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"Notation is important. It can even solve problems. But, at some
point, you must do some work yourself." K. 0. Friedrichs.

1. Introduction and Statement of the Problem.

Without using any symbols at all, we can give a precise statement of the problem by saying
that it is to find the maximum, if it exists, of a linear function of a finite number of real
variables on a convex plane polyhedron of the same variables. The simplex method of
solving the problem is then to find a vertex of the polyhedron and then to proceed along
edges from one vertex to the next, in a manner that the linear function increases, until the
maximum is reached. All the data needed to state and solve the problem can be stored in
an (m + 1) x (n + 1) matrix A.

The analytical statement of the problem then is to find the maximxim of the objective
function

subject to the constraints

i + An+l,n+l

ZQ, i=l,...,m.

(1-1)

(1.2)



By defining A to be the matrix comprising the first m rows and first n columns of A and
b to be the transpose of •4i>n+i>..l̂ 4m,n+ij the constraint (1.2) takes the simpler form

Ax + b>0, (1.3)

meaning, of course, that each component of the column vector is non-negative. The vector
x is superfluous for the purpose of applying the simplex algorithm. But, working only with
the matrix A, can lead to misconceptions as we shall see in the next section. But first, let
us find another notation for the constraint set by using Ai to denote the rows of A. Then
(1.3) can be replaced by

) + bi>0, i = l,...,m (1.4)

where bi is the ith coordinate of b and (,) represents the canonical inner product.

2. But, Those Slack Variables are Unnecessary.

Let us re-write (1.3) as
(AC)(C-lX)+b>Q (2.1)

where C is any non-singular n x n matrix, noting that this does not require an equality. Now,
assuming A has rank n, we may apply elementary column operations to reduced echelon form.
If C is the product of the corresponding elementary column matrices and y = C~1X, the
first n coordinate of (2.1) are

Vi + bi> 0. (2.2)

Then, by making the translation Zi = yi+bi, we may assume the constraint set to be in, what
is commonly called, canonical form. Furthermore, if for one jf, 1 < j < n, we put Xj = Zj — /3j
in (1.1),(1.2) we see that this corresponds to multiplying the j t h column of the full matrix
A by fa and subtracting it from the (n+ l ) t h column; that is, it is an elementary column
operation. I prefer doing elementary row operation on the transpose. Thus the simplex
method reduces to transposing the matrix A and applying elementary row operation until
the first n column are in reduced echelon form, with the restriction that the pivots are to be
picked from the first n rows of AT. The only question that remains is when to start using the
simplex pivoting strategy. After the system is in canonical form, we must use the simplex
strategy; before that we may use instead the standard Gaussian Elimination Strategy. Note
that the simplex strategy requires picking the maximum positive element of the current
column and hence is a partial pivoting strategy. We shall have more to say about this in
Section 5.



3. Empty Sets, Redundant Constraints and Lower Dimensional Sets.

Let us now suppose that the normals of the first n constraints form a linearly independent
set. Then, for any k > n,

and hence
Lk(x)=J2<*kMx) + Ak (3.2)

with
n

A* = A,n+1~ $3 aJKA,n+l. (3.3)
t = l

It follows from (1.4) and (3.2) that if (afci,.,...,ajb>n,A*) are all non-negative, the fcth

constraint is redundant and that if they are all negative the set is empty. If for some
i < ra, ctki > 0, ctkj < 0 for j 7̂  i and A* < 0, then the ith constraint is redundant.

In all other cases where none of the numbers (a^i,.,..., a*)n, A*) is zero it is easily shown
that the set formed for the first n and the fcth, is non-empty. The other important special
case occurs when A* = 0 and ctki < 0 for i = 1, ...,n. Then the entire constraint set is
contained in the set where Lk(x) = 0. Hence, we may use this constraint to eliminate a
variable and obtain a lower dimensional set. This means that, by reducing the number of
dimensions, we may assume that this case does not occur.

We note from (3.2) and (3.3) that, when the constraint set is in canonical form, >tt,n+i =
0, i = 1, ...,n, so the a^'s and A* are just the coefficients of the constraint equation. From
this point on we shall assume that the set is in canonical form. The origin will be called the
basic vertex, the first n constraints the basic constraints and the rest of the constraints the
non-basic constraints.

