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Abstract

Let T be a first order theory, and let A > |T|+ . T is called
almost categorical in A iff there exists an expansion T\ of T (of car-
dinality < \T\ 4- Ho) such that for every M \= T\ of cardinality A
if M is |T|+-saturated then M \ L(T) is saturated.

Theorem A. Let T be a complete theory. The following are equiv-
alent:
(1) T does not have the finite cover property (f.c.p.).
(2) VA > \T\^~ T is almost categorical in A.
(3) 3A > 2'TI such that A'T' = A and T is almost categorical in \. (e.g.

Let ii > \T\ we say that the condition (*)A4,T holds iff there exists
an expansion T\ of T (of cardinality < \T\ -h Ho) such that for every
Af f= Ti if M is ^+-saturated then M \ L(T) is 2^ -saturated.

Theorem B. Suppose that there exists a cardinality fi > \T\ such
that 2^ > IJL^. For a complete theory T, the following are equivalent:
(1) T is stable.
(2) V/i > \T\ such that /x+ < 2^, (*)MfT holds.
(3) 3fi > \T\ such that ^+ < 2^ and (*)/ijT holds.

We also present a local version and discuss some related questions.



1 Introduction

This paper considers the characterization of properties of first order theories
T in a language L in terms of certain saturation properties of expansions of
models of T to a language L\. The finite cover property and stability are
each characterized in this way.

The finite cover property was introduced by Keisler in [Ke], to pro-
duce unsaturated ultrapowers. In some sense our result could be viewed
as a continuation of his study. Despite the fact that ultraproducts are not
mentioned in the statement of Theorem A, they do play a central role in its
proof. The finite cover property was studied extensively by Shelah in [Sh 10]
and [Sh c] (mainly in §4 of Chapter II). The construction of the theories T\
here uses technology developed by Shelah, mainly in Chapter VI and §4 of
Chapter II. The other direction of the proof relies on the following theorem
of Keisler:

Theorem 6.1.8 ( of [CK]) If D is an Hi-incomplete good ultrafilter
on I then M1/D is |/|+-saturated.

Our notation generally follows [Sh c] with a few minor exceptions:
\T\ is the number of symbols in |L(T)| plus No- We do not distinguish
between finite sequences and elements, i.e. we write a G A to represent that
the elements of the finite sequence a are from the set A. References of the
form IV x.y are to [Sh c].

There are several equivalent formulations of the finite cover property,
we prefer to state the one that looks like a strengthening of the compactness
theorem.

Definition 1.1 T does not have the finite cover property iff for every <j)(x; y) G
L(T) there exists k := k{<f>) < u such that for every set of parameters A and
every p C {<f)(x;a)y -i0(jc;a)|a € A} we have that the following implication
holds

Q p[\q\ < k => q is consistent ] then p is consistent

Fact 1.2 Let T be a complete first order theory.

1. (Theorem II 4.2(1)) IfT is stable then T does not have the f.c.p.

2. (Theorem II 4.4) Suppose T is stable, the following are equivalent:



(a) T does not have the fc.p.

(b) There exists a formula <f>{x\ y; z) e L(T) and there exists
{an : n < UJ] such that for every a, </>(#; y; a) is an equivalence
relation and for every n <UJ we have that

n<

Definition 1.3 Let M be an L-structure, A ^finite L and A > \L\.

1. M is (A, X)-saturated iff for every A C M of cardinality less than A,
every p G S A ( A M) is realized in M.

2. M is \-locally saturated iff for each A Cfinite L, M is (A, \)-saturated.

The following easy consequence of the definition of the finite cover
property will be used:

Fact 1.4 Let T be a complete first order theory without the fc.p. IfM\=T
is a locally saturated model then for every A C.finHe L(T) there exists an
integer k& such that if I C M is a set of A-indiscernibles of cardinality at
least &A then there exists J C M a set of A-indiscernibles extending I of
cardinality \\M\\.

The major new concept of this paper is 'almost categoricity'.

Definition 1.5 Let T be a first order theory, and let A > \T\+. T is called
almost categorical in A iff there exists an expansion T\ ofT (of cardinality
< \T\ + No) such that for every M \= Tx of cardinality A, if M is \T\+-
saturated then M \ L(T) is saturated.

In the second section we prove Theorem A; in the third section we
discuss some related issues and generalizations. Theorem B is proved in the
fourth section; we present a local version and some other formulations in
the fifth section.



