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A PROOF OF SHELAH'S PARTITION THEOREM
Menachem Kojman, Carnegie-Mellon University

The following is self contained presentation of Shelah's recent proof of the partition

relation ( /x j —> ( A ) f°r a singular strong limit /x violating the GCH. The notation
\ / V / < c f fJL

( /x 1 —> I y, ) means: for every coloring c of /x+ x /x by less than cf/x many colors
V / V / <cf/i

there are A C /x+ with otp A = /x + 1 and B C /x with otp B = fi such that c is constant

on .A x J5.

The proof here is re-arranged slightly differently than the proof in the forthcoming

[Sh 513] so that no use of other results of Shelah is made, except for Fact 2 below, which

comes from pcf theory. In other words, we avoid here using the ideal /[A] from [Sh 420]

and the tools from [Sh 108]; now it is not that reading those two papers is a bad idea —

on the contrary, I have been intending to do so myself for a number of years now. It is

only that the proof is accessible directly.

The pcf theory needed to obtain 2 below will be available also in a survey paper [K]

on pcf and /[A],

0.1 Theorem: Suppose that /x is a strong limit singular cardinal and 2M > /x+. Then

l f l

Proof: We prove actually a stronger claim: for every function c : (/x+ x /x) —• 0, for 0 < cf/x,

there are i C / i + and B C /x with otp A = /x + 1 and otp f? = /x such that the fuction

c |(A x B) does not depend on the first coordinate. This clearly implies the theorem.

Let K denote cf/x. Fix an increasing sequence ~p = (/x̂  : i < K) cofinal in /x such that

/xo > ft. The assumptions we made about /x imply the following:

0,2 Pcf Fact: There is an increasing sequence of regular cardinals A = (Xi : i < K) with

sup A = /x such that ILi\i/J%d is /x++-directed, where J^d is the ideal of bounded subsets

of K.

This Fact follows from /x being a strong limit and 2^ > /x+ via pcf theory. For details

see chapter 8 of Shelah's book or [K].
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We may thin out A and assume that A; > 2̂ « .

Suppose that c : (/x+ x /x) —• 6 is given for some 0 < K. We need to produce A and B as

above. These sets will be constructed in K many approximations, after some preparation.

Fix a function F from [/x+]2 to K, that such that for all i < K the set af := {/3 < a :

F{<x,ft) < i} has cardinality at most /if. Thus a = \Ji<KAf.

Let x be a sufficiently large regular cardinal. We define by double induction of /x+ x K

a matrix {Ma^ : a < /x+,i < AC} of elementary submodels of (if(x), G), satisfying:

(0) Ma,i -< (ff(x, G), ||Ma?i|| = 2̂ * and «̂ Ma)i C Ma^ {Ma^ is closed under sequences

of length /if).

(1) a, c,/Z5 A and F belong to Ma?i and {Mpj : ({3,j) <ix (a^)} belongs to Afa .̂

There is no problem to choose Ma^ so that is satisfies the conditions above.

We make a few simple observations about this array or models:

0-3 Fact:

(0) If (PJ) <lx (a,i) and fi e M^i then Mpj e Ma?i.

(1) If Mpj € Ma>i and j < i then Mpj C Ma^ and hence Mpj -< Ma^.

(2) Maj -< Ma?i for all a < //+ and j <i < K.

(3) a C |Ji Ma?i for all a < /i+

(4) For all /? < a < //+ for an end segment of i < K it holds that M^j C Ma?i and hence

Proof. Clause (0) is follows from the demand that {Mpj : (/?,./) <ix (a)i)} € Ma^ and the

fact that n C m C Ma?i, so i G Ma?i, and therefore Mpj is definable from parameters in

Ma?i. Being an elementary submodel, Ma?; contains every set definable from parameters

in M^i.

