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1. Introduction,

It is the purpose of this paper to generalize the Runge-Kutta Method to Poly-
nomial Approximations of Arbitrary Order. The essential tools that we use are
composition of Lagrange Interpolation Formulas and the Inverse of the Vander-
monde Matrix in the form (2.23).

We might term our method "Nonlinear Gaussian Quadratures" for it gives the
same 2nth order accuracy as the zeros of the nth Legendre Polynomial. We re-
place the orthogonality of the Legendre Polynomials by an admissibility condition
applied to the mesh points z/i,..., i/n. When V\ > 0 we adjoin the root VQ = 0 and
consider the polynomials Pk (t) = t (t — V\),..., (t — i/k) for each k < n — 1. These
must satisfy the condition that 7*, defined by 10.14, be non-vanishing for each
mesh point x = i/j, j = 1, ...,fc + 1 and for each k = 1, ...,n — 1. That this need
not be satisfied at x = 0 follows from the fact that /?*, defined by 11.7 has the
limit — 1 as x —» 0.

We confine our attention to the case of a single first order non-autonomous
ordinary differential equation. Once the formulas have been obtained, they extend
immediately to systems, so the assumption that the equation be non-autonomous
is not essential.

For approximation of even order 2n using the non-linear version of Gaussion
Quadratures, the number of computations of / required is p (p + 3) /2 + 2. This



uses the zeros of an admissable mesh of n = p + 1 points. The complexity agrees
with that of Butcher, p = 2 and Curtis, p = 3. It is one less that obtained by
Hairer, p — 4.

The method is based on the fact that when adding up two or more numbers
we can tolerate errors in the individual terms of the sum as long as they cancel.
This fact is used to minimize the number of computations of / .

In Section 2, we introduce some notations regarding Lagrange Interpolation
Polynomials. In Section 3, we show that in a Taylor Expansion of order 2p we
may replace the coefficients of order greater than p by multiplies and retain the
magnitude of the error by imposing a linear constraint. In Section 4, we change
coordinates so that the constraint is given in terms of f (x^y) evaluated at the
mesh points. In Section 5, we show how the general solution of this system can
be obtained from a particular solution. Section 6 is devoted to showing that the
system has maximal rank. Section 7 obtains an identity which is used to simplify
the forward elimination. It turns out that this system can be arranged in blocks
with the right sides depending on variables already solved for. In Section 8, we
apply forward elimination to these blocks and at the same time uncouple the
systems so that each depends on only its own variables. In Section 9, we show
that diagonal back substitution can be used to obtain a closed form solution of
the system.

We prepare for the use of Lagrange Interpolation by polynomials with double
roots in Section 10. In Section 11, we show that the results of Section 10 can be
used as stated for linear differential equations or numerical integration. We then
go on to show how to apply them to nonlinear equations.

Section 12 is devoted to modifying the averaging technique so that it may be
applied to the perturbation errors of the constructable Runge, Kutta, Butcher
Approximation and Section 13 is devoted to explaining the algorithm. In Section
14, we determine the form of the perturbation errors and, in Section 15, we explain
how to deform the constructable approximation into the theoretical solution, then
showing that they have the same error.



 



2. Taylor Polynomials, Lagrange Interpolation Polynomials
and the Vandermonde Matrix Applied to Numerical In-
tegration.

Let / <E Cn + 1 so that

(2.1) /(k)=E/^ +
£=0

in a neighborhood of h = 0. Let us choose points

(2.2) 0 = I4> < i/i < ... < i/n < 1 = i /n + i .

The point i/n+i is unnecessary when un = 1, but it allows us to consider the
classical Simpson approximation and Gaussion Quadrature as special cases of the
same theory.

(2.3) J2 u{ (fjW) = / fab) + O (h^1) , » = 0, ...,n.
i=o

This is a linear system in the variables

(2.4) jjh\ j = Q,...,n

whose matrix is the Vandermonde matrix

(2.5) (vtf, 0<i,j<n.

