and covers a large part of pcf theory and its applications.
The book reflects the state of Shelah's research in pcf as it was in 1989 — the
year Shelah "sealed" the book. The theory has advance considerably since —
and, roughly, doubled its volume. An important advance in the development
of the theory was the proof in ZFC of the existence of stationary sets in /[A].
With this theorem the development of the basics of pcf is more transparent.
The approach taken here is the one taken by Shelah in two pcf courses he
taught in Jerusalem in 1991 and 1995, and which I tried to immitate in a
course I gave at Carnegie-Mellon in 1994/95. The ideal /[A] is used every
other page. Thus an initial effort is required to develop the properties of /[A]
which may look disproportional to the simplifications it generates, but this
is worth the effort, because the proofs are smoother, more transparent and
more informative than earlier proofs in which /[A] is not used.



Answering an implicit question: yes, I recommend reading this paper
before reading the book. You will benefit more from reading the book after
already knowing that, for example, generators of pcf always exist.

All the theorems in this paper are Shelah's, unless otherwise stated. Not
all the material in this paper is contained in the book, though.

Pointers to relevant places in the book and in other existing presentations
of pcf theory will be found under the macro

Where is this in the book?

Many of the chapters in the book are not about pcf theory itself, but
present applications of the theory. I believe that those parts of the book will
be more accessible to a reader familiar with pcf theory, as presented here.

1.2 Style of writing

I decided to write all the details. I hope you are happy with this decision;
but at the times you are bored with reading — don't blame me; it's Jim
Baumgartner's fault. I tried to get Jim through a two-day crash-course in
pcf during a meeting we both attended last summer, and after several hours
Jim looked into my eyes and said grimmly: "This is not easy, Menachem.
You keep saying that this is easy, but it's difficult stuff".

Not any more. When you read you will see.
The difference in the style of writing between this paper and the book

lies in what literary critics call "the implied reader", this imaginary person,
half way between the author and no-one, to whom the writing is addressed.
Shelah's implied reader is very clever, sharp, has phenomenal memory, wants
to know always the most general formulation of a theorem and, really, already
knows pcf and needs only to be reminded of what she knows.

My implied reader is slower, wants to learn the important case first and
generalizations only later, can learn one thing at a time, and can lose hours
over a £ mistaken for a £. She is pretty much like me.

For my reader's sake I made the rule to never use either of the following
adverbs in this paper: "clearly","obviously", and "easily". Rules are, how-
ever, clearly made to be easily broken at obviously suitable circumstances.



1.3 Additional material

I included digressions into topics which are not needed for the development of
pcf theory. For instance, additional club-guessing theorems and applications
to the saturation of ideals. Those sections will be marked by the macro

The r e s t of t h i s Section i s not needed for l a t e r sect ions

and and may be skipped in a first reading. Some of the additional material
is sketched in exercises.

1.4 What is missing in this version

At least three sections need to be added to this paper. One about the struc-
ture of pc£4; one about reconstruction a characteristic function of a model
from pcf scales, and the applications to cardinal arithmetic; and one about
smooth or transitive generators.

The first two are written and just need proof reading. Before I write the
third I need to digest [12].
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Finally, I am more than grateful to Saharon Shelah for creating such
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2 Dropping ordinals and guessing clubs
Definition 1. For a set X of ordinals let ace X denote the set of accumu-
lation points of X: ace X = {a G On : a = supX n a}. Let nacc X ==
X \ ace X. Let d I = l U ace X.

We prepare some combinatorics to be used later on. We begin with some
very simple operations on ordinals.

Definition 2. • Let c C On be a set of ordinals, and let a G On be an

ordinal. Define drop(a,c
drop(a, c) is not defined.
ordinal. Define drop(a, c) = sup c f l a i / c n a / l l . If cDa = $ then

def

• / / X C On and and c C On are sets of ordinals define Drop(X, c) =
{drop(a,c) : a £ X}.

Let us list a few simple facts about the operations of dropping ordinals
into sets defined above:

Fact 3. Suppose c and X are sets of ordinals and a G On.

1. drop(a,c) < a or drop(a,c) is undefined. Equality holds if and only if
a G ace c.

2. If drop(a, c) is defined then drop(a, c) G clc

3. Drop(X,c) C clc

4- If ai < a2 we ordinals and drop(oti,c) is defined then drop(o>2,c) is
defined too and drop{a\,c) < drop(a2yc).

5. a \-± drop(aJc) is a order homomorphism on an end segment of X and
consequently otp Drop(X, c) < otp X.

6- If Ci C C2 are sets of ordinals and a G On and drop(a,Ci) is defined
then also drop(a,C2) is defined and drop(a,c\) < drop(a,C2);



7. / / (ci : i < z(*)) is such that C{ C On and C{ C Cj for all j < i <
i(*) then for every a G On there exists some i(a) < i(*) such that
drop(a,Ci) stabilizes at i(a), that is either drop(a,Ci) is undefined or
drop(a,Ci) is constant for all i(a) <i< i(*).

8. If (c{ : i < K) is sequence of sets of ordinals weakly decreasing in C, K
a regular cardinal and X C On, \X\ < K then there exists some i(X) <
K such that Drop(X,Ci) stabilizes at i(X), that is Drop(X,c^x)) =

Drop(X, c^ for all i(X) <i<K.

9. ace Drop(X, c) = ace X n ace c.

Proof. The first statement follows directly from the definition of drop(a,c),
and every other statement except the last one follows from the earlier ones
and the wellfoundedness of the ordinals.

To see the last one suppose that (5 € ace Drop(X, c) and let (drop(az-, c) :
i < i(*)) be strictly increasing and cofinal in f3 with ĉ - G X for all i <
i(*). For every i < i(*) necessarily az- < drop(a,-+i,c), or else drop(az-,c) >
drop(at-+i,c). Since drop(at-,c) G clc for all i by 2, we conclude that j3 G
ace (ace c) = ace c. Since drop(a;,c) < at- by 1 and az < drop(at-+i,c) < (3
we conclude that j3 G ace X.

Conversely, suppose that (3 G ace X n ace c. Find a set {pi : i < i(*)} C
/?ncunbounded in j3. Since /3 G ace X, the ordinal a* := min{/?nX\(/?,- + l)}
is defined for all i < i(*). Therefore # < drop(at-,c) < /?. It follows that
/3 G ace Drop(X,c). D

Now let us use those operations to prove the existence of "club guessing
sequences".

Theorem 1. Suppose that K+ < A, that K,\ are regular cardinals, and S C
{5 < A : cfS = K} is a given stationary subset of X. Then there is a sequence
C — (cs : 5 G S) satisfying

1. cs Q 5 is a closed subset of 8

2. For every club E C A the set N(E) =7 {8 G S : c6 C E A supc* =
5 A otp c$ = K} i5 a stationary subset of A.

Remark 4, / / (a^ : (5 G 5) satisfies a ^ C i and condition 2 in the Theorem
then (clcs D 5 : 5 E S) satisfies both 1 and 2. Secondly, replacing cs by any
cofinal subset does not spoil 2.

6



Proof. Let us define by induction on i < K+ a sequence Ct = (cj : 8 G 5)
and a club £*t- C A as follows. Let Eo = A and let Co = (cj : (5 G 5) be chosen
such that for every <5 e 5 the set c® is a club of 8 of order type K.

Two of the induction hypotheses are: c\ = Drop(c$, Ei) is a closed subset
of 8 and j < i =*> JE* C £•,-. This holds for i = 0.

If i < K+ is limit and Ej,Cj are defined for all j < z, let J5t- := Dj^Ej.
Since i < A, this is indeed a club of A. Let cj := Drop (<$,£•,•) for all 8 e S.
By Fact 3.9 c%

6 is a closed subset of £, (and by Fact 3.5 its order type is < K.)
Suppose that i = j + 1 < K+ and that £•,-, Cj are defined. If there exists

some club E C X such that for all 8 e E D S either c£ ls n ° t a club of 8 or
cs £ E, then choose such E1 and let J57t = EjD E.

If, however, there is no club E C A as required in the definition of i?t-,
then for every club E C A the set iVJ'(£?) := {5 G 5 : 5 = supcj A 4 C S } ,
is stationary. To see this, suppose that Nj(E)f)Ef = 0 for some club £ C A ,
namely <$ e S n 2?' =* c£ g £ for some club E' C A. Then S n J5; is a club
of A which is as required for the definition of E{.

Therefore, in the case that no Ej+i can be found, the proof is done:
c£ = Dxop(c®,Ej) is a closed subset of 8 by Fact 3(8) and its order type is
< K by Fact 1.5, so if unbounded in 8 it is a club of 8 of order type K. And,
by the previous paragraphs, the prediction clause 2 in the theorem holds for
(4:6 e S).

Assume, then, that 2?,-+i is defined for all j < K+ and we shall derive a
contradiction. Let E = f\i<K+Ei. Since K+ < A, this is a club of A. Let
8 G ace EC\S. The sequence {c\ : i < K+) must stabilize at some i(S) < K+

by Fact 3.8, since (Ei : i < K+) decreasing and c\ — Drop(c^, Ei). Now since
8 G ace c® fl ace E{ for all i < K + , by Fact 3.9 we conclude that cl

6 is a club of
8. Choose j > i(8). Since 8 G iJy+i, either c*s is not a club of 8 or c$ %
but c£ is a club of 8; therefore c£ % Ej+\. However cl

s
+1 C clEj+i n A =

So ĉ  7̂  ̂ + 1? contrary to stabilization. D

We make the following observation: the proof above gives a slightly
stronger theorem:

Theorem 2. Suppose K+ < X and K, X are regular cardinals, and S C {8 <
X : cf8 = K} is a given stationary set. Then for every sequence (c$ : 8 G S)
satisfying that cs C 8 is a club of 8 of order type K and every club E1 C A
there exists a club E C Ef such that C := (Drop(cs,E) : 8 e S) is a club
guessing sequence, namely satisfies the conditions of Theorem 1.



What this theorem says is that every sequence of the right form, sup-
ported by a stationary set of A, can be made into a club guessing sequence
by dropping each of its members into a club E which is contained in a pre-
scribed club E' C A.