4. The Simplex Algorithm with a Non-Degenerate Basic Vertex.

A vertex which is the intersection of more than n-planes is called a degenerate vertex. This
means that, when the basic vertex is non-degenerate, all of the non-basic constraints have
non-zero constants. The simplex strategy then is to increase by one the number of positive
constants among these until they are all positive and then to increase the constant in the
objective function.



Let us assume that the constraints are ordered so that

Ai,n+i > 0, i < p and if p < m
(4.1)

A,n+i < 0, p<i<m.

Our first objective is to increase p by one when it is less than m. The first step is to choose
k to maximize

When p < m, the results of Section 3 insure that we may assume the above set to be
non-empty; when p = m + 1, it is only empty when we have found the maximum.

Next, we choose £ to maximize the negative numbers

—T̂ — - v < p — 1, Av± < 0 > . (4.3)

Suppose that the above set is empty. If p = m + 1 and Am+\yk > 0 there is no maximum
while if An+i,* < 0 we may set Xk = 0 and continue in one less dimension. If p < m we
simply set £ = p} observing that the simplex method requires only one step.

Next, we interchange the Ph non-basic constraint with the kth basic constraint and put
the constraint set back into canonical form. This requires applying Gaussian elimination to
the kth column of AT. The new elements of the matrix then are

•4fc = - r - (4-4)

Aj = -x1. i** (4-5)
At,k

and when i ^ I,

A*=4^' (4-6)
(4.7)

In particular,

0 (4.8)
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since, whether £ = p or £ < p ,^ ,n+i and Aik have opposite signs. Hi ^ £ and ^ < p - 1, we
see from (4.7) that A^^ is the sum of two positive numbers when Aik > 0 and that when
Aik < 0 it is positive as a consequence of the choice (4.3) of £. Hence, in any case, the first
p — 1 constants remain positive and if £ = p, Ap,n+\ is also positive and we have increased p
by one. But we also see from (4.7) that if £ < p,

Since the constraint set has only a finite number of vertices, we shall, in a finite number of
steps either find the set to be empty, prove that A'Pyn+i > 0 or arrive at a degenerate vertex.

5. The Case of a Degenerate Vertex.

The case of a degenerate vertex occurs when there are zero constants Aiyn+i = 0. Suppose
that we apply the previous strategy to the basic constraints and the non-basic constraints
with non-zero constants. Then we see from (4.7) that when Ai,n+i = 0,

and since Atj < 0, Aik > 0, we have «4i?n+i > 0 whenever Aitk > 0- There is no reason that
this should be the case, but, by applying the simplex strategy to the first n column of A,
with the kth playing the roll of the constants, we can use the simplex strategy to achieve this.
Because the algorithm is slightly more complicated when the degeneracy is of higher order,
it is convenient to introduce constants ak, Pk satisfying, after reordering the constraints and
variables

A,fe = 0, n + 1 <i < ak

>0, ak<i<0k (5.2)

with an+2 = m. The cases ak = n + 1, /3k = a^ and f}k = ak+i are used to indicate that the
corresponding set is empty.

Now we apply the following algorithm to the constraint set in canonical form.

[1] k = n + 1



[2] Reorder the constraints so that (5.2) is satisfied.
Now, we are ready to pick the current constraint indexed by p. The choice agrees
with (4.1) when k = n + 1.

[3] If k = n + 1 or /?* < a*+i, set p = f}k and proceed to [5].
Now, when we arrive at line [4], we have k < n + 1 and (3k = a*+i. This means
that the elements of the pivot column below the zeros in the kth row of AT are all
zero so we can take advantage of the remark preceding (5.1) noting that, because
k < n the current pivot row has already been chosen in the line [5].

[4] Replace k by k + 1 and proceed to [7].
Now we are ready to pick the current pivot row of A7.

[5] Reorder the variables so that Apyk-i maximizes the positive coefficients Ap^ i <
i < k — 1 when it is non-empty. If it is empty proceed to [10].
If ak = n + 1, we are ready to begin the updating subroutine. Otherwise, we
decrease k by 1 and return to [2].

[6] If a* > n + 1, decrease k by 1 and return to [2].
When we arrive at line [7] we know that the k — 1 th row of AT is the current
pivot row and, before updating, we must find the current pivot column.