To see clause (1) suppose that Mpj G Ma?; and that j < i. By elementarity of Ma?;

there is a bijection cp : 2^ —> Mpj in Ma^. As 2M^ C Ma,i, also ran̂ > C Ma^ and hence

M^^ C M^i. Since also M^^ ^ (#(x), G) and Ma?i -< (i?(x), G), necessarily M^j -< Ma,;

and (1) holds.

Clause (2) follows from the previous two and the fact that a G Ma,;.
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To prove (3) use the fact that a? G Ma^ and also a? C Ma^ for all i < K. Therefore

for all % > F(a,b) it holds that /3 G Ma^. Thus (3) holds.

The last clause follows from the previous ones.

A conclusion of those facts is the following:

0.4 Fact: The sequence Ma = (Ma,; : i < K) is increasing in •<, a C \JiMOL^i and if

f3 < a < n+ then Mp €jbd M a , M& Cjbd M a , and even Mj> -<jbd M a , namely for all

sufficiently large i < K we have that Mpyi G Ma,;, Mp^ C M^i and Mp^ -< Ma?i.

For every a < //+ and i < K define / a( i) = supMa?i n Â . As we assumed that

Ai > 2/i« = ||Ma,;||, it follows by the regularity of A; that fa(i) 6 A;, for all i < K and

therefore fa € IIA» for all a < fi+.

Furthermore, if /? < a < //+ then from some ia^p < K, onwards Mp^ G M^^ and

therefore (as A C Maii) fp(i) G Ma?i and hence /^(i) < /«(i) on an end segment of K, or

/^ <j6d fa. Thus / = (/a : a < /i+) is increasing in <jbd.

Use Fact 0.2 above to find a bound /* G IIA; to / in <jbd.

Using /* and the coloring c, define pa(i) = c(a, /*(*)) f°r a ^ a < M+ a n ( l z < ^- The

function #a specifies the c-type of a over the sequence (/*(i) : i < «).

As there are only 6K < //+ = cf/i+ many possible such types, we find a function

g* : K —> 6 so that A := {a < /x+ : #a = #*} is unbounded in //+.

Let us find now by induction on ( < //+ an increasing continuous chain of elementary

submodels N = (Na : ( < //+) satisfying:

(0) / iCiV c ^(F( X ,6 )and | | iV c | |= /x

(1) A, <jr* and {Ma^ : a < //+ ,i < AC} belong to No

Let £ = {C < /i+ : C = ^C n A^+}- T h i s i s a c l u b o f Ẑ 4"-

By induction on i < K we choose a strictly increasing sequence of ordinals S{ < fx+

satisfying:

(a) 6{ G &ccE (that is, Si is an accumulation point of E) and

(b) cffc = /i+.

Observe that ^ > s u p j ^ : v < i} for all i < K, because cfSi = fif. This enables us to

choose a(i) G Si\ sup{^ : v < i} for every i < K.



We also observe that if a G N( then Ma^ -< N^ for i < K. Therefore, if ( G E, then

McL,i •< N$ for all a < ( and i < K.

Pick a(*) G A \ sup{<$; : i < K}.

We define now by induction on i < K sets Ai, Bi and an index j(i) < K such that the

following conditions hold:

(a) j(i) > i and ix < i2 =* Ai(il) < fij(i2)

(b) For any two ordinals a < r in the set {8U : v < i} U {au : v < i} U {«(*)} it holds that

Ma -< MT and / a < fT on the end segment (j(0> ^) of /c.

(c) A j C i f i 5i, o t p ^ = /it and Â  G Ms.j(i).

(d) Bi C Aj(i) \ sup{Ai(l/) : v < i}, otp J5i = Ai(i) and B» G M8.^B.) for some j(l?i) < AC.

Also, B^ G M$.j(i) for all 1/ < i.

(e) If a G Ui/<;^ u (a(*)} a n d ^ B , for some z/ < i then c(a,^) = g*(j(v)).