If K > Ho the operation Drop(c$,i?z) can be replaced by c® n 2?t- in the
proof of Theorem 1. In this case the corresponding version of Theorem 3 is:

Theorem 3. Suppose K+ < A and n, A are regular cardinals, and S C {8 <
A : cfS = K} is a given stationary set. Then for every sequence ( Q : 8 G S)
satisfying that c$ C 8 is a club of 8 of order type K and every club E1 C A
there exists a club E C E' such that C := ( Q D E : 8 G S) is a club guessing
sequence, namely satisfies the conditions of Theorem 1.

In other words, any sequence of the right form becomes a club guessing
sequence when relativized to some club of A. Theorem 3 of course does not
work for K = u.

The r e s t of t h i s Section i s not needed for l a t e r sect ions

We introduce now a second operation on ordinals, which is a generaliza-
tion of drop.

Definition 5. Let A be regular uncountable, j3 G A and and let c C A.

1. Fix a sequence (e@ : (5 G A D ace A) such that e@ is a club of f3 and
otp eb = cf/3.

2. letfill(P,c) := Drop(ep,c) if (5 is limit and else let fill(f5', c) := 0.

The operation fill depends on a choice of a sequence (e$ : f3 G ace A),
but since for our purposes here the actual choice of this sequence does not
matter, we do not incorporate it into the notation.

We shall use fill to prove a club guessing theorem on cofinality K of K+.
The guessing in this case is weaker, but still useful (See [KS2] for an ap-
plication). Let S* denote the set of all elements of A whose cofinality is

Theorem 4. Let K > Ho be a regular cardinal and suppose S C {5 < K+ :
cfS — K) is a given stationary set. There exists a sequence C = (cs : S G S)
such that

1. cs C 8 is a club of 8 and \cs\ = K



2. For every club E C K+ the set N(E) = {8 G S : 8 = sup{ (nacc Q ) n
EDS* }} is stationary.

Discussion: Any sequence C satisfying (0) will have the property that for
every club E C A, for stationarily many ( 5 e S unboundedly many points of
c$ enter the club E — just because K > Ho; so the crux of the theorem is
in making those points be non-accumulation points of c#. Furthermore, it is
required in the theorem that those non-accumulation points be of cofinality
K. It is this additional requirement which makes the proof work: I do not
know how to prove the theorem without satisfying this requirement. What
is being used in the proof is the fact that S* does not reflect: If /? < K+ is
a limit ordinal, then there is a club ep of (5 such that ep D S£+ = 0.

Proof. By removing a non-stationary set from 5 we may assume that S C
ace ace K+ — namely that every ordinal in 5 is a limit of limit ordinals.

Let c$ C ace K+ be a club of 8 for all 8 G S and set CQ = (c$ : 8 G S).
Let us define by induction on n < LO a club En C A and a sequence

Cn := (cs : 8 G S). We fix (ep : f3 < K+ A /? G ace AC+) such that e^ C /? is a
club of P and otp e@ = cf /? to be used in the definition of fill.

Let £o = ace K+; CO is already chosen. Suppose En,Cn are defined,
and that c£ is a club of 8 with | Q | = K. If for every club E C K+ the
set {(5 G 5 : 5 = sup{nacc c$ H E C\ S**}} is stationary, then Cn is as
required by the theorem, and we are done. Else, find a club E C A such that
8 G 5 n £ =» sup{(nacc c*) n E D 5^+} < <5 and let £ n + i := En n E.

Let c ^ 1 = c^ U (J{fiU(f ^«+i) \ drop(/?, cj) : ̂  € nacc cj \ (£?n+1 U Sf)}
Explanation: we are trying to correct c£ to overcome the counterexample
En+i. If a non-accumulation point )3 is of the wrong cofinality or does not
enter JEn+i, we fill in the interval of c£ just below j3 elements of En+\ which
are obtained by dropping ep into En+i. If ft G nacc c$ is in En+i and has
the right cofinality, we add nothing in the interval below it, and /? remains a
non-accumulation point also in c£+1.

Since c£ is a club of 5, by Fact 3.9 also c£+1 is a club of 8.
Suppose that En and Cn are defined for all n < uo and we shall derive a

contradiction. Let Ef = f|n ^n a n d i e t ^ = a c c ( # ' n ^ + ) - ^ Q ^ + is a club
of K+. FixSeSHE.

Since 5 G En+i for all n, 7n := sup{(nacc cs)nEn} < 8. Let 7 = sup{7n :
n < u>}. Since cf 8 = K > Ho, 7 < 5. Pick a G £ ' n 8 such that a > 7 and
cf a = K. Such an a exists because 8 is a limit of E1 D S* .



Since a > 70, a £ nacc c$. But also a £ ace c£, because otp c$ = K, and
therefore a G ace c$ => cf a < K. SO a ^ cj altogether.

Suppose now that a $ c£ and let /?n := min{c£ \ a} . Thus (3n > a.
Let an = sup a D cj. since c£ is closed, an < a. We argue now that
a £ c j + 1 . The only way a can join c£+1 is by belonging to fill(/?n,2?n+i) =
Drop(e0n,2?n+i). Well, a £ nacc fill(/?n,£n+i)n(an,/?n) C nacc c£+1 because
a > 7 > 7n+i and 8 G i?n+2- But — and this is the point where the non-
reflecting property of S£+ is used — also a £ ace Drop(epn,En+i), because
ace Drop(e^ ,En+i) Q ace e@ by Fact 3(8) and ace e$n PI 5^+ = 0. Thus
a ^ e?+1.

We have proved by induction on n, then, that a £ c$ for all n. Let
f3n = min c^ \ a. We obtain the desired contradiction by showing that the
(3n-s are strictly decreasing. Since e@n is unbounded in (3n, we can choose
7 G (a, /?n). Certainly drop(7,2£n+i) > a, and since a ^ ^4an (since o: ^ c£+1)
the inequality is sharp. So c£+1 n (a,/?n) 7̂  0. Thus /?n+1 < /?n.

We conclude, then, that some Cn is as required by the Theorem. •

The final club-guessing theorem we prove is a combination of the previous
two: it combines guessing clubs in the stronger sense of Theorem 1 AND
having all non-accumulation points have large cofinality, as in Theorem 2.
A recent application of this club-guessing principle is the non-saturation of
the non-stationary ideal over all regular cardinals A > H\ (see [GS]) which is
sketched below in an exercise.

Theorem 5. Suppose that K < 9 < A are regular cardinals, and that S C S*
is stationary. There exists a sequence C = ( Q : 8 G S) such that

1. c$ C 8 is a closed subset of 8

2. for every club E C A the set {8 G S : c$ C E A supcj = 8 A otp c$ =
K A /3 G nacc c$ => cfj3 > 6} is stationary

Proof Let us denote the set {a < A : cf a > 9} by S>o, and {a < A : 1 <
cf a < 9} by S<6>. Let S C S* be given. Using Theorem 1 we fix a sequence
Co — (cs : ^ G 5) that satisfies conditions 1 and 2 there, which are condition
1 here and condition 2 here from which the clause " A /? G nacc $ =^ cf /? > 0"
is omitted. It remains to 'correct' Co so that condition 2 here will hold in
full.
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We assume, by replacing each c$ by Qflacc A, if necessary, that cs C ace A.
There is no loss of generality in doing so, because for every club E C A the
set {5 E S : c$ Q E H ace A} is stationary.

Fix a club ep of (3 with otp e$ = cf/? for every limit (3 < A, to be used as
the required parameter in the operation fill.

We define below another operation, Fill (cs,E), using a club E as a, pa-
rameter, which is designed to take care of the cofinality requirement. Re-
placing every c$ by Fill (cs,E) satisfies that for almost all 8 E S the non-
accumulation points of Fill (c$, E) have cofinality > 0; but the order type of
Fill ( Q , E) may increase, and the guessing of clubs may be ruined. The proof
goes about showing that if Fill is performed with a sufficiently 'thin' club,
then the guessing property is not spoiled. The cofinality clause follows then
from the guessing property, and the order-type demand is obtained by no
more than minor cosmetics.

For a given club E C ace A and 8 E S let us define Fill (cj,i?) in to
approximations as follows:

• cf
>n+1 = cfn U U(fiU(/?, E) \ drop(/?, cfn) : /? e nacc cfn A cf (3 < 6}

. Fi\\(cs,E):=Vn<ucf'n

When E is clear from context, or fixed, we shall write just c£ for cs '
n. We

list a few facts about Fill (cs,E) for a fixed club E C ace A and cs C ace A:

Fact 6. 1. fillip E) ^s defined for all (3 E c£, and all n < to.

2. cn
6 \ c°s C E for all n < UJ and 8 e S. Therefore If cs C E then

Fill{c5,E)CE.

3. c$ is closed for all 8 E S and all n < UJ

4- If (3 E nacc c£ fl ace E for some n < LJ, 8 e S and cf/3 < 6, then
(3 E ace c£+1

The first Fact is true for c°6 = cs because c$ C ace A. For n + 1 use the
second Fact and the fact that E C ace E.

The second fact is proved by induction on n, using Fact 1.3 and the
definition of c£+1. The third fact follows by induction from Fact 3.9.
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To prove Fact 4 suppose /? G nacc c£ n ace E and that cf /3 < 9. Forming
c£+1 from c£ the definition adds into the interval (drop(/?,c£),/?) all points
of Drop(e/3,JE) \ drop(/?,c£) + 1. Since (3 G ace E, (3 G ace Drop(e/3,£l) by
Fact 3.9 and hence /? G ace c£+1.

Fact 4 is the important one. We are trying to 'get rid' of non-accumulation
points whose cofinality is smaller than 9. And Fact (4) above tells us that if
the 'bad' point /? G nacc c£ n £<# happens to lie in ace £7, then it becomes
an accumulation point of the next approximation c£+1.

Let us see next that if for some club E C A the sequence (Fill ( Q , £7) :
8 G S) has club guessing property, then it also satisfies the requirement
on cofinality of not accumulation points, and that this is sufficient for the
theorem.