[7] If the set {i < p : Ai,k-i < 0} is non-empty, choose £ to maximize the ratios
Aij^Aifr-i- Otherwise set £ = p.
Now, we are ready to interchange the constraints indexed by k — 1 and £ and then
put the matrix back into canonical form.

[8] Return the matrix to canonical form by applying Gaussian elimination to reduced
echelon form to AT using the element indexed by ^, k — 1 as pivot.
We note that, since the elements Atj, j > k — 1, are all zero the elementary row
operation correspond to adding zero to the rows of AT indexed by j > k. Hence
the a / s and /?/s, j > k so they are unchanged. We now redefine the a / s and
P/s for j < k returning to [2].

[9] Return to [2].
The program will terminate at [10].

[10] The maximum is Am+i9n+i-
We have tacitly assumed the maximum to exist, leaving to the reader the task
of adding the lines, explained in Section 3, regarding empty sets, redundant con-
straints, lower dimensional problems and problems with no maximum.



6. Small Pivots and Degenerate Vertices.

In running the above algorithm, it is crucial that one distinguish between non-zero numbers
and zeros represented by round-off errors. The author has studied this problem extensively
on the Radio Shack Color Computer and on the Tandy 1000. Computing, respectively, to 9
and 16 places, base 10. The Random Number generator was used to supply the data and,
computing to places base 10, the test for determining whether or not a number is zero was
by comparison with KF"7, 2 < 7 < p/2. In order to increase the probability that the set is
not empty, the probability that the origin satisfying a constraint is set at 7r, 0 < TT < 1. With
no other restriction, a degenerate vertex has never been found. By building in the condition
of degeneracy, e.g. by applying a similarity transformation to a known degenerate situation
and adding more constraints, the program seems to work as well as in the non-degenerate
case. The problem, in each case, is checked by re-running the program on the constraints
forming the final basic vertex and by evaluating the objective function at the intersection of
their planes.

We have also never found an ill-conditioned matrix with the random number generator.
By putting in the Hilbert matrix [2], prob. 169, p. 337, we find the obvious difficulty.
However, by computing to a sufficient number of places, we have always been able to overcome
the difficulty.

7. Further Methods of Speeding Up the Program.

The Simplest Method of Speeding Up the Program is to remove the redundant constraint
using the test of Section 3, noting that the test requires only sign-tests of quantities that are
computed anyway. Its disadvantage is that a constraint that shows up as redundant in one
coordinate system does not necessarily in another. The number of degenerate constraints
can be increased by adding the condition that the objective function be greater than its
value at the current basic vertex.

Another method of possibly speeding up the program is to use the fact that once a
vertex has been found we know that the constraint set is non-empty. Then we can eliminate
a variable using any of the constraints. If the constraint used was redundant, the new
set will be empty. Otherwise, we obtain the maximum on an (n — l)-dimensional face. The
weakness of this method is that we lose time when we use a redundant constraint to eliminate
a variable.



8. The Statement of the Condition that the Set be Empty or Con-
tain a Redundant Constraint.

In this section we iterate the formulas (4.4) - (4.8) for the constraint set

m (8.1)

in canonical form. That is,

A ; = <5*;, t = l,...,n + l, j = l,...,n. (8.2)

Specifically, we generalize the condition that the set is empty when Akj < 0 for all j =
1, ...,n + 1 and contains a redundant constraint when the set {Aki, ••-,Akn,Ak,n+i } consists
only or non-negative elements or Ak,n+i < 0 and Akj > 0 for exactly one j < n.

In this section we shall use the above stated condition to obtain a result for appropri-
ate union by obtaining explicit formulas for the coefficients in the constraints when the
constraints

fci,...,A;r, fe>n + l, r<n (8.3)

have been interchanged with the constraints

*i,. . . ,4, U<n, (8.4)

in the order fcj,4, i = 1, ...,r and the constraint set is returned to canonical form at each
step. In order to state the formulas, we denote by

fa(iu-,i<r''jl,-J<r) (8.5)

the minor determinant of Aij, i = rn +1,...,m, j = 1,..., n indexed by the rows »i,..., in and
the columns Ji, ...,>• Then, with A^j representing the original matrix and A$j the matrix
after the constraints indexed by k%}..., kr have replaced those indexed by £, ...,£r,

Kr = { k i , . . . A } ^ = M - ^ ^ = { ^ » M M ^ = [ M + l ] - £ r ,
(8.6)

Dr = /r(fcl,...,fci^l,...,4)

we have the formulas for i G /CJ.,

j € C'r, (8.7)



j lj € Cr, (8.8)

and for fc» € /Cr,

= (-l)<+i/r-i(*i,...,*i-i,fci+ii...,fcr : li,.~li-uli+i,.~,tr)/Dr, tj € Cr. (8.10)

Before stating the condition for redundant constraints or empty sets, we shall prove the
following theorem.

