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Let us consider the behavior as (x,i) —* (0,0) of solution of

u+ = uxx, 0 < x < a, t > 0, (1)

under the initial and boundary conditions

u(x1Q) = f(x), u(0,t)=<p(t),u(a,Q) = *{t),a>0. (2)

Our solution uses the error function in the form

v(x,t) = -$= e-^dd. (3)
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We shall show that, if the data is continuous, but not necessarily matching
at the corners, then as x \ 0, t \ 0,

u(x,t) = v(x,t)f(0) + {l-v(x,t))<p(0) + o(l). (4)

In particular, if / (0) = <p (0), then u is continuous at (x, t) = (0,0). More-
over, these results are true whether a is finite or infinite.

Let us prove this for the case a = +oo. Then, as (x,i) —• (0,0), for any

(5)
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The trick now is to change variables so that each of the three integrands is
the same, say e~9 . Then we have

u(x,t) = i-U. / e-
a dd- /

(6)

After noting that the contributions of the first two integrands from the in-
terval (x/2t1/L, (A — x) 21/2) cancel, we see that the result (4) follows.

In this case a < oo, we use the representation in terms of the Jacobi's
Theta Function, #3, see Fulks [2], Hartman and Wintner [3] and Goursat [5],
and Friedman [9].

Note that the contribution from the infinite series for k > 1 and from the
right boundary integral tend to zero uniformly. This leaves the expression
(5).

Moreover, since v{x,t) satisfies the Heat Equations, we may solve the
problem numerically for continuous data and then add on the easily compat-
ible function u. Dr. Myron Sussman has informed me that he has found the
solvability of continuous boundary value problems more stable.
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