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weight of crossing edges, and (b) partitioning the vertices of a weighted
graph into two blocks of equal cardinality, again so as to maximise the
weight of crossing edges. The approach, pioneered by Goemans and
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1 Introduction

Goemans and Williamson [5] have significantly advanced the theory of ap-

proximation algorithms. Previous work on approximation algorithms was

largely dependent on comparing heuristic solution values to that of a Linear

Program (LP) relaxation, either implicitly or explicitly. This was recognised

some time ago by Wolsey [11]. (One significant exception to this general rule

has been the case of Bin Packing.)

The main novelty of [5] is that it uses a Semi-Definite Program (SDP) as

a relaxation. To be more precise let us consider the problem MAX-CUT

studied (among others) in [5]: we are given a vertex set V = {1 , . . . , n) and

non-negative weights w,j, 1 < t,j < n, where Wij = Wjj and w^i = 0 for all

i,j. If S C Vand ~S = V \ S then the weight of the cut (S : 5) is

The aim is to find a cut of maximum weight.

Introducing integer variables yj G { — 1,1} for j G V we can formulate the

MAX CUT problem as

IP: maximise | E i < j ^ j ( l - M i ) ( .

subject to yj e {-1,1}, Vj € V

The key insight of Goemans and Williamson is that instead of converting

this to an integer linear program and then considering the LP relaxation, it

is possible to relax IP directly to the following

SDP: maximise \ Y*%<j Wtj(l - v{ • Vj)

subject to Vj € 5n, Vjf e V



Here Sn = {x G Rn : ||a:|| = 1} is the unit sphere in n dimensions. SDP's are

a special class of convex program (see Alizadeh [1] for a detailed exposition).

In particular the above problem can be replaced by

CP: maximise \ £ f < i w,j(l - Y*j)

subject to Yjj = l, VjeV (2)

Y = [Yifj] y 0

Here Y{j replaces Vi-Vj and the notation Y y 0 indicates that the matrix Y is

constrained to be positive semi-definite; this constraint defines a convex sub-

set of Rn . The idea of Goemans and Williamson is to solve SDP and then

use the following simple (randomised rounding) heuristic to obtain a remark-

ably good solution to MAX-CUT: choose a random hyperplane through the

origin, and partition the vectors vt (and hence the vertex set V) according

to which side of the hyperplane they fall.

This is an exciting new idea and it is important to see in what directions it

can be generalised. In this paper we do so in two ways. First we consider

MAX A:-CUT where the aim is to partition V into k subsets: for a partition

P = PuP2...,PiofVvre let \V\ = £ and

The problem is then

MAXfc-CUT: maximise w(V)

subject to \V\ = k.

Note that MAX fc-CUT has an important interpretation as the search for a

ground state in the anti-ferromagnetic fc-state Potts model: see Welsh [10].



To attack this problem we need to be able to handle variables which can take

on one of k values as opposed to just two, a similar problem to that faced in

trying to colour graphs. Our solution is a natural extension of the existing

solution for the case k = 2, but the performance analysis presents greater

technical difficulties. Karger, Motwani and Sudan [6]have indepenently used

the same partitioning heuristic as us to get improved bounds on approximate

graph colouring.

The simplest heuristic for MAX fc-CUT is just to randomly partition V into

k sets. If V denotes the (random) partition produced and V* denotes the

optimum partition then it is easy to see that

since each edge (i, j) has probability (1 — k"1) of joining vertices in different

sets of the partition.

We describe a (randomised) heuristic fc-CUT which produces a partition 7\ .

We prove the existence of a sequence of constants ajt, k > 2 such that if VI

denotes the optimal partition in MAX fc-CUT then:

Theorem 1

where the ak satisfy

(i) a k > l - k-1;

(ii) a f c-(l-A;-1)~2fc-2 lnfc;

(iii) <*2 > 0-878567, a3 > 0-800217, c*4 > 0-850304, a5 > 0-874243, a1Q >

0-926642, and alQ0 > 0-990625.



The performance ratio for k = 2 is the same as that achieved by Goemans

and Williamson, as our heuristic is a generalisation of theirs.

Our next result concerns the problem MAX BISECTION. Here we have to

partition V into two subsets of equal size (assuming that n is even) so as to

maximise w.

MAX BISECTION: maximise w(V)

subject to V = 5, V \ S

\S\ = n/2.