Theorem 8.1. The formulas (8.7) - (8.10) are invariant under permutation of k\, ...,fcr or
£u ...Jr in the sense the sign ofeither (8.7), (8.8) or (8.9), (8.10) for fixed i and j = l , . . . ,n+l
are invariant.
This makes it possible to state the condition for empty sets or redundant constraints using
only the pair (8.7), (8.8) in the order r = 1,2,..., n.

Proof. First let us note that we may assume that the fc's and Z's are in increasing order.
This follows from the fact that when fcj,..., kn are permutations of the same set, then
fci, ...,fcj-i,fcj+i, ...fcr, j = 1, ...,n are merely written down in a different order.

To prove this by induction, let a = = (fci,...,fcr) and (Tj = (fci,...,fcj_i,fcJ+i, ...,fcr) and
suppose that the largest element y of a is indexed by I. Then after interchanging the y with
the last elements of a and cr,, j ^ £, the sign of the ratio (Tj/a is retained when j < £y changes
when j > £ and is multiplied by (—l)r~ when j = £. Hence by moving the ̂ h ratio to the
end of the list and decreasing the order of those indexed by k,£ + 1 < k < r, we obtain a
valid induction proof. Similarly for the Vs. •

Theorem 8.2. In applying the empty set or redundant constraint test, it is sufficient to
scan (8.7), (8.8) for all permutation (ki,...,kr) and (£i,...,£r) in increasing order ofr.

Proof. In proceeding from r to r + 1 we interchange the constraints indexed by fcr+1

and 4+1- A simple computation shows that in an (n + 1) constraint set in canonical form,
an interchange of the (n + I)8 constraint with a basic constraint can't change the sign test
indicating an empty set or redundant constraint1. But, by Theorem 8.1, we may assume
that any ki and £i were interchanged.

1See Section 13, #2.



9. The Recursion Formula.

Assuming that we have computed the matrix ^4^, the matrix A^1 is obtained by inter-
changing the constraints indexed by fcr+i>4+i and updating the matrix as in [1]. The result

K U (9.1)
* £r+1 (9.2)

and for i ^ A:r+i,

(9.4)

Note, in particular, that (9.4) is the ratio of a 2 x 2 minor and a 1 x 1 minor and when r = 0,
it agrees with (8.10). Also, when r = 0, (9.2), (9.3) agree with (8.8) (8.9). In order to make
(9.1) agree with (8.6) we make the convention f0 = 1. Before proving the general result, we
shall develop some lemmas on determinants.

10. Some Lemmas on Determinants.

Let us use the usual convention that By is the co-factor of 6y. Then our first and main
lemma is:

Lemma 10.1. Let B = (6y) be a k x k matrix and let C be the (k — 1) x (k — 1) matrix

Then
det C = det B/bkk. (10.2)

Proof. Define:
<p(e) = d e t (hj - e b i > k b k j ) , l < i , j < k - l . (10.3)

Now we use the fact that the derivative of a determinant is the sum of the determinants
obtained by differentiating one row of the matrix. When we differentiate the i*h row of C,

10



the new fth row is
.A ,* - i ) . (10.4)

If we interchange this row with each of those indexed by i + 1,..., k — 1, we have the
matrix obtained by deleting the 2th row from the first k columns of B. Hence, when we take
the determinant, we obtain

bikBik. (10.5)

It follows that
fc-i

t=i

When we differentiate twice we obtain a sum of determinants of matrices having two rows
equal. Hence <p"(e) = 0 so (pU)(e) = 0 for j > 2.