If the induction is carried out successfully, then by (e) it follows that if a G A =

\Ji<KAi U {«(*)} and /3 G B = \Ji<K Bi then c(a,/3) = g*(j(i)) for the (unique) first i

satisfying Xj^ > /3. From (c) and (d) it follows that otp A = /x + 1 and otp£? = /x. Thus

A, B are as required by the theorem.

Suppose, then, that Au, Bu and j(u) are defined for all v < i and satisfy the conditions

above.

Since a(i) > v for every v < i, there is some j(v) < K such that Bu, Au,j(v) G Ma^j

f°r j ^ j{v)- Let jo < ^ be large enough so that Bu,Au,](v) G Ma^j0 for all 1/ < i and

so that /xj0 > \j(u) f°r aU ^ < *"• This can be done as there are less than K many us.

We have, then, Bv G Ma^jQ for all 1/ < i or {2?̂  : u < i} C Ma(i)?:7o. As Ma(i)j0 is

closed under sequences of length at most //+ > K we also have that (J9,, : z/ < i) G Ma(i)Jo.

Similarly, ( ^ : 1/ < t> G Ma(i)?j0 and (J(I/) : 1/ < t) G Afo(i)jio.

Since 6i is an accumulation point of E and has cofinality fif, we can find an increasing

sequence (£€ : e < //+) of elements of E with Co > a(0-

For every (e in the sequence we chose, a(i) G (€ C AT̂ e, and therefore Ma(i)j0 -< AT̂ e

and hence (B^ : i/ < z), (j(^) : v < *) G iV ê.

For every e < [if the ordinal a(*) satisfies in (^(x, G) the following formula y?(x, <̂ e)

(when substituted for x):



(1) tp(x,Q := x e A & x > C€ & (W <

Since all the parameters in this sentence — namely A, {Bu : v < i), (j(v) : v < i), c,

<7* and Ce — belong to iV ê+1 and the latter is an elementary submodel of (i?(x), E), there

is an ordinal 7e € iVCc+1 such that (f(j€,Ce) holds. Clearly, C€ < 7e < Cc+i < **•

Let Â  := {76+1 : e </*+}. We have shown that Af
{ C AH (a(i),<$;) and every a G 4̂J

satisfies that c(a,/3) = g*(j(i)) for the first i such that A^) > /3. Each member of ̂ LJ

belongs to M^^j for some j < K, since 5i C \Jj<KMsij. Because fif > K is regular, there

must be some index j \ < K such that A(i) = A;(i) n M^.^ has cardinality //+. Let A(i)

be the set Ai we need to define. This takes care of the first two parts in (c).

Let j(i) > max{ji, jo} be large enough so that Ai € Af*.̂  and Ms.j(i) •< Afa(+)J(i),

and also such that fsi(j(i)) < /*(J(0)- ^ o w *^e remaining part of (c), (a) and (b) are

also satisfied.

Work now in Ma^)j^y We know that (Au : v < i ) , ^ , a (* ) G Ma^j^) and that

also the function v i-» J"(I/) for i/ <C belongs to Ma^j^, because all functions from K to

AC belong to it.

Therefore the following set is definable in Ma^j^y.

(2) B := {p < Xj{i) : c{a,(5) = g*(j(i)) for all a e [j Av U {a(*)}}

Observe that f*(j(i)) belongs to the set B defined in (2) because (J AU\J{«(*)} C A,

but that since f*{j(i)) > /«,-(j(0) = s uP^i , i ( t ) n^i(O ^ ^ o e s n o t belong to Ms.j(i)). This

shows that B has no bound in M^-j^i) O Aj-̂ ). We conclude, then, that B is unbounded

below Xj(i)i being definable in Msifj(i), if there were a bound to B below A^) there would

be one in MSij(i); but there is not.

Using the same argument as before, we find some j(B) < K such that Bi = B n

Msiyj(B) \ suP{^i(i/) : ^ < «} belongs to M6ij(B) a n ( i has cardinality A ^ . Now (d) and

(e) are also satisfied.

This completes the induction, and the proof as well.
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