If we multiply (2.3) by its inverse

(2.6) W?ti, Q = £, i<n

and sum we obtain

(2.7) ftf =J2 WU (vih) + O
3=0

Then by putting (2.7) into (2.1), we have

(2.8) J
j=o



where

(2-9) Cj = £ W%.
e=o

This reduces the problem of approximating the Taylor Polynomial of / in a neigh-
borhood of zero to evaluation of / at n + 1 points. Of course, the big O constant
depends on the choice of the set of points.

We shall be working with consecutive subsets of the list (2.2). This leads to
the arrays
(2.10) v{, q<i<r, 0<j<r-q

which may be regarded as a matrix whose rows and columns have different index
sets. For the purpose of determining its inverse we introduce the polynomials

(2.11) f«(x)=f[ (*-";).

the divided differences

(2.12) p^{x) = ^ ± q<k<r,

and the corresponding Lagrange interpolation polynomials

(2.13) p-(,) = JpM q<k<r.

The inverse of (2.10) is then

for 0 < j < r — q and q < k < r.
At times we suppress the second superscript when it is zero.
We shall now apply the above material to the approximation of

(2.15) / f(x)dx= / f(x)dx
Jo Jo

using the values of / at the points

(2.16) i/ih, q<i<r, with ^ defined by (2.2).



Then, we have for / G Cn + 1

(2.17) / (*) =J2 f {Vkh) P? (x) + O (hr

k=q

It follows that if we define

(2.18) an
t«

we have

(2.19) j f / (x) dx = h J 2 a%f (ukh) = 0 ( h < - )

for each £ = 0,..., n + 1 . The generalization of the classical Simpson approximation
corresponds to even n — 2p, q — 0, r = 2p, f G Cn+2 and the i/'s satisfy the
symmetry condition

(2.20) v2p-j = Vj, 3 ^ 0,..., 2p, i/2p_! - 1.

We then obtain an extra order of magnitude in the error

(2.21) I" f (x) dx =£ a^J (ukh) + O (hn-*+3)
J0 k=0

The Gaussian Quadratures correspond t o n = p + l , 5 = 1 and the ^ ' s
being the zeros of the Legendine Polynomials translated to the interval [0,1] . The
orthogonality then gives the same error as above with half the number of mesh
points. We also obtain extra stability from the fact that the coefficients A^1}k

are positive. By contrast, the Uniform Mesh Simpson Formulas begins to develop
negative coefficients at n = 8.

The coefficient a^k are homogeneous of degree zero in k. We may, therefore,
assume that h = 1 and use (2.12), (2.14) to deduce that

r-q k+l

(2.22) ar« =T W^-P-—

for j = 0,...,n £ = 0,...,n + l.
We shall make frequent use of the fact that

(2.23) g Wl« („,)'• = VT« iyt)

for any £} 0 < I < n and of course that )

(2.24) VI* fa) = 6ktt, q<k, £ < r.



3. The Generalized Runge-Kutta System.

Let us approximate solutions of the first order ordinary differential initial value
problem
(3-1) y' = f(x,y), y(0) = b

by applying numerical integration to its integral representation

(3.2) y(h)=b+ f'lf(t,y(t))dt.
Jo

In order to cover both cases of generalized Simpson Approximations and Gaus-
sian Quadratures, let us consider the approximation, with q having a different
significance than in Section 2.

m

(3.3) y(h) = b + h^2 ajf (U3hiy{vi
j=o

+O
where
(3-4) p = [(<

the greatest integer in (q + 1) /2.
Then we may obtain a usable numerical scheme by using the Taylor approxi-

mation
9+1

(3.5) y (h) =J2
i=0

and substituting

(3.6) yivity^yifahy + Q

Since it is
(3.7) v (h) = y'(h) = f(h,y(h))

that is most easily computed, we use the integrated form of

(3.8) v (h) =



and replace (3.4), (3.5) by

z=0 * ^ x

and hence,

(3.10) y (ujh) = b + hJ2 ~^~ ("i)i+1 ^

Then, if we approximate (3.10) by

Q

(3.11) wj (ft) - b + ft Y, XJ,iyihi

i=0

where Wj agrees with y {y, ft) to p terms in its Taylor Expansion, that is

(3.12) A^ = - ^ p 0 < i < p - l ,

we find that

- f ("A y fa
(3.13) = fy (^ft, y (isjh)) (Wj (ft) - y fa

Hence, by using (3.12) and (3.13) in (3.3), we have

m

(3.14) y (ft) = b + ft £ ajf fah, wj (ft))
i=o

+E + O (ft9+3)

where
rn

(3.15) E = -fca £ a,/, (i/^, y (!/,-/»)) K- (A) - 2/ (^/i)].
3=1

The error O (hq+3) can therefore be preserved by imposing the constraint E
O (hq+3). To this end we expand