Since (p(0) = Bkk we then have

<p(e) = Bkk + 6 V bik3ik. (10.7)
t = l

Putting € = l/bkk gives (10.2).
The recursion formula (9.4) with i > fcr+i, j > £r+i can be rewritten

where the numerator is the determinant of the 2 x 2 matrix indexed by /x = fcr+i,i and
1/ = £r+ij and is, in fact, just the Lemma 10.1 with k = 2 after a change of indices. More
generally, we can use Lemma 10.1 to prove inductively that, for 1 < p < r + 1,

where the numerator is the determinant of the (p + 1 ) x (p + l)matrix indexed by /x =
A;r+2-p,"->fcr+i>i and v = ^r+1_p,...,4+i> j - In particular, when p = r + 1, (10.9) reduces, in
view of (8.5), to

11



for any i € JCr+i, j € £>'r+i- In particular,

or
Dr+2 = ^ A ^ , / , - ^ ^ . (10-12)

Since this is true for each r, we have proved (8.7) with i /C(.+1> jf € £J.+i as a consequence of
(10.10) and (10.11) with r replaced by r - 1.

By eliminating ^y1"1 between (10.9), (10.10), setting i = kr+2, j = 4+2, and using 8.6
for •4£"J1~P, we obtain the interesting identity

/r+2 (fcl,...,fcr+2 : 4 , •••,4+2) p
(10.13)

= det (/r+2-p (*i,..., fcr+1_p, )

with /x and v ranging over the indices fcr+2-p,-.,^r+2 and 4+2-p,--,4+2. The main use we
make of this identity is:

Theorem 10.2. Consider the identity (10.13) with p = 1. If three of the four minors com-
prising the determinant on the right have sign opposite the fourth then
Dr ^ 0 and the sign of fr+2 is determined by the identity

We shall also need the following identity

/r+l (fcl, ..., ^r-hl : ^1J—)^i-l)^t+l>—j^r+l,j)/r (^l>—J^T : 4? — 4 )

( * 4 ) / ( * * ^ 4 4 4) (10.14)

= 0.

If we suppress the dependence on &i,..., kr-\ and 4 , •••, 4 - i , the left side of (10.14) is the
3 x 3 determinant of the matrix with rows indexed by (fc1,fc1,fc2) and column indexed by
4,4+i>j- Since the first two rows are equal the determinant is zero.

12



11. Completion of the Proofs of the Identities.

We now have the main tools sufficient for the proofs of (8.7),...,(8.10) by induction. Note
that we have proved (8.7) for all r and i £ /Cr, j £ £ r , the proofs of the cases (8.8), (8.9),
(8.10). Hence, we may use i = fcr+i, j = 4+1 in (8.7) to express (9.1) as

>*">lr) / i i i \

This is the promoted version of (8.10) with i = r+ly j = r + 1 . By putting i = fcr+1, j fi £ r + 1

into (8.7) and substituting (11.1) into (8.10), we obtain

which is the formula (8.9) corresponding to the pair Av+ij with j £ £r. It follows from (9.4)
that for ki € Kr, j £ CT+\-

Ar+1 - Ar - •

After substituting (8.7) and (8.9), and setting the result equal to (8.9) with r replaced by
r + 1, we obtain the identity (10.14). This completes the proof of the remaining cases in
(8.9). The proof of the promoted version of (8.8) is isomorphic.

There remains the case indexed by ki G /Cr and £j € Cr. We obtain from (9.4), (8.8),
(8.9), (8.10) and (10.11) with r replaced by r - 1 into (11.4), we obtain

(_l)t+i f ( .

/ r (fc1?...,fcr : £i>...,£i-i}£i+ij.~,£r-i) fr (kitkj-ijkj+i,...,kj-i : £i,...,£r+i)^

/ 1 ( & l f c l : ^ l ^ l )

We now apply (10.13) in the form

= /r (^l)---)^i-l)^i+l? ---ĵ r+l • ̂ lj--)^t-l)A+l)^r+l) fr

— / r ( f c l > - " > f c i - l > k i + l > - - > f c r + l : £l,—>£r)fr ( ^ l > - - - , ^ r • ̂ 1 , •••, ^ t - 1 , ^t+l> •••, £r) •

After substituting (11.5) into (11.4), we have the promoted version of (8.10) for ki € /C», £j £
Cj. Since the case of kr+i C /C r+1,4+i € £ r+i has already been disposed of, the proof is
complete.
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12. Duplications of Constraints.