Claim 7, Suppose there exists a club E C A such that {8 G S : Fill(cs, E) C
E1} is stationary for every club E1 C A. Then we can find a sequence C =
{d6: 8 G S) as required in the Theorem.

Proof of Claim. Suppose a club E is fixed such that {8 G S : Fill (c^i?) C
Ef} is stationary for every club Ef C A. Denote the last set by N(Ef). We
first show that also N'(E') := {8 G N(E') : /? G nacc cs ^ cf (3 > 9} is
stationary.

To do this we make the following simple observation: since N(Ef) is sta-
tionary for every club El, the set N(Ef Place E) is stationary. Let 8 G N(E'C\
ace £ ) 'C N(E'). By the definition of N{E') we know that Fill(cj,£) C
(E' Placed).

We show now that all points of Fill (c$, £?) whose cofinality is smaller than
0 are accumulation points. To do so pick any (3 G F\\\(c$,E) with cf/? < 0,
and let n be the first such that /3 G c£. Now /? G ace # , and if /? G nacc c£
then by Fact (3) above (3 G ace c£+1 C ace c$. Thus, all non-accumulation
points of Fill (c«$, i?) fl 5<^ are of cofinality > 9.

Finally we thin-out the sets Fill (c$, i?) so make them have the right order
type, without spoiling the fact that their non-accumulation points have large
cofinality: For every 8 G S such that j3 G Fill(Q,£) => cf/? > 9, find a
set As C nacc Fill (c^i?) such that otp As — K and sup As = 8 and define
d6 := c\As. Let cs = 0 for all other 5 G 5. Let us show that C' = (4 :
8 G 5) is as required by the Theorem. Suppose that Ef C A is a given club.
We have shown that the set N'(Ef) = {8 G 5 : Fill(Q,£;) C E' A /? G
nacc Fill ( Q , E1) => cf/? > 0} is stationary. For every 8 G N'(E') the set ^ is
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contained in £", cofinal in 8, has order-type K and is contained in S>$. Since
E' is closed, also d6 = cU^ C E1. Finally, if (3 G nacc d5 then necessarily
/3 e As and thus /? G S>$, as required. •

We have yet to show that a club E C A as in the sufficient condition can
be found. The proof uses the eventual stabilization of Fill, and is not much
different than the proof of Theorem 1.

Claim 8. There exists a club E C A such that for every club £ " C A the set
{8 G S : Fill(c6,E) C E1} is stationary.

Proof of Claim. Define by induction on i < 9 a decreasing sequence (E{ : i <
9) of clubs E{ C A.

Let Eo = ace A. If % < A is limit, let E{ := f|.<f.£y. Suppose that
i = j + 1 < 9 and £ , is defined. If (Fill (c6,Ej) : 8 e S) satisfies the
conclusion of the claim, then we are done. Else there is some club E C A
such that 8 e ECiS => Fill(cSjEj) % E. Let E{ := ^ n JS?.

Suppose that JE1,- is defined for all i < 9, and pick 8 G H ^ i ? ; . This is
possible because 9 < A.

We show that Fill (cs,Ei) is constant on some end-segment [j,9). We
write for simplicity c^n for cf*'n for i < 9. We will show by induction on n
that df is constant on [j(n)y9) for some j(n) < 9. This suffices, since we
then set j := sup{j(n) : n < a;}, which, by regularity of 9 is < 9 and recall

For n = 0 there is little to prove: let j(0) = 0 and recall that CQ = c$ for
all i < 9. Suppose that cl

n is constant on [j(n),9). For every ft E ĉ  'n n S^
there is some j < 9 at which fill(/?, £"«) = Drop(e^, E{) stabilizes by Fact 3.8,
because \ep\ = cf (3 < 9 and E{ is decreasing in i. By regularity of 9 > |c$|
find j(n) < j(n+l) < 9 such that fill(/?, E{) is constant on [j(n +1),9) for all
/? G nacc c j ( n ) ' n n 5 ^ . If z G [j(n + l),0) then 4'n = 4 ( n + 1 ) ' n by the induction
hypothesis. The definition of cf+ 1 as cf U U{fiU(£> ^«) \ d r a P(^ , 4'n) : /? e
nacc cf A cf ̂  < ^} implies that c^n+1 = c j ( n + 1 ) ' n + 1 , because cf = c^(n+1)'n

and fill(/?,#t-) = fill(/?,^(n+i)) for all /? G nacc c ^ .
Let j(*) < ^ be fixed, then, so that Fill (cs,Ei) is constant on \j(*)70).

Since 8 G # ; » + i it follows that Fill ( Q , ̂ ) % Ej(*)+i. But Fill ( Q , Ej{m)+1) C
^i(*)+i by Fact (1) above because Q C £J(*)+I. SO Fill ( Q , ^(*)) ^ Fill ( Q , JE^^

contrary to stabilization. •

•
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2.1 Guessing ideals and applications

We make a few more definitions regarding the club-guessing sequences we
met above. Let C = ( Q : S G S) be any sequence of sets indexed by a
stationary S C A for some regular A. For each of the guessing requirement
presented in Theorems 1-4 there corresponds naturally a guessing ideal The
ideal consists of all subsets of A which 'fail to guess' some club E C A. For
example, the guessing requirement in Theorem 1 is that {5 G S : cs C. E}
is stationary. Therefore the ideal corresponding to this notion of guessing is
{ACA: 3{E C A) club [6 e AnSnE => cs % E}. Saying that (cs : 5 e S)
satisfies the conclusion of Theorem 1 is equivalent to saying that the guessing
ideal is a proper ideal. It concentrates on S (that is, A \5 is in it) and extends
the non-stationary ideal. It is A-complete, but not always normal.

We can relax the guessing requirement, and thus shrink the ideal: if
"to guess" means "to be included in E except for an initial segment" then
guessing ideal is {A C A : 3E C A club (5 G E n S D A => cs <2* E} and is
sets is normal when the sequence under discussion satisfies the conclusion of
Theorem 1. The symbol A C* B means that a proper end-segment of A is
contained in B.

Shelah denotes by id6(C) the guessing ideal for inclusion, by ida(D) the
guessing ideal for inclusion modulo initial segment and by idp(C) the ideal
of guessing in the sense of Theorem 3, namely having unboundedly many
non-accumulation points enter the club.

Where i s th i s in the book?

Club guessing is introduced in §1 of Chapter III, in terms of the guessing
ideals. The existence of club guessing sequences is in §2. The operation
defined here as "Drop" is denoted by gl there (for "glue"). Theorem 5 is not
(as far as I know) in the book; it's in a different book: the non-structure
theory book [8] p.189.

2.2 Exercises

• Prove that ida(C) is a normal ideal when C is the sequence from The-
orem 1.

Hint: If EQ ̂ witnesses that Aa G ida(C) the f]aEa witnesses that
.\JaAaeida(C)

• Prove that Fill (Q, E) in the proof Theorem 5 is a closed set of ordinals.

14



 



• (Gitik-Shelah) Prove that if K+ < A and K > No then the non-stationary
ideal on S* is not A+-saturated, namely that there are A+ many sta-
tionary subsets of S* whose pairwise intersections are non-stationary.

Hint:

1. Show that there is no ( Q : 5 G S£) such that c$ C S, \c$\ = K and
a G cs =^ cf a > K+) with the property that for every club E C A
the set N(E) := {8 G S* : c$ C* E} contains a club intersected
with S*. Hint: Define a decreasing sequence of clubs (En : n < to)
so that En+i C ace Enf)N(En) and consider the first point in the
intersection of all clubs of cofinality K.

2. If you replace "contains a club intersected with 5^" by "station-
ary" , the a sequence as above can be found on every stationary
S C S* by Theorem 5.

3. Use saturation to show that for every sequence C as in the previous
paragraph, which is supported by 5, there is a stationary S' C. S
such that the restriction C \Sf satisfies the condition in 1. (This
is not a contradiction yet, because in 1. you use the fact that
S = S£). Hint: Find a decreasing chain of clubs (Ei : i < A+) and
a chain of stationary sets 5,- : i < A+) such that 5t- = N(Ei) and
the difference 5,- \ 5,-+i is stationary. To define Ei+i assume that
S{ is not as required. At limits let E{ be the diagonal intersection
of the previous Ej-s and show that 5,- is contained modulo the
non-stationary ideal in every Sj for j < i. If the process continues
A+ steps then saturation is violated.

4. use the previous paragraph to find a maximal antichain in X/NS of
stationary subsets of S£, each carrying a sequence C exemplifying
2. By saturation assume the sets in the antichain are pairwise
disjoint. Show that the union of all C-s satisfies the condition
forbidden by 1.

3 The ideal /[A]
In this Section we introduce and develop the basic properties of the main
combinatorial too we shall be using in later sections. This is Theorem 7
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below, that asserts the existence of a stationsry S C S* in /[A] for all regular
k, A such that K+ < A.

Let A = c/A be regular and uncountable cardinal. Let / [A] be an ideal
over A defined as follows:

Definition 9. Let S C A. Then S G /[A] i/ and! on/y i/ it/iere eziste a
sequence P = (Pa : a < A) and a closed and unbounded set E C A st/c/i iftai;

i. PQCp(a) and|Pa| < A

#. If S £ E D S then 8 is singular and there exists a set c C. 8 such that
8 = sup c, otp c < 8 and Vr<$ c D 7 G

Fact 10. / [A] is a normal ideal

Proof of Fact Suppose that Sa G /[A] for a < A and that EaJPa =
/? < A) witness 5 a G /[A]. There is no loss of generality in assuming that
(Pp : p < A) is increasing.