(3.16) fy(h,y(h))=Y]bkh
k + O



It follows that

m q-p q f ; i+1 \

E = -h*Y, «i E 6* E ^ - ^ r r ^A<+*-
i=i k=o i=P \ l^~ lJ

Hence, the error O (/i2g+3) is preserved if we impose the linear constraints

m r / \i+ii

(3.18) ^ ^ ^ j

for
(3.19) P<i<q, 0<k<q-p

or equivalently
(3.20) 0<k <q-i, p<i<q.

The number of constraints is therefore

(3.2!) g (, + 1 - p - k) - 2

Then, the number of unknowns is

(3.22) m(q + l-p)

and the number of unknowns exceed the number of equations by

(3.23) (q + 1 - p) (27n+p- q - 2).

4. A Change of Variables in the Generalized Runge-Kutta
System.

Since it is v (h) — f (h,y (h)) that is most easily computed, we now express

(4.1) LJ

By substituting the power series of v into (4.1) and equating coefficients with
(3.10), we find that

(4.2) AA* X >

8



Our task now is to express the Generalized Runge-Kutta System using the <£>'s
instead of the A's. It turns out that we can use

(4.3) (pjfii i=p,...,q, j = l , . . . , m

as the independent variables. Note that this is the same index set as we used for
the A's. In order to eliminate the variables <Pj/,£, < p we note that for k < q

(4.4) \iJk = ̂ — = P xkdx.

We now put (3.4) with k < p into (3.2) split the sum on the right at p and
multiply by the inverse Vandermonde matrix W^1 and sum to obtain

(4.5) <pjtt - £ VI'-1 (x) dx- ,-) <pjti
t=p

for £ = 0,...,p — 1, j = 0,...,rn. After expressing the polynomials Vf X (x) in
terms of the Lagrange interpolation formula for the polynomial Pq (x) we obtain
from (3.5)

(4.6) <piA = A l + J2 V r 1 (vj) [A% - <pj9i]
i=p

foiO<e<p-l9 l<j<m.
Next, using the Lagrange Interpolation representation of xk with respect to

Pq (x) , we find that it follows from (4.4) that

J/-+1 q

(4-7) v - ( îj = v- E "W*.
We now define the matrix

(4.8) eti = 4- E trr1 M •

After putting (4.6) into (4.2) and then substituting the result into the right side
of (4.7) and then (4.7) into (3.18), we find that the Generalized Runge-Kutta
System takes the form

(4-9) £ atf £ & [^ - Al] = 0



for k + £ < q, £ > p. After introducing the notational simplification

(4.10) <ipjji = aj$jiil hi = aJ <Ali, 6 = m-q

we may rewrite (4.9) as

E "; E & [%,i - M
(4.11)

E
for k + £ < g, £ > p. Now for each fixed £, p < £ < q, we multiply (4.11) by the
Vandermonde inverse W ^ and sum from k = 0,..., q to obtain

(4.12)

ge,,i

= -'E'
for r = £ + 6, ...,m, ^=p , . . . , g .

5. A Particular Solution and the General Solution of the
Generalized Runge-Kutta System.

If we add to the system (3.12) the constraints

(5.1) ipr,i = 0} r = l,...,i + 5 - l , i = p , . . . , g

the number of new constraints is equal to the excess of the number of unknowns
over the number of equations. This gives us the system

(5.2)

E C Vv.i =E & &*
»=p i=p

e+6-i

3=0

j-S

10



for I — p,..., r — <5, r = p + <5,..., ?n. For each fixed r this is a square system with
the right hand sides depending on the variables ipj}i, j < r. Hence, if we can prove
the matrix Q{ is non-singular for p < £, i < r — <5, we have a unique solution.
This we shall prove in Section 5.