The formulas (8.7) - (8.10) are derived under the assumption that the sets (fci,..., kr) and
(£i, ...,£r) are distinct. In particular the Ts are a subset of (1, ...,n) so we must have r <n.
On the other hand, it follows from the recursion formulas (9.1) - (9.4) that we may, at any-
time, start over with a new matrix and continue until there is a duplication in either the A;'s
or the ^'s. In this section we resolve the question of such a duplication in the second step.

The new matrix coefficients, after interchanging the ith nonbasic constraint with the ^
basic constraint and then returning to reduced echelon form by the use of elementary column
operations, are

At = l/A* (12.1)

Aj^-Aij/Au, j^t (12.2)

and for k ̂  i,
A'u = AM/AU, (12.3)

Mkj = Akj-AktAiiIAit, j±L (12.4)
Now let us interchange the new fcth constraint with the ^ h basic constraint. By analogy

with (12.1), (12.2) the coefficients for the new kth constraint are

A!U = 1/4, (12.5)

and
^ J , j?t. (12.6)

After substituting from (12.1) - (12.4) there becomes

M'u = Au/Au (12.7)

and
A!lj =Aij-Ait Akj/Akt, j ? I. (12.8)

These are just the parameters obtained after interchanging the ith constraint with the th

and returning to reduced echelon form. But they are in the position of the A:th. The new
coefficients for the ith constraint are

(12-9)

i , j*L (12.10)

14



Again, after substituting from (12.1) - (12.4) and taking into account cancellations, these
become

A% = l/Akt, (12.11)

A'lj =-Akj / A'kl, j±l. (12.12)

They are the coefficients for the kth constraint after interchanging the kth constraint with
the £th, and they are in the position of the ith.

For r =̂  fc or i, r > n, the new coefficients for the rth constraint are

(12-13)

A'1; = ̂  - A'rt A'kj/A'kt, j^£ (12.14)

After substituting from (12.1) - (12.4), these become

<Ki = <An/Aki, (12.15)

X i = Arj - A r t Arj / A k i ) j ^ i (12.16)

which are just the coefficient obtained after interchanging the rth constraint with the t^ in
the original matrix. This together with the remarks following (12.8) and (12.12) yields a
proof of the following theorem.

Theorem 12.1. Interchanging the ith non-basic constraint with the £th
y updating and then

interchanging the kth with the Ith and updating is equivalent to merely interchanging the
kth with the Ph in the original matrix, updating and then interchanging the ith and kth.

Now let us determine the effect of interchanging one non-basic constraint with two dif-
ferent basic constraints. If after obtaining the formulas (12.1) - (12.4), we interchange the
ith constraint with the qth basic constraint, q ^ i, the new parameter for the ith constraint
are

(12.17)

(12-18)

and
A'v^-Aj/A^j^qJ. (12.19)

The formulas (12.17) - (12.19), after substituting from (12.1) - (12.4) are just the formulas
obtained after interchanging the ith with the 9th in the original matrix. For k ^ q,

(12.20)
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At = At - Aq At 1A, (12.21)
and

At = At - A* Aj I Aq, 3 ± q, I. (12.22)
Again, after substituting from (12.1) - (12.4), these are just the formula for the fcth constraint
after interchanging the kth with the qth in the original matrix except that the qth and ^ h

variables have been interchanged.

Theorem 12.2. If we interchange the ith non-basic constraint with the Ith basic constraint,
update and then interchange the new ith constraint with the qth, q ^ i, and update, this is
equivalent to merely interchanging the ith with the qth updating and permutatin the qth and
£th variable.

13, The Case of (n + 2) Constraints.

Let us assume the constraint set to be in canonical form. If a is any subset of the non-basic
indices, we shall denote by Sa the corresponding set of non-basic constraints and by SQ the
set SQ together with the basic constraints. For a single index i we define

S? = {j < n : Aij > 0} (13.1)

and
S7 ={j<n: Aij < 0} . (13.2)

The cardinality of set S shall be denoted by | 5 | . We shall assume that our constraint set
contains no degenerate vertices and that minior determinants used in counting are always
non-zero.

Our (n + 1) constraint set Si is empty when a^n^i < 0 and S^ = n, hence «9* = 0. It

contains a redundant constraint when a^+i > 0 and p * = n or a^^i < 0 and p ^ = 1.