Let E1 be the diagonal intersection of {Ea : a < X} and let S = {a < A :
3/3 < a [( E S$]} be the diagonal union of the 5 a . Define P a := U/?<a ^a •

Suppose that 5 € E (1 S. Then there is some (3 < a such that 5 £ Sp.
Since 5 G £ and E = {a : V/? < a [a G Ep]} it holds that 5 G £^. Thus 5
is singular and there is some club cC 8 with c fl 7 G U€<J Pf for all 7 < 8.
Since by the definition of P€ it follows that |J€ Pf C (J6<J P€ we have that
c O 7 6 U€«5 pe- T h i s s h o w s t h a t 5

Fact 11. For every regular uncountable A the setSy = {a < A : c/A = KQ} G
/[A]

Proo/. Let P a = [a]<Ko. If 5 G 5Q let c C 5 be any cofinal subset of a with
otp c = UJQ. If 7 < 5 then c D 7 is finite and thus belongs to P7 . •

Theorem 6. / / A = c/A > Ho ^ a Tegular uncountable cardinal, then
S£ = {a < A+ : c /a < A} G 7[A+].

Proof Fact 11 above gives the theorem for A = ^ i , sowe assume A > LJI.
For every a < \+ let (a^ : C < A) be a sequence of closed subsets of a

such that:.

1. V̂  < A aj? C a is closed and a^ < X
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2. Ci < C2 => a£ ^ aC2
 a n d f o r l i m i t C' °X =

3.

Let F a = {a^ D 7 : /? < a, C < A, 7 < a } • This definition implies that

P a C V{a) and |Pa | < A < A+. Suppose that 8 G S£. Without loss
of generality, 8 > A. We need to show that there is a club c C 8 of 8 with
cfl7 G U/?<<^ f° r a ^ 7 < <̂  Let c C 8 be any club of 8 of order type K = cf 8
and so that min c> A. For every ^ 6 c the set EQ = {C < A : a£ n # = a^} is a
club of A (by the usual back and forth plus continuity argument). Therefore,
E = f]OecEo is also a club of A.

There must be some index Co for which c C a£o. Find a point ((*) G i?
such that C (*) > Co- Now a l , is a closed subset of 5, of cardinality < A and
because it contains c as a subset, it is unbounded in 8. As 8 > A, otp ai,, < 8.
Let 7 < 8 be arbitrary. To show that a£^ D 7 G U / ? < ^ ^ suffices to show
that air^ C\ 9 E PQ for some 9 G c which is greater than 7, because P$ is
closed under taking initial segments.

But, fixing such 9, we have ai,^ D 9 = a?/^, as C(*) G i? C EQ and thus
belongs to PQ. . •

This is the main theorem of this Section:

Theorem 7. If K, A are regular cardinals and K,+ < A i/ien i/iere is a sta-
tionary set S C S* in I [A].

Proof. If A is a successor of regular, then the Theorem follows from the
previous Theorem. The first A > K+ for which the previous Theorem does
not apply is K+U;+1. SO we may assume that K++ < A. We remark that in
addition to A successor of singular, there is another case which the previous
theorem does not cover and this one does: the case A regular limit, namely
weakly inaccessible.

Fix a club guessing sequence C = (ca : a G S£ ) as in Theorem 1 in the
previous section.
Description of the proof.

The proof will involve two elementary chains of models of H(x), for some
large enough regular x- The first chain will be used to define (Pi : i < A);
the other, to prove that this choice works. The first chain is going to be an
element of every member in the second. At some point of the proof, though,
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we shall need some set which is definable in the second chain to belong to
some member of the first chain. We use the prediction, or "guessing, property
of a club guessing sequence to obtain this.

Fix an elementary chain M := (Mi : i < A) of submodels of (-ff(x)? £>)
(for a large enough regular \) satisfying:

j • j < i) G Mt-+i, i G Mt- and i C Mt-

• C, A G Mo and K;++ + 1 C Mo

Let us define Pi := Mi fl V(i). By condition (1) we see that \Pi\ < A.
Let S C A be the set

5 := < a < A : cfa = K A 3cclub ofa[(V7 < a)(cf)j G ( J i^)] >
I i<a J

The sequence (Pt : i < A) witnesses that S G /[A] according to the
definition of /[A]. All that is left to be shown is that S is stationary.

We prove now that S is stationary. Fix a club E C A and we will show
that E meets S. By shrinking E we may assume that Mt- fl A = i for all
i G E; this follows from the fact that {i < A : M« n A = z} is a club of A.

Define a second elementary chain of models of H(x), N := (N^ : £ < K++)
satisfying:

• M, £;, A, C G No and K + + + 1 C No

^ < C) e JVc+i for C < K + +

Define /(C) := supA^ D A. The function / : (K;++ + 1) -> (9 is increasing
and continuous. Denote 0 = / ( K + + . By condition 3 in the choice of JV, we
see that f\( G A^+i for every C < ^+ +-

We observe that for every ( < K + + the ordinal /(C) belongs to E. This
is true by elementarity and the fact that E G N^ for all (": if /? G A^ n A
is arbitrary, then N^ \= (37 G A) [7 G 2? A 7 > /?]. Therefore there exists
P<^eEnNis and thus j? unbounded below /(£), implying /(C) G £?.
Thus r a n / C E1.

18



Turn now to the chain M and work in M$+i. Use the fact that 9 G Mg+i
(condition (2) in the choice of M) and the elementarity of MQ+I and choose
a function g G MQ+\ such that g : K + + -> 9 increasing and continuous with
9 = sup ran g.

Since both / and g are increasing continuous on K + + with ranges cofinally
contained in 9, a standard argument allows us to fix a clubE1 C K++ such
that f\E = g\E. _

Use the club guessing property of C to fix S < S£++ such that c$ C £",
8 = supcj and otp Q = K. Define c := f[cs] = #[c$].

Thus c C /(<$) is a club of f(S) of order type n. We already know that
f(5) G 2?; we will show that f(S) G 5 by showing that c n 7 G (Jt<^ ^ ' f° r

every 7 < /(5).
Let, then, X = csC\( for some ( G ĉ  be an initial segment of c$ and let

Y := /[X] be the corresponding initial segment of c. As c$ and C belong to
TVo, we have X G iVo C A^+i; and since /f(" G A^+i by condition 3 in the
choice of JV we conclude that Y = /[X] G A ĉ+i-

If we knew that Y G Mz for some z < A we would be done: Suppose that
there were some i < A such that

H(X)\=3i<\\yeMi)]

Since Y, M , A G M c + i and A^+i -< jff(x)

= 3i < A[Y G Mt-]

by elementarity. Thus there is some i < / ( £ + l ) < f(S) such that Y G î -,
as required.

But why is there such i < A at all? The reason is the club guessing
sequence, which enables M to "predict" the set Y. Recall that Y = f[X].
The parameter X in this definition belongs to Mo. But / may not belong to
any Aft- G M. However, f\c$ = <?fQ and so we can define Y using # instead.
The function g belongs to M$+i, and the proof is now complete, as Y = g[X]
is definable in M#+i and hence Y G M#+i. •

In the next Theorem we formulate a more convenient, equivalent defini-
tion of /[A].

Theorem 8. S G / [A] if and only if there is a club E C A and a sequence
(ca : a < A) satisfying:
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(0) ca C a and otp ca < a

(1) (3 G ca ==> (5 is a successor ordinal and can j3 — cp

(2) If 8 G S n E then 8 is singular, otp c$ = cfS and 8 = sup c#.

The condition (1) will be referred to as coherence of the sequence (ca :
a< A).

Proof. Suppose such E and (ca : a < A) exist as above. Let Pa = {ca}. If
8 E S f) E then Q C 8 is unbounded in 8 and otp Q = cf 8. If 7 < 8 then
c n 7 = c D 6 where e = min[Q - (7 + 1)] and c$ n e = c€ G P€. Thus 5 G /[A]

To prove the converse assume that S G / [A] and fix a club E C X and
a sequence (Pa : a < A) that satisfy the conditions in definition 1 for S. We
need to produce E and (ca : a < A) that satisfy conditions (0) - (2) for S.

We make first a few assumptions on Pa which can be made to hold without
increasing | P a | , which is < A. Assume that for some large enough regular x
and some a G M -< H (x), Pa = M n P ( a ) . Therefore if x G P a then also
otp x G Pa\ for every limit ordinal (3 G P a a club ep C (3 of otp ep = c/^ is
also in P a , and Pa is closed under set subtraction, union, intersection etc.

Next fix an increasing and continuous sequence (7,- : i < A) with 7,- < A

limit ordinal for all i < X and 7 t + i — 7,- > \Ja<1.Pa + \li\ + ^o- By thinning

(7* : i < A) we may assume that 7,- G i? and that if 7* G 5 then 7; is singular.
Let Fi : Ua<7,P« x 7i\ -> {C + 1 : Ti < C < 7i+i} be a 1-1 function. F

codes every pair (#,/?) for x G Ua<T^a and /? < 7; by a successor ordinal in
the interval (7;, 7^+1).

We turn now to defining ca for a < A.
Case 1. a is successor. As all 7t-'s are limits, there is a last i such that
7,- < a, and thus a < 7^1 . If a £ ran F;, then let ca =• 0.

Else, a = Ft- (#,/?) for some x G Ua<7 i
J^ an<^ P < 7«- ^ P ^ minx let

ca = 0 again.
The remaining case is /? < minx. If x G U a<7 , ^ ^or s o m e ^ < z ^et

ca = 0. Else:
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Let

(i) C £ x a n d otp xH( belongs to e^

(ii) j < i is the least s.t. x fl £ G IJa<7
 J

(iii) for all f G # n C s-t- 0*P (^ n 0 £ e/
there is j ' < j s.t. x fl £ G I

Case 2. a is the limit: If possible, find an unbounded ca C a of order type
cf a < a with every /? G ca a successor ordinal and ca fl /? = c^. Otherwise,
let ca = 0.

We check the conditions on (ca : a < A).
Condition (0): ca C a and oip ca < a. For limit a ondition (0) holds by
the choice of ca. If a is successor, then every closed subset of a has order
type < a.
Condition (1): Suppose that 7 G cQ. Then 7 G ca is a successor ordinal.
Let # G ca fl 7. By the definition of ca there is f G x with ofy? x f l ( G e ^
and / < % least s.t. x n ( G Ua<7 ,

F« w i t h # = Fj' (x n^P)- (These are
conditions (i), (ii) in the definition of ca). By condition (iii), and as £ G #
we have / < j such that ^ D £ G (Ja< .,» ^«-

Let j / := 1 D (. Now 7 = Fj (y,/?) with yS < min y and £ G y with
n ( G e ^ Also, / < j is the least s.t. yn£ = xC\£ £ Ua<7 ,

This settles (i), (ii) for c7 with y substituted for x. Also, (iii) holds. We
conclude that 6 G c7. The converse is also true. So we have ca n 7 = c7.