We shall find a closed form solution of the system (5.2) for any choice of the
matrix (bj^). The numerical use of this solution is provisional since it depends on
being able to construct a solution with the computed values of the </?'s. Therefore,
it would be nice to have the general solution of the system (4.12). To do so we
need only to replace the bj/s by

(5.3) bjj = bjfi - ipj,i, r-8 <i <q.

6. Forward Elimination Applied to the Matrix £^.

In this section we shall show that after k forward Gaussian Elimination steps,
without dividing out the pivots the matrix has rows defined by

(6.1)

and
(6.2) <£
It suffices to consider the case k = 1, hence j' = 0.

If we define

(6.3) Y l

then er,i = fr in) •
In particular / £ (x) has p zeros i/0, •••, ̂ p-i and since it is a monic polynomial

(6.4) f$ (x) = F*-1 (x).

It follows that (6.1) is true when j = 0. For r > p we have, after one forward
Gaussian Elimination step the matrix with elements

SP,P

After using (6.1) with j = 0 this is Qr (^) with

(6-6) Qr (x) = jp (x) - p^fytt' iyp)

11



The difference
(6.7) Qr(x)

is a polynomial of degree at most p with p + 1 zeros z/0> J'I, ••, vP- This establishes
(6.2).

It now follows from (6.1) that the matrix of our Generalized Runge-Kutta
system is non-singular.

7. A Useful Identity.

We have seen that forward elimination applied to the left side of our system is
quite simple. Applying it to the right sides requires a bit more work. Specifically
the proof uses iterations that make it appear the products of the matrices defined
by V will arise. The following identity shows that these all collapse to a single
factor.

Theorem 7.1. Ifa < p < m then

for any k, a < k < m.

Proof. This is just the Lagrange Interpolation Polynomial Representation of
the lower degree polynomial in terms of the higher.

8. Uncoupling the System to Upper Triangular Form.

Let us define

Note that, when fi > r — 6, the first sum vanishes.
We shall show that, after k Forward Elimination Steps, the system has the

form
m

yO*6J / ^ rT \ j) £ j £ —
j=p+k+6

12



for £ = p + k,..., r - <5, r = p + k + <5,..., m with Tr
£
yk defined by

p+k+6-l q

(8.3) vf =
j—a i—p+k

Since V™'e*s (VJ) = 6rj for £ + 6 < r < m, this agrees exactly with the system
(5.2) when k = 0. In any case, the pivot row corresponds to £ = p + k. The sum
in (8.1) then vanishes and we are left with

(8.4) nft*r - i# f c = o.

Let us express the Gaussian Elimination step (6.5) in the form

Then, after multiplying (8.4) by rjp+kye and subtracting from ftjT^*, we obtain the
identity

(8.6) fiSfc = n0 f c + 1+r,p + f c ) r ; i f c .
W e m a y a s s u m e t h i s t o b e t r u e w i t h r r e p l a c e d b y j for a n y j , p + k + 8 < j < r .
H e n c e , a f t e r s u b s t i t u t i n g (8 .6 ) w i t h ( 8 . 2 ) , w e h a v e

(8.7) £ VTMS (i/,-) [ftSfc+1 + iftn-M r S J - if* = o.

By substituting for F^J
+p from (8.3) using the identity (7.1) and combining this

result with the representation (8.3) of F£'' with the help of (8.5), we obtain the
terms in the representaitons of Tr

e
f + 1 except for the summand corresponding to

j = p + k + 6. This one comes from the contribution of this value of j in the first
sum in (8.7). Thus we have derived the system (8.2) with k replaced by k + 1.

Now let us rewrite the system (8.2) in the form

e+k+6-i

(8.8) ^ - r f + ]T v™>M (vi) nT;f = o

for £ ~ p + &,..., r — 6, r = p + k + 6,..., m. When k = p — £, the sum vanishes.
This gives us the desired upper triangular form.