Now suppose that 5* = (7,0 < a < n. If a < n there exists an £ < n such that An < 0. If

we interchange the 7th and £th constraints and put the set back into canonical form we obtain

the constraint set Si with = a. If a > 0 there exists an index I < n with a^i > 0. After

interchanging the ith and ^ h constraint and putting the set back into canonical form the set

Si has i = n + 1 — <J. It follows that interchanging two constraints in an (n + 1) - constraint

set cannot change its status relative to being empty, or having a redundant constraint. Hence,

16



if neither Si nor Sj has this property, we can find an empty set or redundant constraint in
an (n + 1 ) constraint set only by interchanging Si with a basic constraint and examining
Sj,j ^ i or conversely. In particular, after making this interchange, the new constant term
i s A4

Ait
(13.3)

Ait t \

Hence, that constant term in the ith constraint, after interchanging the j t h and the ^h ,
has the same or opposite sign as the j t h constant, after interchanging the ith and the ^ h ,
according to whether Aji and An have the opposite or the same signs.

Let us now study the j t h constraint after interchanging the ith and the ^ h with An < 0
and Ajj > 0. This requires analyzing the signs of

A! =A

and

Since Aji and An have opposite signs, it follows from (13.4) that

Mit < 0 (13.6)

and from (13.5) that
^ > 0 , kzSfnSf (13.7)

and
A'jk<0, keS^HSj. (13.8)

For k € S^ nSf — {£} , we may make the signs of

all negative or all positive, without violating (13.6), by choosing £ to minimize or maximize
the ratios

4
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Since, by (13.6), A!jt < 0, we can't achieve an empty set or redundant constraint unless
< 0. This rules out the possibility A,n+i > 0 and Aj,n+i > 0. When
< 0, Aj,n+i > 0, this cannot be the case unless it is true for either Si or Sj.

There remains the cases where A^+i and Aj,n+i have opposite signs. By applying the
results (13.6) - (13.10), we see that 5y is empty or contains a redundant constraint if £
minimizes the ratios (13.10),

S? n # | 4- |{fc € S? n Sr : Ajk > o}| < 1 (13.11)

and either
0, A,n+i > 0, ̂ - < *£ (13.12)

or
0, Ai,n+1 < 0, ^ = ± 1 > ^-. (13.13)

14. The Case of Three Variables.

We shall focus our attention on the case of proving that the constraint set is non-empty by
finding a vertex that satisfies all constraints. Thus, suppose that

0. (14.1)

Definition 14.1. For each k G S*, we define

V = {* • Ak < 0,

and
< 0, ^n+i - ^ An+i < o} . (14.3)

The simplex strategy makes *4p,n+i increase until it is either positive or the set has been
demonstrated to be empty. That this strategy requires more than one step requires that
T^~ be non-empty for each k £ S*. Otherwise, if Sj^ = 0, we may achieve our objective by
interchanging the fcth basic constraint with the pth and putting the matrix back into reduced
echelon form.

18



From now on we shall assume the number of dimensions to be three. By making one
Simplex step and permutating the variables, we assume that

Api > 0, Ap2 > 0, Apt < 0, A^< 0. (14.4)

If there is a constraint indexed by i < p for which 1 G S~ and 2 € S~, it follows from
(13.11) - (13.13) that there is a redundant constraint. Let us then assume that there exist
two non-basic constraints indexed by i and j for which

ieTfnT/, jeT+nTf. (14.5)

The constraints indexed by i,j>p have the following sign configuration

1 2 3 4

j - 0 + + ' ( 1 4 6 )

k + + - -

The circled and uncircled minuses referring to 7̂ ~ and T£ respectively. We then have

- j^Au < 0, (14.7)

- 3 ^ A 4 > 0, (14.8)

^JA < 0 (14.9)

and

- 4^-4 > 0. (14.10)

These are equivalent to

/a (i,p: 1,4) > 0, f2(i,p : 2,4) < 0, f2 (j,p : 2,4) > 0,
(14.11)

/*0\p:l ,4) < 0.