2 Proof of Theorem A

Theorem A. Let T be a complete theory. The following are equivalent:
(1) T does not have the finite cover property (f-c.p.).
(2) VA > |T|+ T is almost categorical in X.
(3) 3A > 2 | r | such that A'T| = A and T is almost categorical in X. (e.g.

Since it is obvious that (2) =» (3), we need only to prove that (1) =>
(2), and that (3) => (1). This is carried out in the following two subsections:

2.1 Proof of (1) => (2):

Let T be a theory without the f.c.p.. By Fact 1.2(1) we know that T is
stable. Let A > |T| be given, in order to show that T is almost categorical
in A it suffices to find an expansion T\ of T as in the definition of almost
categoricity.

Let L\ := L(T){J{F} when F is a binary function symbol. The
theory T\ consists of T and the following axioms:

1. For each a:, the function F(x, •) is injective.

2. For every finite A C L(T), let k& be the integer from Fact 1.4, if /
is a finite set of A-indiscernibles of cardinality at least h& then there
exists an xi such that

(a) the range of F(xi, •) contains /, and

(b) the range of F(xi, •) is a set of A-indiscernibles.

It should be clear that the above axioms can be formulated in first order
logic in the similarity type L\.

Claim 2.1 The theory T\ is consistent

Proof: By stability of T, T has a saturated model M of cardinality 2 |T |.
By the compactness theorem it is enough to show that every T* Cfinite T\



has a model Let A ^finite L(T) be large enough to contain all the L(T)-
formulas appearing in T*. We will show that M can be expanded to a model
ofT*.

Fix a bijection G : S<^{Frra{L{T)) x S<NO( |M|) -> |M|.
Let / ^finite M be an arbitrary finite set of A-indiscernibles. By Fact 1.4 if
/ is a finite set of A-indiscernibles of cardinality at least k& then there exists
J C M o f cardinality ||M|| which is a set of A-indiscernibles extending / .
Let a/ := G(A, J), and pick a bijection FM(aIr) : |M| -> J. Verify that

Now suppose that N* \= T\ is a |T|+-saturated model of cardinality
A, let N be the reduct of N* to L(T). It is enough to show that for every
A C N of cardinality less than A and every 1-type p over the set A, p is
realized in N. Using the stability of T there exists p* € S(|iV|) which is
a non forking extension of p (over the set A). There exists B C N such
that p* is the unique nonforking extension (over B) of the type p* f B, and

Using the |T|+-saturation (in fact we are using are using only K(T)-
saturation) of N choose by induction on n < u) a sequence {bn : n < u} C
M such that for every n < u; the type:
£p(6n, i? IJ{^ : k < n}) is the nonforking extension of p* \ B. Note that by
the uniqueness of nonforking extensions (of the type p* \ B) we have that
I:~ {bn : n < u} is a set of indiscernibles.

Claim 2-2 In order to find a realization of the type p in the model N it
is enough to find J with I C J C TV of cardinality A which is a set of
indiscernibles over the empty set

Proof: Since N is |T|+-saturated, in particular it is («(T) +&i)-saturated.
Since our hypothesis is that dim(I, N) — dim(Jy N) = A. We are done by
applying the argument in the proof of Lemma III 3.10(1). •

In order to finish this stage we need to verify that the hypothesis of
the previous Claim holds (this is where the expansion T\ is used), namely
it suffices to prove:



Claim 2.3 For every infinite set I := {bn : n < UJ} C N of indiscernibles,
there exists a set of indiscernibles J C N of cardinality A extending I.

Proof: Let us consider the following set of formulas:
q(x) := {3y[bn = F{x,y)\ :n<u}\J
{[" the range of F(x> •) is a set of A-indiscernibles"] : A Cfinite L(T)}.

Note that since in the second half of the definition of q(x) we limit
attention to finite A, q{x) is a set of first order formulas in L(T{). Since the
model N has cardinality A, from the axioms of T\ it is clear that if a £ N
realizes the type q{x) then J := {F(ayb) : b € N} is as required.

Since N* is |T|+-saturated, in particular it is Ki-saturated. To show
that q(x) is realized in N* it is sufficient to show that q(x) is consistent.
This is done by verifying that every finite q* C q(x) is realized in N*. Let
q* Qfinite q(%) be given. Let A be a finite subset of L(T) such that all the
L(T)-formulas from q* appear in A. Let m < u be sufficiently large so that
all the elements of / appearing in q* are among {60,..., &m-i}> and m>k&.