13



9. Diagonal Back-Substituting to a Closed-Form Solution
of the Generalized Runge-Kutta System.

Let us define

(9-1) V^W = J^Ty P<P<<*

and introduce the matrices
pe+k,o

( 9 ' 2 ) * = p/+fc

Note that when k = 0 amounts to giving constant polynomial 1 the factor x — Vt
and then dividing it out. This device is used to make the following formula valid
on the diagonal. When k = 0, in a slightly different notation our upper triangular
form is

r-S

(9.3) Y, &,i Cli = ^
i=e

with
m q

and with

(9.5) n* = -#

and ^ J 1 satisfying the recursion formulas

(9.6) tf/1 = Cli - nj d+
and

(9-7)

The above recursion formulas amount to using the system corresponding to k = 0
to eliminate one super diagonal at a time. At the end of the elimination, we have
the closed form solution.

(9-8) ^ =£ E ^oTTT

= p,...,r — 8, r =p + 6,...,m.

14



10. Application of the Residue Theorem to Lagrange Inter-
polation.

What remains of our task is to find suitable pth order approximations to use with
our previous work. The success of completing our effort depends on finding the
Taylor Coefficients of order higher than p of these approximations.

Since polynomial approximations involve only the finite part of the Taylor
Expansion, there is no loss of generality in assuming that we are finding approxi-
mations of an entire analytic function / . Thus consider the polynomial

(10.1) P(x) = U (x-isj)

and the function
f

~ 2m A (x -z)P (z)
where 7 is a contour containing the roots of P in its interior and excluding x.
If these roots are distinct, we see by evaluating the residues that / (hz) is the
Lagrange Interpolation Polynomial of / (hz) with respect to the polynomial P.
It is clear that the roots 14 may be deformed into any set of n numbers in the
interior of 7 without changing the fact that

(10.3) f(hz)-f(hz) = Q(hn).

Hence it is not necessary to assume that the roots i/j of P are distinct. When
they are multiple, the expansion will involve derivatives of / .

Now, let us note that the integrand of (10.2) has residue - / (hz) at the point
z — x. Hence, if 7' is a contour containing 7 and x in its interior, we have the
formula for the error

(X0.4,

Now we may assume that 7' is a circle of arbitrarily large radius. There is then
no problem in integrating and determining a formula for

(10.5) Jo
X[f(ht)-f(ht)]dt

and, since there is no problem in integrating a finite Taylor Polynomial, we may
determine the higher expansion coefficients of

(10.6) fX f(ht)dt.
Jo

15



Let us now write

(10.7) /(*) =
3=0

Then we may write

(10.8) / (hx) - f (hx) = P(x)-£ Ejfjh*

j=n

where

(10.9) #; = 7T-: I 7 Z\ni ^z-
v } J

 2TTI JPI (x-z)P (z)
Now, let us define

(10.10) Q (z) = (z- x) P (z) =JT (~l)j S^1-'

where Si = Si(xJi/iJ...1vn) are the elementary symmetric functions of (x, U\y..., vn),
By evaluating the residue at z — a, we find that

(10.11) Ej - 0, j < n,

(10.12) En = - 1

and, for j > n,
n+l

(10.13) ^ ^ ( - l ) ' ^ - - * ^ .

Now let us define

(10.14) a,- = £ Ej (t, v) P (t) dt, v = — + a,.

We may use the techniques used in proving (10.3) - (10.6) to deduce that

(10.15) T / (ht) dt and £ [f (ht) - f (£)] dt

have coefficients indexed by j > n + 1

(10.16) aj/i-i a n d

respectively.

16



11. Averaging: Real of Superficial

Let us suppose that / i , ji are two different nth order approximations of a function
/ and consider the function

(H.l) h (X) = /i/l (X) + (1 - M) /2 0*0

We see that, if the (n + l) s t order coefficients of / i and fi are different, we can
choose /i so that / 3 is an (n + l) s t order approximation.