It follows from (14.7), (14.8); (14.9), (14.10) that

/a(t ,p:l ,2)<0, /a0\p:1.2)>0. (14.12)
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By writing (14.12) in the form

Apl - 4&An < 0, A#- 4e.An > 0, (14.13)
Ai2 Aj2

we have
/ 2 ( i , j : l , 2 ) > 0 . (14.14)

Similarly, it is a consequence of (14.7), (14.10) and (14.8), (14.9) that

/2(U:l,4)<0, /2(U:2,4)>0. (14.15)

After interchanging the ith and first constraints and updating, we have the coefficient
matrix

h(j,l) h(i,j :1,2) f2(i,j :1,3) f2(i,j:l,4) (14.16)
r i (p:l) f2(i,p: 1,2) f2(i,p: 1,3) f2(i,p: 1,4) J

It follows from the imposed signs (14.6) - (14.15) that the matrix (14.16) has the sign
configuration

1 2 3 4

P — + i t —

If the coefficient indexed by p, 3 were negative the third basic constraint would be redundant.
Therefore, we impose the sign

/ ( * , p : l , 3 ) < 0 (14.18)

leaving the configuration

+ - ± + (14.19)

with only the 1,3 element having an arbitrary sign. In any case the interchange of the
,j t h and second constraints is admissible. After this interchange, we have the matrix with
D2 = f2(i,j: 1,2) >0

-fi(i:2) /2(U:2,3) f2(i,j: 2,4) \
(14.20)

[i,j,p: 1,2,3) f3(i,j,p: 1,2,4)
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Now let the coefficients of the p th constraint be denoted by M^y It follows from (14.12) that

^x < 0 and ̂ 2 < 0. (14.21)

Hence, if J^ < 0 the set is either empty or there is a redundant constraint. If A!^ > 0, this
configuration does not contribute to the promoted version of T^. Of course, this statement
does not apply if the interchange is made with respect to some other constraint. Let us now
examine the other admissible exchanges within the present matrix. From (14.19) it appears
that the interchange of the ith and second variables is one such possibility. But this follows
the interchange of the ith and the first. But this is, by Theorem 12.2, the interchange of the
ith and second followed by a permutation.

From (14.19) we see that the only other admissible interchange is the interchange of the
,7th and third constraints under the condition

/32 ( i , i : l , 3 )>0 . (14.22)

This interchange gives the matrix

i t ? :3 ) - / i (» : 3) / 2 ( i , j :3 ,2 ) / 2 ( U : 3 , 4 )
T H / i t f : 1) /i(*:1) /2(U:1,2) /2(i,j:l,4) (14.23)

2 V-/2&J>:1>3) /2(»,p:l,3) h (hJ,P : 1,3,2) F2 (i,j,p : 1,3,4)

with D2 = f2 (ij : 1,3) which by (14.22) is positive. By (14.18) we have f2 (i,p : 1,3) < 0.
This configuration appears to have insufficient information to resolve the sign of f2 (j,p : 1,3).
However, if the assumption (14.22) leads to a legitimate simplex step it does impose the ad-
ditional sign

/ 2 ( i , j : 3 , 4 ) > 0 . (14.24)

In any case, the previous configuration was sufficient to resolve the case of the constraints
in three variables. When there are more constraints the additional condition (14.24) may be
helpful in analyzing the interaction of various sets of three non-basic constraints combined
with the basic constraints.

We remark, also, that if the same constraints i and j solve the maximum problem deter-
mining the next simplex step for two steps in a row, the analysis of (14.20) is sufficient to
produce either a complete simplex step or to find a redundant constraint. That this be the
case when both maximums are achieved by the ith constraint would require the interchange
i — 3. By (14.19) this is impossible since both the 1,3 and 3,3 elements are positive.
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1 2 3 4
i e - + +
j + e + +
P + + - -

Finally, we consider the sign configuration

3 4

(14.25)

The interchange of the ith and first constraints leads to

- - + + (14.26)

instead of (14.19). Some of these signs are determined as before and the others are conse-
quences of Theorem 10.2. Now we notice that the interchange of the j t h constraint with the
second is the only admissible simplex interchange. Now to apply the preceding analysis to
(14.20), we need only (14.21). This is again a consequence of Theorem 10.2.

15. The case of Six Constraints in Three Variables.

The analysis of the preceding section yields the following Theorem.

Theorem 15.1. Let us consider a set of Six Constraints in Three Variables which is in
Canonical form and with only one constraint not satisfying the basic vertex. If completing a
simplex step or finding a redundant constraint requires more than three steps then we may
assume the configuration of the non-basic constraints

i : 0 + ± +
j : + 0 ± + (15.1)
p : + + - -

We leave open the question of whether the number of steps can be reduced from three
to two by starting with the configuration

+ + + - (15.2)

for the pth contraint.
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