Condition (2): We have to say first what El is. Let £" = {7(2) : i is limit}.
Suppose that cr G SHE'. We know that <r is singular (because {7,- : i < 7} C
£*) and that there is a set x C 5, oip ar < a and V7<(7 x n 7 G Ua<(7^«-

We may assume that x G PG. Let /? = oip x. We have /? G Pa and b}̂
subtracting we assume that j3 < minx.

Let 8 = sup (7,- : i < i (*)) so <5 = 7t-(#).
e^ C f3 and e^ has order type cf x = cf a. We know that e$ £ P$.
Define j / = {( G 1 : otp (x O () G e^}. Then oip ?/ = otp ep = cf 8 and

y is club of 8.

Let h (() - min | j : x n C e Ua< 7 j
pa} for ( G y. So /i : ?/ -^ {7l- : i < A}

and /i is non-decreasing, as F7. is closed under taking initial segments for all
i. In addition, V£ G y h(() < j ^ = 5.
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Let z = {C G y : V£ G y n C MO <

{ 4
The set c serves as a candidate to be Q. It is unbounded and of otp cf a.

All that we need to verify is that j e c=> (3 is successor and cf)j = c7. This
involves checking that for a = Fh^) (x n C P) for C G z then C and j := /i(£),
it holds that ca = c n a. •

Where is th is in the book?

The ideal /[A] is defined in Definition 2.4(5), p. 14. Theorem 6 is men-
tioned in Remark 2.4A as item (2) in the list of items that "will not be used
and are included for the reader's amusemant". The important Theorem 7
is not in the book! It was discovered by Shelah in 1990, after the book was
"sealed". The application of a stationary set in /[A] for obtaining least up-
per bounds and for finding generators for pcf (Sections 4 and 6 below) are
in the book, though, where a stationary set in /[A] is treated as a sufficient
condition for both; by now we know that the existence of stationary subsets
in /[A] for A succesor of singular or inaccessible is a Theorem of ZFC. .

4 Obtaining least upper bounds

Lub, lub, lub
All you need is lub
tat tatatata
All you need is lub, lub
Lub is all you need

In this Section we define and discuss the relations </, <t- and <zj over
ordinal functions from an infinite set A, where / is an ideal over A. The
important issues is when a sequence of ordinal functions on A which is in-
creasing in </ has a least, and an exact, upper bound.

Let A be an infinite set, and let / C V(A) be an ideal over A. We denote
by /* the dual filter {X C A : A \ X e} and by /+ we denote V(A) \ I.
We may ocasionaloly refer to sets in J as "measure zero sets", sets in /* as
"measure 1 sets" and sets in / + as "positive measure sets" or simply "positive
sets".

Consider the relations </, </ and ̂ / over all functions from A to the
ordinals defined as follows:
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• / =j g if and only if {a G A : f(a) ^ g(a)} G I

• / <i g if and only if {a G ̂  : /(a) > #(a)} G /

• / </ 5 if and only if {a G A : /(a) > g(a)} G /

• f £i 9 if and o n ly if / < / ^ and { a G i : /(a) < g(a)} G / + .

We will also use the notation

• / < 9 if and only if Va G ̂ 4[/(a) < <?(&)]

• / < g if and only if Va G ̂ 4[/(a) < #(&)]

• f £ g if and only if / < g and / ^ #

Call a sequence (fa : a <) of functions fa : A —>• On, for a < A, increasing
in <i (</, ^/) if and only if a < /? < A =» / a </ /^ (/a </ //?, / a </

For the rest of the section fix an infinite set A and an ideal / C V(A).

Definition 12. Suppose T — {fa ' ot < o;(*)} is a set of ordinal functions
on A.

• A function g : A -» On is an upper bound of T if only if fa < / g for
every a < a(*).

• A function g : A -» On is a least upper bound o/ T if and only if g is
an upper bound of T and g </ g1 for every upper bound g1 of T.

• A function g : A —>> On is an exact upper bound of T iff g is a least
upper bound of T and for every gf <j g there is some a < a(*) such
that gf </ fa.

We wish to find sufficient conditions fo existence of a lub and an eub for
a sequnce / which is increasing in </. The condition we shall provide is in
Theorem 9 below. To state this condition we need the following definition of
"obedience", which makes sense for every C, but is useful when C has the
coherence property.

Definition 13. Let C = (ca : a < A) be so that ca C a. A sequence f =
(fa : a < A) of ordinal functions on A obeys C if and only if Va < A V/? G
Ca [f(3 < fa]-
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The next lemmat says that if a sequence C to which / obeys has coher-
ence, then certain subsequences of / are increasing in <.

Lemma 14. Suppose f = (fa : a < A) obeys C= (ca : a < A). If~C satisfies
that (5 G ca => cp — ca fl /3 then for every a < A the sequence (//?:/? G ca) is
increasing in <.

Proof Let /?, 7 G ca for some a < X and supose j3 < 7. Since ca n 7 = c7 by
coherence we have that (3 G c7. By obedience of / we have //? < /7 . •

The following Theorem provides a sufficient condition for the existence
of an eub for an increasing sequence in </.

Theorem 9. Suppose \A\ < K and K+ < A = c/A. Suppose S C S*+ =
(5 < A : c/5 = K + ) i5 stationary, S G /[A] and £/m£ C witnesses S G /[A],
name/y

• "C = (ca : a < A A cfa < K+)

• ca C a and otp ca < a

• p G ca => P is successor and ca 0 (3 = cp

• otp cs = /^+ and sup c$ = 5 /or all S G 5

/ / a sequence of ordinal functions f = (/a : a < A) Z5 increasing in </ and
obeys C, then f has an exact upper bound.

Proof First we prove the existence of a lub; then we shall show that every
lub of / is an eub.

We find a lub by approximations. We start with an upper bound and
decrease it whenever it is not a lub. At limit stages the obedience of / to C
is used to produce a "smaller" upper bound from the the set of values of all
previous upper bounds. The existence of lub will be obtained once we show
that this process must terminate.

By induction on £ < AC+ we define a sequence of upper bounds g^ to / so
that:

f < C < K+ =* gc <[/ ft (1)

Let g0 (a) = sup {fa (a) + 1 : a < A}. For every a < A, g0 > fa so g0 is
an upper bound of / .

24



For successor C + 1 Ju s t choose, if possible, ^ + i satisfying (1) above. If
this is not possible, g^ is a lub, as required, and the induction terminates.

Suppose that £ < K+ is limit. We shall show that if g% is defined for
all £ < £, then also g^ can be defined (and therefore the induction does not
terminate at a limit stage < K+).

We need to define sets S^ (a), auxiliary functions hi and an index a^ < X
before defining g^.

• For a G A let Sc (a) := {g( (a) : f < C} .

• for a < A let hfc(a) := min{Sc (a) \ / a (a)}.

Here are the facts we need about the functions /i£:

Fact 15. i. h<a G UaeASC (a) and hi > fa

2. fa{a) < Ma) =• hi{a) < hc
p{a) for a,(3<\

3. for a fixed ( < K^ the sequence (hi : a < A) is increasing in <j and
for every subsequence (fa : a G c) of f, c C A; which is increasing in
< the subsequence (hi : a G c) is increasing in <.

4. if a,(3 < A and /i£(a) < ^ ( a ) ; t/ien |

5- if£<(<K+ and a < X then h^ > hi

The first item follows directly from the definition of /i£. For the second
item fix a,(5 < X. If /c(o) < fp(a) then /i£(a) = min{5c(a) \ / a (a)} <
min{5f (a) \ //?(«)} = ^ . The third item followd directly from the second.
The fourth is immediate from the definitions. Finally, if £ < ( < K+ then

C S((a) for all a G A and therefore fr£(a) = min{5^(a) \ fa{o)} <

The existence of the index a^ < X is provided by the following:

Claim 16. There is some a^ < X such that

(2)

Proof of Claim. The sequence (hi : a < A) is increasing in </ by 3 above.
If the sequence h := (hi : a < A) does not stabilize modulo / , then Va <
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A37 < A [/4 ^ h^], and as h is increasing in </ there is a club E C A such

that /? G £ =» Va < /? [/£ £, /^l .
Use the fact that 5 is stationary to find S E S f) ace E.
Now find a subset c<Zcs such that between any two members of c there

is at least one point of E.
By Lemma 14 the sequence (fa : a G c) is increasing in <, and therefore,

by Fact 15.3 the sequence (h^ : a G c) is increasing in <. Because between
any two members of c there are points of E, the sequence (/&£ : a G c) is
increasing in <*/. Since / < # A / </ 5 => / ^ # for all f,g : ,4 -» On, we
conclude that (/i£ : a G c) is increasing in <L This contradicts the fact that
\Sa{o>)\ < K for all a G A: the sequence (/i£(a) : a G c) is increasing in <, and
since |5^(a)| < K stabilizes at aa < K + . Putting a = sup{aa : a G A} < K+

we ontain h^ — /i^+1 , contrary to /i£ <£/ /^+ 1 . D

Using Claim 16, fix, at a limit stage ( < K+ the ordinal a^ < A and define
0£ := /i^ . For every a^ < a < A we have, of course, g^ = /i£, so we ma}'
increase a^ at will.

Claim 17. <j£ 25 an upper bound of f and g^ <*j g^ for every £ < (\

Proof of Claim. Let a < A be given. By increasing a we may assume that
a ^ <̂C* Then fa < h^ =j h^ . Thus g^ is a lub of / .

If ^ < C then fa<: </ g^, because g^ is an upper bound and / increasing
in </ . This means that for measure 1 set of a G A we have g^(a) > / a c (a) .
Since g^(a) G S^(a), for each such a we have h^ (a) < g^(a). This establishes
that 0f </ #f for all ^ < (. Since (" is limit and g% ^ ^ + i for ^ < C, it follows
the g^ <* g% for all ^ < £. D

We prove the existence of lub by showing that the induction must stop
before K+. We just showed the inductive definition of g^ does not break at
limit C < K+ . Therefore it must break at some £ + 1 < ft+; and this means
g^ is a lub.