Now suppose that we apply the above remarks to the Lagrange interpolation
polynomial representations corresponding to the polynomials (x — X\) P (x) and
(x — X2) P (x) where P is a polynomial of degree (n + 1). It is clear from the error
forms (10.4) that the (n + l) s order coefficients will be different whenever X\ 7̂  X2
and x is not a root of either polynomial. In fact, the choice

is the choice which achieves (n + l) s t order accuracy. By computing this linear
combination from the representation given by (10.2), we see that this is the La-
grange Interpolation Polynomial representation corresponding to the polynomial

(11.3) (x-Xl)(x-x2)P(x).

Thus, with the solution yf == f (x, y) , we get accuracy of order (n + 1) at all mesh
points. The actual accuracy then depends on the accuracy of the approximation
of y that are substituted into / (XJ, y (XJ)) . This can be different at different mesh
points. In any case, we do not actually have to compute the linear combination
corresponding to the pair /i and (1 — //) .

But the above remarks do not apply to substituting approximations of y
at the mesh points. One way of getting approximations that depend only on
f (vjh,y (yjh)) is to let y be the approximation corresponding to the integrated
version of the representation with respect to P (x) — (x — u{)... (x — vn) . Then
y{yih) — y (vih) = O(/in + 1). The same accuracy can be obtained by using the
Lagrange Interpolation Polynomial Representative with respect to the polyno-
mial (x — Vi) P (x). Now if we substitute y into this representation and call the

result yi? we have n more representations of accuracy O (hn+1). By applying the

17



averaging process to Vi and V<i we obtain the O (/in+2) approximation

P (x) f (zh)

(11.4)
r p(t)dt

Jo

v2) P (z) (x - z)

' 2-Ki J (z-
y(zh)

vi){z-v2)P{z)
dz.

This is a perturbation of the representation with respect to (x — V\) (x — v<i) P (x)
which can't be valid unless

(11.5) /
Jo

If 0 < i/i < V2-" < ^n < ^, it follows from the inequality between geometric and
arithmetic means that

(11.6) fXp(t)dt
Jo

X .n+1

with equality only if all the v^s are zero or all equal to x.
Let us define, using (10.14),

(11.7) -a,-

and assume that 7,- 7̂  0. We also define

(11.8) Pn+j = {x- Ui)... (x - uj) P (x)., j = 1, ...,n.

The formula (11.4) generalizes to

_̂ f Pn+j{x)y(hz)dt
(x-z).

(11.9) T-l

(-1)* Si (ui,..., i/r) z'-^y {hz) dz

n+r+2

18



That Vr approximates the solution y of %j = / (x, y) to order n + r + 1 is seen by
using the identity

n~r ( — lY Q.7r-£-i n+l+q

for 0 < £, q < r. This is proved in the cases £ > q and 0 < £ < q by computing
the residue at z — oo by inspection. This leaves the case £ = 0, q > 0 which is
proved by separating off the term corresponding to i = 0 and using the analogue
of the identity (10.13) for the present polynomial. The proof then follows by

substituting the power series expansion of Vj —y and y •— y.
One can arrive at (11.9) in a better motivated fashion by writing the two

approximations corresponding to V\,..., vr-\t vr and z/i,..., vr-i-> vr+i and taking to
linear combination corresponding to

(11.11) h cr and a.

This leads to the correct identity plus the term

- vr) a (rr\ _i_ V ^ ft ( 1 \r~£ Q
\X) •" 2_^ P n + l + r \*-) Or-in + r + 1

This term can then be eliminated when the coefficient of a is not zero. But this
fails to be true only at isolated points x and by continuity must be true there
also.

12. Higher Order Averaging.

Now suppose that we replace the variables X^ in (2.17) by A^ + Xji a n d subject
the Xji to the constraint

m

(i2.i) y^y'v^o

ior i + k < q — p7 p — p < i < q - p. Then for each i = p — p,..., q — p and
r = i + (S,...,mwe may break the sum at i + 6. Then after multiplying by the Van

19



de r M o n d e inverse iv™^6 a n d s u m from k = Qtom — i — 8we o b t a i n

for r = i + <5, ...,m, i + p = p to q. This serves to shift terms from above the
diagonal r — i + 8 to below.

13. The Generalized Runge, Kutta, Butcher Algorithm.

We start with
(13.1) $ = b + hvif(0,b).