It is enough to show that the following is true:

N* h M f\ 3y[bn - F{x, y)] A 3y0 • • • 3j/m-i[/\ Vi £ Vj A
n<m i<j

"{F(x,yo),..., F(x,ym_i)}is a set of A-indiscernibles"]].

Since the last sentence is an instance of an axiom of T\, by the assumption
that m > &A there exists an element a G N* satisfying the above. •

2.2 Proof of ( 3 ) ^ ( 1 ) :

Let A > 2'T' be such that A — \\T\ and T is almost categorical in A; suppose
that TiDT witnesses almost categoricity of T.

Claim 2.4 The theory T is stable.

Proof: Suppose T is unstable. Since A = A|T| > 2'rl, by Theorem VIII 3.2
there are {M} \= T\ : i < 2A} such that for every i < 2A \\Ml\\ = A, and



Ml is |T|+-saturated, but % £ j =* M] \ L(T) ¥ M) \ L(T). Namely, at
most one of the models M} \ L(T) can be saturated, this is a contradiction
to the hypothesis of almost categoricity.

For the sake of contradiction suppose that T does have the f.c.p.
By the previous claim, we have established that T is stable. We can apply
Fact 1.2(2). Fix (f){x\y\z) e L(T) and {an : n < u) such that for every a,
(f)(x; y; a) is an equivalence relation, and for every n < u we have

Let M \= T\ be a model of cardinality A containing the set
{an : n < UJ}. We use M to construct another model M* of T\ also of
cardinality A such that M* is |T|+-saturated but its reduct to L(T) is not
even (2lTl)+-saturated (recall that ||M|| = A > 2lTl). Let / := |T|, by
Kunen's theorem (see [Ku], or Theorem 6.1.4 in [CK]) there exists an Ki-
incomplete good ultrafilter D on / . Define M* := M1 /D. By Theorem 6.1.8
(of [CK]) the model M* is |T|+-saturated. The cardinality of M* is A, since
A = ||M|| < ||Af*|| < ||M||ITI - Alrl - A.

Since T is stable, applying Fact 1.2 ii), there is a formula c/)(x;y;z)
such that for each a e No, <p(x\y;a) defines an equivalence relation and for
arbitrarily large n, there exists an such that <f)(x; y; an) has n equivalence
classes. We define below a sequence a = (a[i\ : i < r) of elements of M
such that each a[i] is one of the an and, using tti-incompleteness, there is
no n < UJ such that {% : a[i] — an} is in D. Let a also denote the element it
determines in M*. Then, as we show in detail below, <fr(x;y;a) has infinitely
many equivalence classes. Clearly, <fi(x;y;a) has at most 2T equivalence
classes and so (since |M*| > 2r), M* \ L is not (2r)+-saturated. Here are
the details.

For every N \= T, and every a e N denote by ecn(ay N) the cardinal-
ity of \N/(/)(x; y; a)|, i.e. it is the number of equivalence classes determined by
the equivalence relation (f)(x;y; a) in N. In order to show that M* \ L(T) is
not (2lT')+-saturated it is enough to show that there exists a e M* such that
^o < ecn(a,M*) < 2lTl. [[Why? Suppose that {h : i < a < 2^} C M*
is a complete set of representatives of the equivalence relation 0(x;y;a).
Namely we have i ^ j => M* \= -i0[6i,67,a] and for every b e M* there
exists i < a such that M* |= <j>[b,b%,a]. We just established that the type
p(x) := {-^(j)(x,bi,a) : i < a} is omitted by Af*. (Note that a needs to be
infinite for p(x) to be consistent.)]]