Claim 18. For some £ < K+ i/ie upper bound g^+± is not defined.

Proof of Claim. Suppose to the contrary that the induction goes through all
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For every limit £ < K+ we have g^ = /i£ =j h^ for all a > a^. By

regularity of A > K+ we find a (*) < A such that </f =j hf^^ for all limit

The sequence / ft£, * : ( G ace K + \ stabilizes at some ((*) 6 ace K+ by

15 5 above. Let ( > £(*) be limit. So g^ ^ g^ — g^) — contradiciton to
stabilization. •

We show next that the lub we found is an eub.

Claim 19, Let g be a lub of f. If gf </ g then g1 <j fa for some a < A.

Proof of Claim. Let Ba = {a G A : fa(a) > g!(a)}. For a < /? < A we have
Ba Qi Bp, because fa <j fp. If Ba/I does not stabilize, then there exists
a club E C A so that a < P e E => Ba ^i Bp. Fix 5 G 5 fl ace £;. Find
cofinal cC.cs with members of E between any two members of c.

Since between any two members of c there is a point of E, the sequence
(Ba : a G c) is increasing in ^ / . But by Lemma 14 the sequence (/a : a G c)
is increasing in <, which implies that {BQ : a G c) is increasing in C. Since
to increase in both C and ^ / means to increase in ^ , we cnclude that (Ba :
a G c) is a strictly increasing sequence of subsets of A of length K+ , which
contradicts \A\ < K.

We assume, then, that Ba/I stabilizes at a (*) < A. If J5a(#) G /*, then
/<*(*) >/ #', and we are done. Else, for all a > a (*)

Define, then,

g" is an upper bound of / , and, g" ^ g since #' <7 ^ and A \ Ba^) G /+.
This contradicts g being a least upper bound.

•
•

Let us discuss the role of /[A] in this proof. The obedience of / to C and
the coherence of C implies, by Lemma 14, that / is increasing in < "locally",
or on subsequences of / indexed by c$ G C. We know that if h does not
stabilize modulo / , it increases in Si on a club of A; we also know that it's
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impossible for any subsequence of h of length K+ to increase in ^ , becuse

the range of each h^ e h is in contained in f [ *S^(a).
Now since the set S G /[A] is stationary, we can "trap" an accumulation

point S of E in S and by interweaving members of c$ with members of E find
a sequence of length K+ which increases in both relations. In other words,
because the subseuences on which h increases in < are indexed by c-s that
converge to all ordinal in a stationary set, they intertwine with any potential
club on which h may increase.

The same argument is repeated in Claim 19: if the sequence of Ba does
not stabilize modulo / it increases on a club. An accumulation point of the
club is trapped in S; and a subsequence of length K+ is thus found wich
increases in both C and ^ / .

The demand of obedience can be waived in Theorem 9 if we assume that
2'A' < A (see exercise below). The pigeon-hole principle can be used to prove
the Lemma 16 and Claim 18.

A stationary set in /[A] liberates us, then, from assumptions about the
size of 2^1, provided the sequence at hand obeys a suitable C.

Where i s t h i s in the book?

Compare with Lemma 2.3 in Burke-Magidor. See also Lemma 2.1 in Jech.
The book mentions /[A] and a stationary set in /[A] as a sufficient condition
for existence of eub (§2 of chapter I), but not as a theorem of ZFC.

Exercise 1. • Prove that if \A\ = K > No, I an ideal over A and (fa :
a < A) is a sequence of ordinal frunctions on A which is increasing in
<j, then if X > 2K then f has an exact upper bound.

Hint: Define a decreasing sequence of upper bounds oflenth K+ . At limit
( < K+ prove Lemma 16 using the assumption 2K < A and the pigeon-
hole principle. Show that the induction cannot go on for K+ steps.
Prove lemma 19 above using 2K < A and the pigeon hole principle.

See also [2] for a proof using the Erdos-Rado Theorem.

5 PCF Theory

In this Section we begin the study of possible cofinalities of reduced products
of small infinite sets of regular cardinals. We shall see that the set of all
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possible cofinalities of such products is well behaved, and is related to a
sequence of ideals over the set.

Definition 20. Let (P, <) be a quasi-ordered set, that is < is a transitive
and reflexive relation over P. Write p < q for p < q A g ^ p.

1. A subset D C P is cofinal if and only if^p G P3d G D \p < d]

2. The cofinality cfP is the least cardinality of a cofinal subset D C P

3. A sequence d = (dj : i < A) of elements of P is increasing cofinal if and
only if d is increasing in < and rand is cofinal

4- P has true cofinality if and only if there is an increasing cofinal d. The
true cofinality tcfP is defined when P has true cofinality and is the
minimal length of an increasing cofinal d.

Every quasi ordered set has cofinality. The disjoint union of {un : n < to},
quasi ordered by the union of natural orderings on each u;n, has cofinality Nw

and does not have true cofinality. So the cofinality of P need not be regular,
and P may have no true cofinality. However, if tcfP exists, then tcfP = cf P
and is regular (see exercise below).

Definition 21. For a set A of regular cardinals let pcfA = {tcfY[A/I :
/ is an ideal over A and /prodS/I has true cofinality}.

The ordering </ was defined for all ordinal functions on A, and it applies
in particular for all functions in the product ]]A = {f : f is & function o n i , V a G
A [/(a) G a]}. Suppose that Y[A/I has true cofinality and fix an increasing
cofinal / = (fa : a < tcfY[A). For every ideal / ' D / over A the sequence /
is increasing cofinal in II ^ / ^ a n d therefore tcfY\A/I = tdY[A/I'. Since
every ideal over A can be extended to a dual of an ultrafilter, we have proved
the following fact:

Fact 22. pcfA = {cfY[A/D : D an ultrafilter over A}.

A product Y[ A/D where U is an ultrafilter is linearly ordered by Los'
Theorem and always has true cofinality.

We remark that for every set of regular cardinals A we have A C pcfA
via principal ultrafilters.

We begin our study of true cofinalities of products. The idea is to identify
which subsets of A are "too small" to obtain a regular A as true cofinality
modulo any ideal. This is the contents of the very important definition below:
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Definition 23. Let A C Reg and assume that \A\ < mm A. For a regular
A define J<x [A] = {B C A : B G D =» cfY[A/D < A for all ultrafilters D
over A}.

To verify that J<A is an ideal see exercise below.
Since cf Yl A/D is always regular, we have

Fact 24* If n is singular then J<tl+ = J<fJL.

The following Theorem provides information about all products modulo
ideals that extend J<A, and has several important corollaries for pcf. The
proof is a good warm-up for the next section, whre the pcf Theorem is proved
using /[/]. The following proof makes an inessential use of /[A] and Theorem
9. For a proof of it without either 9 or /[A] see [MB] or Lemma 1.5 in chapter
1 of the book.

Theorem 10. If mm A > \A\ then JJ A/J<\ is A -directed.

Proof By induction on \± < A we show that any set F C Yl A with \F\ = JJ
has an upper bound in I1^V^<A-

Let F C J|^4 be given and suppose \F\ = /i be given.

Case 1: /JL singular.
Using the induction hypothesis, assume, eithout loss of generality, that

F = (fa : a < /J) is increasing in </. Pick a cofinal sequence (/a c : ( < cf/j,).
As cf \i < //, the induction hypothesis gives a bound g G n A/J < A to

{fac • C < cftJ) which is also a bound to / .

Case 2: \i is regular and |/i n A\ < Ho. Let g(a) = sup{/(a) : / G F} for all
a > \i in A and c/(a) = 0 for a 6 A (1 /i. Since AC\ JJL finite, A n n G J<A, and
^ G f| ^ is an upper bound of F.

Case 3: \i is regular and Af)fi is infinite. Let K := |A|+. Since |yl| < mm A,
we have K+ < fi. Use Theorem 7 to find S C 5^+ stationary, 5 G /[//] . Fix
C = (ca : a < fj, A cf a < K+) that demonstrates that 5 G /[/ /] . Enumerate
F as (fa : a < JU). Using the induction hypothesis define by induction on
a < fi a sequence (ha : a < JU) satisfying

1. ha >i f(3 and /ia >/ /i^ for all /? < a

2. h = (ha : a < fi) obeys C
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This involves taking, at stage a, an upper bound ga G fj A of the set
: ft < a}l){ff3 : /3 < a} and then letting ha (a) = max ({ga (a)} U {hp (a) : /? € ca})

for all a G A \ K++ and letting ha(a) == a for a G ̂ 4 fl K+4".
Use Theorem 9 theorem to find an eub g in <j< A of h (as ordinal function).

Because ha(a) < a for all G A \ K + + G J<A, we may assume, without loss of
generality, that g (a) < a for all a G A. Let B = {a £ A : g(a) = a}.

Claim 25, B G J<A

Proo/ o/ Claim. If B £ J<\ then we can find and ultrafilter D 3 B over A so
that Df]J<\ = 0. The dual of D extends J<A and therefore h := (ha : a < JJL)
is increasing also in <£>. For every / G F let / ' be obtained from / by
replacing f\(A \ B) by the constant function 0. As B G D, f —D f. Also
f <j<x g and therefore, because g is an eub, there is some a < /i so that
/ ' <J<A ^«- As Z) extends J^A, / =o f <p ha. Thus h is increasing cofinal
in Yl A/D demonstrating that cf iQ A/D = ^ < A. By definition of J<A we
conclude that 5 G J<\. •

Now that we know B G J<A redefine g as 0 on 5 and it remains an eub
in < J<x of /i, only now belongs to J] A. By the definition of h, g is an upper
bound of F. •

We list now several corollaries of the A-directedness Theorem above.

Corollary 26. If D is an ultrafilter over A then cf]jA/D = min{A : D n

Proof. Suppose D is an ultrafilter over A and let A be the least such that
D PI J<A+ is not empty. By the definition of J<A+ we have cf fj A/D < A.