Then we compute

(13.2) yl = b + h [A}fif (0, b) + AlJ (u,

If n is even, we make the additional computation

(13.3) y~b + h [A]tOf (0, b) + AlJ (i/,

Then we define
^ = yi if n is odd,

(13.4)
= Vi if n is even.

Now, for each A: > 1, we compute approximation g\ of / ' (i^/i) , i = 1,..., fc and ^
of y (i^i/i) for i = 1,..., k + 1. To achieve these we define

(13.5) 4,? = AJ

with the right side defined by (2.18) and

(13.6) AKij, I > 1

to be the coefficient as obtained in Section 10 with the roots i/0, u\,..., ft doubled.
Note that in (13.5), the superscript 0 is not doubled. Then we define for k >
2, i > 1.
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After computing the following for i < k — 1, g$ = / (0, b),

(13.7) £*

(13.8)

and

(13.9) rf

for i < k — 1, we compute (13.7) and (13.8) for i — k and then replace (13.9) by

j=0

and then loop to the next k.
Note that the computation of the yf 's require no new computation of / so

that exactly k computations of / are used in each A>loop.
When k = p — 1, we have the initial pth order approximation of y.
In order to complete the algorithm, we use the independent 99 ,̂ (9.8), obtained

by setting the free variables (5.1) equal to zero. The dependent (fjiS are obtained
from the recursion formula (4.6). Then we define

j+s-i

(13.10) ^ = -

For i < p + 6, we use
(13.11) Wi = ytx

and compute
(13.12) fi^h, wi).

For each i > p + <5, we run the recursion formula (13.7) for k — p but substituting
Wj for g* when j < i. Then, after computing (13.8), we compute Wi using

(13.13) frjWj + (1 -

to approximate yf {yjh) when j < i and gf to approximate y' (vih). Then we loop
to the next i.
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14. The Theoretical Runge, Kutta, Butcher Initial Approx-
imation.

The recursion formula of the previous section is written exactly as it will be used
in practice. In this form though, it is difficult to determine the magnitude of the
errors. For this purpose we use, at every opportunity,

f(x,z(x))-f(x,y(x)) = %(x,y{x))(z(x)-y(x))
(14.1)

where z is an approximation of the exact solution y (x). Then the #'s are replaced
by the derivative y1 and the formula (??) takes either of the forms

(14.2) y\ = y (uih) + E\

or
(14.3) y\ = Pk+i{uih) + Et

where Pi is the IIth Taylor Polynomial of y and Ek is of the form

(14.4) #=£
p=0

where P^n is a homogeneous polynomial of degree k in the variable

(14.5) b(uih) = ^

The £?*'s differ between (14.2) and (14.3) only in the constant terms of these
polynomials, there being obtained from Section 10.

In other words, the approximations (14.2) and (14.3) keep track of the form
of the error up to approximately twice the order where we know it exactly. In
particular, it is order 0 (/i2fc+3) when q is odd and 0 (h2k+4tj when q is even. The
reader will note that it does not depend explicitly on the partial derivatives of /
of order greater than one.
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15. Deformation of the Constructed Solution into the The-
oretical Solution.

We first note that the terms in the error (14.4) with i + p = const, all have
the same order of magnitude. We also note that dependence on h in X^ may
be regarded as a parameter since the only dependence on h is obtained from the
Taylor expansion of f (vih, y(vih)) which accounts for the factor (vi) which is
eliminated by the inverse Vandermonde matrix. Then we add the negatives of
the terms in the order we wish to eliminate and the choice of the fir^s shows that
the contribution of gf is cancelled. The term #f+1 is then replaced by a derivative
plus an error. Actually, this is only an artiface. The second order averaging
technique is used only to determine the firi and the constitution of gf. After we
have eliminated all of the error terms, we are left with the theoretical solution.
Hence, the constructed solutio has the same error.

This is most easily seen by writing the error (??) in the form

(15.1) mi [Wj - y' (x, k)] - 1 (1 - fuj) [g* - y' (Xih)] .

If we eliminate errors in increasing order, the first term in (15.1) represents the
terms currently being eliminated and the second of one higher order.
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