A random bisection produces an expected guarantee of \. We describe a

heuristic BISECT which produces a partition VB such that if V% denotes

the optimal bisection,

Theorem 2 Let e be a small positive constant. Then E(W(VB)) > P

where /3 = 2(J2(1 — e)c*2 — 1), which is greater than 0-65 for e sufficiently

small

Note that ot^ = 0-878567..., as in Theorem 1. The difficulty with generalis-

ing Goemans and Williamson's heuristic to MAX BISECTION is that their

heuristic does not generally give a bisection of V. We prove that a simple

modification of their basic algorithm beats the trivial | lower bound.

Note that there is a natural generalisation of this problem MAX fc-SECTION

where we seek to partition V into k equal pieces. Unfortunately we cannot

prove that the natural generalisation of our bisection heuristic beats the

1 — k~l lower bound of the simple random selection heuristic when k > 3.



2 MAX fc-CUT

In this section we describe our heuristic fc-CUT. We first describe a suitable

way of modelling variables which can take one of k values. Just allowing yj =

1,2,.. . , k does not easily yield a useful integer program. Instead we allow

yj to be one of k vectors ai, a 2 , . . . , a* defined as follows: take an equilateral

simplex £* in R^"1 with vertices 6i, 62 , . . . , bk. Let ck = (h + b2 H h bk)/k

be the centroid of E* and let a,- = 6, — c^, for 1 < i < k. Finally assume that

Ejt is scaled so that |a t | = 1 for 1 < i < k.

Lemma 1

l), fori^j. (3)

Proof Since a i ,a2 , . . . ,a j . are of unit length we have to show that the

angle between a* and a,j is arccos(—l/(fc — 1)) for i ^ j . Let 6i, 6 2 , . . . , 6̂ —i

lie in the plane Xk-i = 0 and form an equilateral simplex of dimension

k — 2. Let bi = (&J,0) for 1 < i < k — 1, where b\ has dimension fc — 2,

and assume b[ + &'2 + • • • + 6 ' ^ = 0. Then ck = (0 ,0 , . . . ,0,x) and 6* =

(0 ,0 , . . . , 0, kx) for some x > 0. But I&* — cfc| = 1 and so x = l/(k - 1). But

then (bk - ck) • (6i - ck) = -(fc - l)x2 = -l /(fc - 1). •

Note that —l/(k — 1) is the best angle separation we can obtain for k vectors

as we see from:

Lemma 2 / / uu u2,..., uk satisfy \ui\ = 1 for 1 < i < k, and U( • Uj < 7 for

ijzj, theny> -l/(k - 1).

Proof

0 < (ui + u2 + • • • +



< k + k(k-l)t.

Given Lemma 1 we can formulate MAX fc-CUT as follows:

IP*: maximise ^-p £t-<j iw,j(l — y, • yj)

subject to yj e {oj, 02,.. . , a*}.

Here we use the fact that

"" /< = Vj= fo, ify,
y i V j - \ k i f

To obtain our SDP relaxation we replace yi by u,-, where u,- can now be

any vector in Sn. There is a problem in that we can have Vi • Vj — —1

whereas y,- • yj > —l/(k — 1). We need therefore to add the constraint

Vi • Vj > —l/(k — 1). We obtain

SDP*.: maximise ^ J2i<j w,-j(l - vt • Vj)

subject to Vj e 5 n , Vj (4)

Note that (4) reduces to the linear constraint Yij > —1/(A; — 1) if we go to

the convex programming form CP. We can now describe our heuristic

Jfc-CUT:

Step 1 solve the problem SDP* to obtain vectors vijV2,...,vn € Sn.

Step 2 choose k random vectors zi, z*i,..., 2*.



Step 3 partition V according to which of z\, z<i,..., Zk is closest to each Vj,

i.e., let V = Pi, P2, • -., Pfc be defined by

Pt = {j : Vj • Zi > Vj • ztv for i ^ i '}, for 1 < i < fc.

(Break ties for the minimum arbitrarily: they occur with probability

zero!)

The most natural way of choosing 21,22,... ,z* *s t o choose them inde-

pendently at random from Sn. Forcing \zi\ = 1 complicates the analysis

marginally and so we let Zj = (^ij,^2j» • • • >^nj)> 1 < J < ^ where the

Zij are fcn independent samples from a (standard) normal distribution with

mean 0 and variance 1. When k = 2 we have the heuristic of Goemans

and Williamson, although they define it in terms of cutting Sn by a random

hyperplane through the origin.