Conversely, D extends J*A because £> f) J<x+ = 0 and therefore < p
extends < j < A . Since by Theorem 10 the product JJA/J^ is A+-directed,
also the product J | A/D is A+-directed, and must therefore have cofinality
at least A. •

Corollary 27. If fi is a limit cardinal then J<jJi = UA<U *̂ <A

Proo/ Let J := UA<^ °^<A ^or s o m e limit cardinal //. The inclusion J C J<A,
is immediate by the definition of J<fi.

Conversely, suppose to the contrary that B <£ J and find an ultrafilter
D 3 B over A so that D D J = 0. Since Z) extends J<A for every A < fi,
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by Theorem 10 we have cf UA/D > A. Thus cf Y[A/D > ft and B $ J<A,.
(Observe that if fi is regular limit the equality cf J\ A/D = \i is not out of
the question.) •

Corollary 28. For every B C A there is a unique regular A such that B G
J<\+ \ J<\-

Proof. Since cf Y[A/D < | I1^I+ f°r a ^ ultrafilters D over A, for every
B C. A there is some \i, and therefore a minimal //, for which B G J<^.
By the previous Corollary such // is not limit for any B C A; so fi = \+ is
successor and B G J<A+ \ J<\. Since J</x is increasing in n, A is unique. The
cardinal A must be regular by Fact 24. •

Corollary 29. pcfA has a last element

Proof. The previous corollary provides a unique regular A for which A G
J<^+ \ J<A- Thus cf Y[A/D < A for all ultrafilters D over A, and therefore
A > suppcfA.

Conversely, let D be an ultrafilter over A so that D 0 J<\D D = 0. Such
D exists because A £ J<\. The cofinality cf Y[A/D is at least A because
D extends J<A, and by the previous paragraphs is exactly A, which means
A G pcfA

Thus A = maxpcfA. •

Corollary 30. If\A\ < minA then \pcfA\ < 2^.

Proof By 5 there is a 1-1 correspondence between pcfA and the members
of the increasing sequence of ideals (J<\ : A G pcfv4}. The length of any
increasing sequence of ideals over A is at most 2'A'. •

Let us observe the following about the operation pcf on sets of regular
cardinals. We know that A C pcf A. It is seen (exercise belos) that pcfA U
B = pcfAUpcfi?. If we knew that pcfpcM = pcL4 that this operation would
satisfy the axioms of a topological closure operation. So let us ask:

Question 31. Is pcfpcfA = pcf A for a set of regular cardinals A with min A >
\A\?

This question is answered by a "yes" in a universe of set theory without
inaccessible cardinals, as we shall see shortly. But the important issue is the
following: if there is no inaccessible in ace pcf A then pcfpcL4 = pcf A
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Theorem II . Suppose B C pcfA and \B\ < mini?. Then pcfB C pcfA.

Corollary 32. Suppose there is no inaccessible cardinal in ace pcfA. Then
PcfPcfA = pcfA

Proof of Corollary. Let Ao := sup pcfA Either Ao is not inaccessible or it
is not an accumulation point of pcfA In either case, Ai := cf |pcL4| < AQ.
Let BQ = pcfA n (Ax, Ao]. Since minJ?o > |#o| w e maY u s e Theorem 11 to
conclude that pcfj?i C pcfA.

Continue by induction to define An+i = cf \pcfA D (An + 1)| and Bn :=
pcfA fl (An+i, An]. Because the sequence (An : n < cv) is strictly decreasing,
it terminates after finitely man)' steps (namely, Bn+i = 0 and An+i = 0
for some n) and thus produces a partition of pcfA to finitely many parts
{B[ : / < n} so that pcfBi C pcL4 for all / < n. Since every ultrafilter on
pcfA concentrates on one of the i?/-s, we conclude that pcfpcM C pcfA. D

In partucular, if there are no inaccessibles in the universe then the oper-
ation of pcf satisfies the axioms of a topological closure operation.

Proof of the Theorem. Suppose B C pcL4, mini? > \B\ and fix an ideal I\
over A so that icfY\A/I\ — A for every A G B. Suppose that A(*) G pcfJ9
and that /(*) is an ideal over B so that tcffI^/^(*) = A(*).

Let / = {X C A : {A G B : X <£ Ix} G /(*)}. We show that / is an ideal
over A and tcfY[A/I = A(*).

The verification that / above is an ideal is immediate.
For every A G B fix an increasing cofinal sequence / = (/* : a < A) in

Define for every function g G \\ B a function G(g) G JJ A as follows: since
|£|+ is |i?|-directed by Theorem 10, there is a bound / G

to the set < f^ : X e B>. Let G(g) be such a bound.

Fix an increasing cofinal sequence (ga : a < A (*)) in iQ J5//(*). We argue
that for every / G J | A there is some (3 < A(*) such that / </ G(ga) for all
a G (/?, A(*)). Suppose that / G UA i s S iven- L e t F(f) e UB b e defined
by F(f)(X) = min{a < X : f <Ix /*} for A E B . This is well defined because
(/^ : a < A) is increasing cofinal in 11-^/^A for all A G B. Let )3 < A(*)
be the least for which F(f) </(*) g$. If a G (^, A(*)) then F ( / ) < / W ^a

and thus / </A /^ ( A ) for all but a set in /(*) of A G B. This means that
/ </ G(ga) by the definition of / .
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The above implies that (G(ga) : a < A(*)) is cofinal in 1 1 ^ / ^ anc* that
for some club E C A(*) the sequence (G(ga) : a E E) is increasing in </.
That establishes tcfUA/I = A(*).

Thus pcfi? C pcL4 and the proof is done. •

6 The existence of generators for pcf
In this section we will prove that for every A G pcf A, A C Reg with minA >
\A\y there is a set B\ C A that generates the ideal J<x+ from J<A, that is
J<\+ = ^<A + B\, the minimal ideal extending J<x which contains 5A. Such
B\ are called generators for pcf A The generator 5A is unique only up to
J<A, of course. The theorem asserting the existence of generators for pcf
(Theorem 12) is called the pcf Theorem.

Where is th is in the book?

The book defines in Chapter 1 a A G pcfA for which a generator exists as
normal In this terminology, we are proving that every A is normal. In [12]
the pcf Theorem is re-proved under more general assumptions.

The following Lemma has particular importance:

Lemma 33. //A G pcf A and B G J<A+ \ J<\ then tcf\[ B/J<x = A.

Proof First let us observe that if A D A is finite there is little to prove, as
J<A+ = A n A+ and J<x = i f lA, and thus J<A+ \ J<\ = {A}. So we assume
that A > |^4|++ and fix a stationary set S C S^+ in /[A] together with a
sequence C witnessing this.

Define J := J<x U{BE J<A+ \ J<\ : tcf#J<A = A}.

Claim 34, J is an ideal

Proof of Claim. Suppose that B\,B2 G J<\+\J<\ are in J and fix increasing
-I cy

cofinal sequences / , / in J] Bi/J<x, ]J B^J^ respectively to demonstrate
this. Let fa = max{/^, / J} . The sequence / is increasing in <j<x and cofinal
on B\ U B2j and this is enough for B\ U B2 G J. The cases in which one of
Bi,B2 belongs to J<x are immediate. •

If J = J<A+ then we are done. Suppose that B G J<A+ \ J and we shall
derive a contradiction.
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Fix and ultrafilter D 3 B over A so that J n D = 0. By Corollary 26
we conclude that cf \[A/D = A. Fix, then, an increasing cofinal sequence
{fa : a < A) in n^ /£>- % induction on a < A choose /ia G f ] ^ s o th-stt
{ha : a: G A) is increasing in <j<x and ha >J<X fp f° r a ^ P < a- The definition
is possible by A-directedness modulo J<A (Corollary 10). Furthermore, make
h obey C.

Let # be an eub of h so that g(a) < a for all a G A and denote Bg := {a G
A ; <j(a) = a}. Since h is increasing cofinal below g by definition of an eub,
we have that tcfY[Bg/JK\ = A, and therefore Bg G J. On the other hand,
if Bg were not in J, then A \ Bg_e D. Since g\(A \ Bg) U0\Bg eJjA we
obtain that h and consequently / are bounded in Y\ A/D — contradiction.
So Bg G D. This contradicts D n J = 0. •

A generator is a maximal set with respect to CJ<A. To find it we will
construct, in the proof of the pcf theorem below, an increasing sequence in
^ j < A . To be able to use of /[A] for the purpose of mixing ^ j < A with C, we
will use a special kind of increasing cofinal obedient sequences, which we call
humbly obedient

Definition 35. Let A G pcf A \ |^4|+++ , and let C witness that a stationary
S C S*+ is in /[A]. A sequence f = {fa : a G A) humbly obeys C if and only
if f is increasing in <j<x, f obeys C and fs = supj/^ : /3 G c$} for every
SeS.

Explanation: To obey C means that fa > supj/^ : /? G ca}. To humbly
obey means that for <5 G 5, fs = supj/^ : f3 G c<$}, namely /^ is the minimal
function allowed by obedience when 5 G S. Notice that while to obey was
defined for all sequences we reserve humble obedient for increasing sequences
in J3 A/J<\ of length A.

Humbly obedient sequences form a proper subclass of obedient sequences.
Let us show that it is not an empty subclass by showing we can find for every
increasing sequence / a humbly obedient h which bounds at least what /
bounds.

Fix now A G pcL4 \ |A|+ + + , S and C as in the definition for the rest of
this section.

Fact 36. For every sequence f = (/a : a < A) which is increasing in <j<x

there exists a humbly obedient sequence h = {ha : a < A) such that h is
increasing in <j<x and fa < ha for all a G A \ S.
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Proof. By induction on a < A define ha. For a = 5 e S define ha = ^
/? G Q } . For a G A \ 5 find, using A-direc tedness, a bound ga G n ^ °f {//? :

/? < a\\J{hp :p <a} and define /ia(a) = sup {{ga{a)} U {/<*(<*)} U {/^(a) + 1 : P G ca}).
n

Let us define now a partial ordering on the class of humbly obedient
sequences.