Since D is tti-incomplete, fix {In : n < cv} C D such that for every
n < UJ we have that In + i C /n , and f]n<UJ In — 0-

Define a : I -* |M|. Given i e / let

an if n = max{rn G w : i € /m}
a0 i f i € / - / o -

Note that by the assumption on {In : n < a;}, a is well defined. Let n^ :=
ecn(a[(], M). Since <̂ (x; y, a) is an equivalence relation, by the definition of
the ultraproduct M* we have:

ecn(a,M*) < JJ ecn(a[(],M) = f j nc <

To finish that, it is enough to show that ecn(a, M*) is infinite. Sup-
pose to the contrary k < UJ satisfies k = ecn(a, M*). Namely

Af* |=

By the definition of M* we have that the set

is in J9. Denote by J^ the intersection of the last set with /&. Clearly J& G D.
By the definition of a[£], it is â  for some I > k (when ( G Ik)- Pick any
C G Jfc- By the above we have shown that k — ecn(a[(], M) — ecn(aiy M) >
I > k. This is a contradiction . •

3 Extensions and Limitations to Theorem A

We first note a peculiarity caused by the implication in the definition of
almost categorical. In essence, this remark means that almost categoricity
in A is interesting only for A which satisfy Alrl = A.

Lemma 3-1 Let T be a complete first order theory. If\T\ < A < A'TI? then
T is almost categorical in A.



Proof: There is an expansion Ti of T with |Ti | = |T| such that
every |T|+-saturated model of Ti with cardinality at least A has cardinality
at least AlTl Thus T is vacuously almost categorical in power A. To find
7i, add to T a binary function and let 7\ assert that for every pair of finite
sets / , J of the same cardinality there is an XJJ such that F(xjyj, •) maps /
one-one onto J. Now if Ni f= T\, for each pair 6, c of injections from \T\ into
N\ there is a type <#>,c(#) asserting that F(xt-) maps the range of b one-one
onto the range of c. If N\ is |T|+-saturated, for each 6, c we can choose a^c

in JVi to realize <fc>c. Fix a particular 6o- Then the collection of a^c as c
ranges through injections of \T\ into N\ is a subset of N\ with cardinality

PI

The proof of Theorem A yields somewhat more than is asserted by
the definition of almost categoricity in A. The theory T\ which is found in
the implication i) implies ii) does not depend on A.

The notion of almost categoricity in A concerns three cardinal num-
bers: A, |Ti|, and n - the amount of saturation required. We examine the
effect of varying each of these.

It is natural to ask whether in the definition of almost categoricity,
the requirement of |T|+-saturation could be weakened. Careful examination
of the proof shows that in the choice of the sequence of the hi, K(T) saturation
is needed while the choice of the parameter a requires Hi-saturation. So we
could replace |T|+-saturation by n(T) + tti-saturation. This observation
yields the following result.

Theorem 3.2 Suppose that T is superstable. The following are equivalent

1. T does not have the f.c.p.

2. There exists an expansion T\ of T by a single function symbol such
that for every #i-saturated model M \= T\, the model M \ L(T) is
saturated.

Since we used only one additional function symbol in Theorem A, the
key point in Theorem 3.2 is the restriction to Ni. But further improvement is
not possible in general. Indeed, Theorem VIII.3.5 shows that for a countable

10



stable but not superstable theory T and any extension T\ of T, there are
many Ko-saturated models in power A > Hi whose reducts are not saturated.

The requirement that |Ti| = \T\ is made solely to simplify notation.
Clearly the direction (1) implies (2) is just made easier if the cardinality of
T\ is allowed to increase. (2) implies (3) is completely unaffected and we
showed in Theorem 2.2 that (3) implies (1) holds with no bound on |Ti|.

The methods used here are similar to those of E. Casanovas [Ca].
He defines a model to be expandable if every consistent expansion of Th(M)
with at most \M\ additional symbols can be realized as an expansion of M.
His results are orthogonal to those here. He shows for countable stable T
that T has an expandable model which is not saturated of cardinality greater
than the continuum if and only if T is not superstable or T has the finite
cover property.

4 Proof of Theorem B

We introduce the following technical notation.

Definition 4.1 Let /i > \T\; we say that the condition (*)JI,T holds iff there
exists an expansion T\ ofT (of cardinality < \T\ + Ho) such that for every
M\=Ti ifMis fi* -saturated then M \ L(T) is 2^ -saturated.

Theorem B. Suppose that there exists a cardinal fi > \T\ such that
2M > /i+ . For a complete theory T, the following are equivalent:
(1) T is stable.
(2) Mfi > \T\ such that fi+ < 2**, (*)M,T holds.
(3) 3/i > \T\ such that /x+ < 2^ and (*)^T holds.

Since it is obvious that (2) =» (3), we need only to prove that (1) =>
(2), and that (3) => (1). This is carried out in the following two subsections:

4.1 Proof of (1)=*(2):

Proof: Suppose T is a stable theory, and let /i > \T\ be such that [i+ < 2**.
It suffices to find an expansion T\ of T as in the definition of (*)^,T-

11



Add one additional binary predicate E{x,y) and axioms asserting
that E codes all finite sets. (I.e. for every set of k elements Xi there is a
unique y such that E(zy y) if and only if z is one of the #*.) For any model
Mi of Ti and any element b of Mi, let [b] := {a e Mx : Mx (= £?[a, 6]}.

Now let Mi be a /^-saturated model of T\ and M the reduct of Mi
to L. Suppose ACM has cardinality less than 2^ and p € S1(A). We must
show p is realized in M. By the definition of ft(T) there exists 5 C A of
cardinality less than K(T) such that p does not fork over B. Let p e 5(M)
be an extension of p that does not fork over B. Since /x+ > |T| > «(T)
by //^-saturation of M there exists / := {an : n < u} C M such that
an |= P t (B U {a^ : k < n}). We now define a Ti-type ^ over / so that if b
realizes q, [b] is a set of indiscernibles equivalent to / :
q(x) := {3y0 • • • 3yn_i[ /\ yi ^ Vj A /\ E(yh x)\n < u} U

{Vj/o • • • Vjfa_i[[ A yatyjA h E(yi, x) - .
i<j<n i<n

{yo,..., 2/n-i> oo> • • • > a n - i } is a set of 0-indiscernibles | n < a;, </> e

Since the relation £" codes finite sets, and / is a set of indiscernibles
q is a Ti-type. By the &i-saturation of Mi there exists b e M realizing
the type q. If [b] has 2^ elements we are finished since for each formula
</>(#, y) and each a e A with </>(x>a) € p, only finitely many elements of [b]
satisfy -></>(#, a). To show [b] is big enough define types qo for a € 2<AX. For
<J, r G 2</z we denote V is an initial segment of aJ by a<r. The requirements
are: If ca (cr) realizes ga (gr):

1- [Co] C [6]

2. [c<j] is a nonempty set of indiscernibles realizing the same types over
the empty set as / .

3. a < r implies [ca] 2 [cT]-

4. If a and r are incomparable [ca] D [cT] — 0.

Now for s € 2^ let X , = n a < s [c a ] . Each X s is nonempty by //+-
saturation; they are disjoint by construction. But any member of {Jse2ln Xs

is in [b] so we finish. ^4 2-

12



4.2 Proof of (3)=* (1):

For the amusement of the reader we will present two different arguments.
The first is short, but depends on "heavy artillery"-namely Theorem VIII
3.2; the second argument is much more elementary. Note that the first
argument could be adapted to deduce (3) implies (1) in Theorem A.

First Proof: For the sake of contradiction suppose T is an unstable
theory and that there exists [i > \T\ such that /i+ < 2M and there is a
T\ D T such that for every model M of T\ which is /i+-saturated its reduct
to L(T) must be 2^-saturated. By the instability of T, since (2^)<^+ = 2^ >
/i+ > \T\. We can apply Theorem VIII 3.2 to get {Ml |= Ti : i < 2<2">} all
/x+-saturated of cardinality 2**, such that i^j^M} \ L(T) ¥ Mj \ L(T).
However by (*)/X,T, for every i, the model M/ \ L(T) is 2^-saturated.

Second Proof: For the sake of contradiction suppose T is an unstable
theory and that there exists [i > \T\ such that //+ < 2M and there is a
T\ D T such that if M is a ^+-saturated model of T\ its reduct to L(T) is
2^-saturated.

Fix Mo which is a /x+-saturated model of T\. To ease notation, we
will use a, b to denote fc-tuples in this argument and write < for the 2fc-ary
formula which witnesses the order property in T. Thus, without loss of
generality we may assume that < defines a dense linear order on a subset
of Mo. Let K denote fi+. Now define by induction a sequence < Mi,a^bi>
for i < K such that:

1. The M{ are a continuous increasing chain of ^-saturated models.

2. cLi^bi e Mi+i - M i .

3. di < ai+i < &i+i < h.

4. [oi+ i ,k+ i]nMi = 0.