2 2 i o

Definition 37. / / / , / are humbly obedient, write f < f if and only if
fl < fa for all a < A.

1 2 1 2
Fact 38. / / / , / are humbly obedient then f < f if and only if f* < f%
for all a G A \ 5 .

Proof One direction follows because A \ S C A. For the other direction
suppose that f* < f% for all a G A\ 5 and fix a least S G 5 for which f} << / | .
Since for every /? G c$ we have that /^ < / | and / | = supj/^ : /? G Q } ,
/ j = sup{/^ : p G Q } , contradiction follows. D

Since every humbly obedient sequence / is in particular an increasing in
< J<x obedient sequence of ordinal functions, it has, by Theorem 9, an exact
upper bound. Choose eub gj for every humbly obedient / , such, without loss
of generality, that gj(a) < a for all a G A. Let us also denote Bj := {a G A :
gj(a) — a}. Since / is cofinal below g, we obtain that tciBj/ J<\ = A and
therefore Bj G e/<A+ \ J<A for every humbly obedient / .

We show next that every set B G J<A+ \ J<\ is equivalent mod J<A to a
I 2

Bj for some humbly eobedient / , and that if / < / then Bji CJ<A Bj^,

Lemma 39. 1. Suppose B G J<\+\J<\. Then there is a humbly obedient
f such that B =j<x Bj.

2 2

#• If f ^ / are humbly obedient sequences, then Bj Qj<x Bj2

Proof Extend the ideal J<A by the set A \ B. Thus we may ignore any
coordinalte outside of B and work in either J] A/J^ or ]J BjJ<\.

Using lemma 33 we fix an increasing cofinal seqeunce of length A in
Yl B/J<\ and replace it with a humbly obedient increasing cofinal / , which
exists by lemma 36. Let g be an eub of / and Bj = Bg = {a G A : g(a) = a}.
Since we assume that / is constantly zero outside of B, we may assume that
g is zero outside of B and therefore Bg C B.
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Let now C = B\Bg = {a G 5 : #(a) G a}. The sequence (fa\C : a < X)
is increasing cofinal in Yl C/ J<\ and therefore g\C <j<x fa for some a < X.
Since / a <j<x g we conclude that C G J<A-

Thus 5 =J<X Bg.

To prove 2, observe that since /^ < /^ for all a < A and / is cofinal

Y[B-zi/J<\, also / \Bji is cofinal in II ^ T 1 / ^ ^ ?
 an<i therefore S71 CJ<A

If a generator 5A for J<A+ over J<A does exist, then J<\+/J<\ is a boolean
algebra, namely has a maximal element B\ and is in particular ^-directed for
all K. The following lemma, which is needed to prove the pcf theorem, asserts
a particular case of directedness: that J<A+ \J<\ is | A|+-directed. It says
actually slightly more: that the relation < on humbly obedient sequences is
|>l|+-directed.

Lemma 40, Suppose that ((*) < \A\+.

1. If {/ : z < C(*)} is a set of humbly obedient sequences, then there
exists a humbly obedient sequence f so that fc, < f for all ( < £(*)•

2. If {BQ : C < C(*)} £ ^<A+ then there is a set B G J<A+ SO that

Proof. Because every B G J<A+ is equivalent to Bj for some humbly obedient

/ , and /^ < / implies J3y< CJ<A Bjr and Bj G J<A+ \ J<\ for all humbly

obedient / , it is enough to prove the first item in the lemma.

Suppose that {/ : C < C(*)} a r e humbly obedient and ((*) < \A\+. De-
fine by induction on a < A an increasing in <j< A , humbly obedient sequence
(fa : a < A) such that /£ <j<x fa for all ( < ((*), a < A. At the induction
step you need to immitate the proof of 36 above, with the only change of
taking an upper bound ga over a union of ((*) x a many functions. •

The following lemma is the key to the proof of the pcf theorem:
I 2

mma 41 . / / / < / are humbly obedient
J<A+ \ J<\ then there is a club E C A such that

I 2

Lemma 41 . / / / < / are humbly obedient sequences and B := Bji G

(3)
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Proof. The sequence / is increasing cofinal in J<A on B by the definition of
B. Thus, for every a < X there is some (3 (a) < A such that f% <j<x fa- Let
S C A b e a club closed under a i-> (3 (a) (that is, 8 e E Aa < 8 => (3(a) < 8).
Suppose that 8 G E D S. We show that f} \B =J<A ff\B. We already know
that fl > / ] .

Conversely, let C = {a G B : f} (a) < /f (a)}.
For every aG Awe have /f (a) = sup {/«(#) : OL G Q } , and therefore for

every a G C we can find an index aa G c$ such that faa(
a) > / i (a)- Such

an index must exist because /f (a) = sup{/a(a) : a G Q } > /J- (a). As
otp cs = \A\*, while \C\ < \A\ we can find 7 G nacc c$ which is greater than
aa for all a G C By coherence at 7 it follows that f^(a) > /J(a) > f}(a)
for all a G C. But because 8 £ E there is some /3 < 8 for which /^ <j< A /^.
The set C := {a G A : f*(a) < f£(a) < /}{<*>)} cannot meet C, since
a G C n c =* /2(a) < /j(a) < / | (a) < /J(a), which is absurd. A s C ' U A \ B
is measure 1, it follows that C G J<A and / | f =J<A / I \B v D

We have all the facts about humbly obedient needed to prove the pcf
Theorem. Let us devote a few words to the description of what is going on
in this proof, compared to the proof of the lub theorem (Theorem 9 above).

In the proof of the lub theorem we were able to mix the relations C,
which appears locally, and ^ / , which occurs on a club, and thus obtain a
contradiction from a sequence of lenght \A\+ of subsets of A. That proof had
a "one-dimensional" geometry.

This proof uses a similar idea, but is "two-dimensional", by which we
mean that the increasing sequence of subsets of A of length |^4|+ is indexed
by pairs of ordinals. The phenomenon that reflects on a club is not increasing
in CJ<A, but equality modulo J<\

Theorem 12. Suppose A C Reg is infinite and \A\ < min A. Then for every
X G pcf A there is a set B\ C A such that

J<\+ = J<\ + B\

Proof Since for every A G pcf A for which A n A is finite the theorem does
not say more than A + n A = Arij4U{A}, the Theorem is true for those A.

Suppose, then, that A G pcf A \ \A\++ and fix a stationary S C S*+ in
/ [A] and a sequence C witnessing this. We shall find a generator for J<A+
over J<A.

By induction on £ < \A\+ we define humbly obedient sequences / with
:= Bye so that
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Suppose that £ < \A\+ and that / and B^ := Bjt are defined for all £ < C
and satisfy the conditions above. By |A|+-directedness (Lemma 40 above)
there is a set B £ J<A+ such that B% CJ<A B for all £ < C KB generates
J<A+> we are done. Else, there is a set Br so that B ^j<x Br £ J<\+. Use
Lemma 39 to fix a humbly obedient sequence / so that B' = Bj. Now let

/f be provided by Lemma 40 so that f < f and f(< f for all £ < £. Let
2?C = 5jc and it follows that #£ ^j<x #c ^or a ^ ^ < C-

Suppose to the contrary that / and 2?{ are defined for all ( < \A\+ and

satisfy that / is increasing in < and B^ increasing in ^ j < x .
For every pair £ < £ < |A|+ there is, by Lemma 41, a club E^ C A such

that i G STl £^f =^ fs\B^ =j< A fs\B^. Since / is increasing cofinal on
\ 5f and #f fB^ \ J?̂  G I I ^C \ ^ ^ definition of i?f, there is some a < X

for which ^ f ( 5 ^ \ B^) <j<x f£. Thus, by subtracting a from J5^ we may
assume that / | fBc \ 5 ? <J<A /£ for all 5 < A and C G E.

Let JE1 = f\<c<ui+ ^ C - Since |T4|+ < A, the intersection E is a club of A.
Fix 5 E S n E. For all f < C < |-4|+ we have

=J<X fl \Bs and /f t (5 c \ ^ ) <^<, /? r(^c \ B€) (4)

Picture?????
We do the last bit of the proof twice, for no real reason other than to

emphasize the similarity to the proof of the lub theorem.
First run: For every a G yl,the sequence (/}(a) : C < |^4|+) is increasing in
< because (/^ : \z < \A\+) is increasing in <. Therefore, for every a £ A

there is a club Ca C \A\+ on which (f$(a) : C < |^4|+) is either constant or is
strictly increasing (that is, increasing in <).

Let C = f]aeA Ca. Since \A\ < |i4|+, this intersection is a club of |^l|+.
Choose £ « p in C and C = C(0 < P- Since 8 G E C J5ftP we know that

/^(a) = /^(a) for all a £ B^ but a measure zero set. On the other hand,
the set {a G B^ \ B^ : /^(a) < f^(a)} is positive. That allows us to find
a G B^ \ B^ on which both relations occur: namely /f (a) < /£(a) = fg(a).
This is impossible, though, because £,(,p £ C (ZCa and therefore f < C < P
implies that either /f(a) = f^(a) = fp

s{a) or / | (a) < fc
s(a) < fp

5{a).
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Second run: For every £ < K define X^ : < a E A : /£ (a) = / | (a ) Ĵ  for

every C < |-^| • Since (/^ : C < l-̂ l ) is increasing in <, the sequence
$£ : C < l^l+) is decreasing in C and stabilizes at some £(f). Let C C \A\+

be a club of \A\+ which is closed under £*->£(£).
If £ < C < £' < C are in C then Xu = Xc^ C XC/,f/. The first equality

is because C, C' ^ C; the second inclusion is becaus / | < / | < /^ . Thus, for
all £ < C < £' < C; in C:

On the other hand, if £ < C < ^ < C are in C then B? CJ<X X?£ by 4
and by the same also B^\B^C\ X^ =j<x 0. Hence:

c,̂  (6)
Combining 5 with 6 and denoting by £' := min{C \ (£ + 1)} we get that

the sequence (X^» : £ G C) is a strictly ioncreasing sequence of subsets of A
of length \A\+ - a contradiction. D
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