The only difficult part of the construction is to guarantee clause 4)
but this is done by choosing a*, 6; to realize the same <-cut in M;. Now, let
M be the union of the M». Since K is regular, M is ^-saturated. But, M is
not even /^-saturated since the type

p — {di < x < bi : i < K}>

13



is consistent but not realized. (If it were realized it would be realized in
some Mi but this would contradict clause 4.)

5 A local characterization

Since Fact 1.4 depends only on local saturation rather than saturation, we
can get a local version of Theorem A. We also characterize stability in terms
of the spectrum of locally saturated models.

Theorem 5-1 Let T be a complete first order theory. IfT is stable then for
every /J, > \T\ there exists a locally saturated model of cardinality IJL.

Proof: Let \M\ — A > |T|. For a given set X of stationary types
over a subset of M define a new model Mf(X) as follows. For each finite
A and each definition of a A-type over M fix a complete type p in S(M)
with that definition for p \ A. Let Mr(X) realize the nonforking extension
to M of each type in X and each of the types over M just specified. Using
Theorem 1.2.2 (if T is stable then for every finite A | S A ( M )| < ||M|| = A)
there exists M\X) as above of cardinality A.

Now define Mi for i < A by induction. Mo = M; each Mi+i is
where X is the set of types fixed in constructing Mi. Take unions at

limits. Note that M\ has cardinality A. Now, we claim that M\ is locally
saturated. For, let Abe a subset of M with \A\ < A, A an arbitrary finite set
of formulas and p € 5A(A). Let p e S(M\) be a nonforking extension of p.
The p t A is defined over some M» for i < X and so some type q e S(M) with
q r A = p \ A f M is chosen at stage i. Thus a sequence of A indiscernibles
realizing q has been chosen in M\. Since T is stable each formula in p is
satisfied by all but finitely many of members of this sequence, so one of these
points must realize p. 5̂.1

Corollary 5-2 ^Assume that 3K 2* > (2<K)+ > \T\.) For a complete
theory T the following are equivalent:

1. T is stable.

14



2. for every JJL > \T\ and every A such that \A\ < ^ T has a locally
saturated model M D A of cardinality /JL.

3. For some JJL satisfying 2K > fi > 2<K, for every A of cardinality less or
equal to /JL there exists a locally saturated model M D A of cardinality
\A\.

Remark 5.3 The following particular case may clarify the last statement:

Assuming that the continuum hypothesis is false then we have shown
that for T countable: T has a locally saturated model of cardinality tti iff
T is stable (just substitute K — No in part 3.).

Proof: (1)=^(2): In the previous proof start with Mo 3 A.
(2)=»(3): Trivial.
-•(l)=>-i(3): Since T is unstable, by Theorem II 2.13(3) there exists an
unstable formula <t>{x\y). By Theorem II 2.2(5) there exists A :— {av :
T) eK> 2} s.t. for every rj eK 2, the type pv := {^(xja^)17^!/? < «} is
consistent. Since \A\ — 2<K < \i, if there exists a locally saturated model
M D A of cardinality /i all the types in S<f>(A) should be realized in M. But
since

we have a contradiction.

Definition 5.4 Let T be a first order theory, and let A > \T\. We say that
T is almost locally categorical in X iff there exists an expansion T\ ofT (of
cardinality < \T\ + ^o^ such that for every M \= T\ of cardinality A if M is
\T\+-local saturated then M \ L(T) is \4ocally saturated.

Now slightly varying our earlier arguments we have the following.

Theorem 5.5 Let T be a complete theory. The following conditions are
equivalent:

1. T does not have the finite cover property (fc.p.).

2. VA > \T\+ T is almost categorical in X.
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3. 3A > 2lTl such that A'TI = A and T is almost categorical in X.

1±. VA > |X|+ T is almost locally categorical in A.

5. 3A > 2lTl such that X^ — X and T is almost locally categorical in X.
(e.g. A = (2™)+).

The following notation enables us to show the connection of the two
main results.

Definition 5.6 The property PT{H>, «) holds if there is an expansion T\ of
the theory T such that if M is a [i-saturated model of T\, M f L(T) is
K-saturated.

Now we can restate Theorems A and B as

Theorem 5.7 1. T does not have the f.c.p. if and only if
(VA > \T\)PT{\T\+, A) iffBX > 2lTl Alrl - A & PT(\T\+, A).

2. Assume: 3K 2K > (2<K)+ > \T\. T is stable if and only if

16
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