Let Wk denote the weight of the partition produced by the heuristic, let W£

be the weight of the optimal partition and let Wk denote the maximum value

of SDPfc. Putting yj = at- for j 6 Pt-, 1 < i < k we see that

E(W*) = 5>yPrfo# y i ) . (5)

Now by symmetry Pr(y; ^ yj) depends only on the angle 8 between t;,- and Vj,

and hence on p = cos8 = Vi • Vj. Let this separation probability be denoted

by $k(p)- It then follows from (5) that

E(Wk)

- wk



where

mmmm r 7 r .
-i/(*-i)<p<i (A: - 1)(1 - p)

We leave the estimation of the ak to an appendix (see Corollaries 1, 2, and

3). Suffice it to say that they satisfy the claims of Theorem 1.

3 MAX BISECTION

We now describe how to ensure that the partition we obtain divides V into

equal parts. As an integer program we can express MAX BISECTION as

IPB: maximise \ £ t < i w«j(l - Jfcjfr)

subject to £;<i y{yj < -n/2 (6)

y ; € { - l , l } V j € V

Constraint (6) expresses the fact that we force |5 | = n/2 by maximising the

number of pairs i, j where i 6 5,j ^ S. It has the advantage of being easily

relaxed to give an SDP problem:

SDPB: maximise ~ J2i<j ti>tj(l ~ Vi • Vj)

subject to Y,i<j vi • Vj < —n/2 (7)

VjESn, VjeV

We can now describe our heuristic: 6 is a small positive constant, e = 1/100

is small enough.

BISECT



Step 1 solve the problem SDPB to obtain vectors v\, v2,... ,vn G Sn.

Repeat Steps 2-4 below for t = 1,2,... K = K(e) = \e~l In 6"1] and output

the best partition St, V \ St found in Step 4.

Step 2 choose 2 random vectors zi, z2.

Step 3 let Ŝ  = {j : Vj • z\ < Vj • z2}-

Step 4 suppose (w.l.o.g.) that \St\ > n/2. For each i € S* let C(0 =

T,j?st
wij a»d let 5 t = { ^ I , ^ , - - - , ^ } where C(^i) > C M > ' >

) . Let St =

Clearly the construction in Step 4 satisfies

In order to analyse the quality of the final partition we define two sets of

random variables.

Xt = w(St :V\St), l<t<K.

Yt = 15,1(71-15,1), \<t<K.

Recall that V*B denotes the optimum bisection, and let W* > w(Vg) denote

the maximum of SDPB. Then, by the analysis of Theorem 1 (or [5]),

E(Xt) > a2W*. (9)

Also

> «2iV,

10



where N = n2f4 (note the use of (7) here.)

Thus if

1 W* N

then

E(Zt) > 2a2. (10)

On the other hand

Zt < 2, (11)

since Xt < W* and Yt < N.

Define ZT = maxi<t<^{Z(}. Now (10) and (11) imply that for any e > 0

< 2(1 - e)a2) < 1 a

1 - (1 - e)a2

and so

for the given choice of K(e). Assume that

ZT > 2(1 - e)a2 (12)

and suppose

XT = \W*.

which from (10) and (12) implies

YT > (2(1 - e)a2 - \)N. (13)

Suppose \ST\ = 6n; then (13) implies

6(1 -6)> (2(1 - e)a2 - A)/4. (14)

11



Applying (8) and (14) we see that

w(ST:V\ST) > w(ST:V\ST)/(26)

> \W*/(26)

> (2(1 - e)a2 -

> 2(^2(1 - e)a2 - \)W\

The last inequality follows from simple calculus.

Thus

E(w(ST)) > 2(^2(1 - e)a2 -

> 2(^2(1 -

Finally note that the partition output by BISECT is at least as good as ST.

We divide e above by 3 to get the precise result.

4 Appendix

Let u,v be vectors, and r\,..., r*. be a sequence of vectors, all in Rn. We say

that u and v are separated by r i , . . . , r* if the vector rz- minimising u • rt- is

distinct from the vector rj minimising V-TJ. When we speak of a random vec-

tor, we mean a vector r = (£i,.. . , fn) whose coordinates & are independent,

normally distributed random variables with mean 0 and variance 1. Note

that the probability density function of r is (27r)~n/2 exp(-(£f + h O/2)>

and in particular is spherically symmetric.

Denote by g(x) = (2TT)"'1^2 exp(—x2/2) the probability density function of the

univariate normal distribution, and by G(x) = /f ^ #(£) d£ the corresponding

12



cumulative distribution function. For i = 1,2,..., the normalised Hermite

polynomials <&( •) are defined by

(is)

Let h{ denote the expectation of 4>i(xmax), where rcmax is distributed as the

maximum of a sequence of k independent normally distributed random vari-

ables.

Lemma 3 Suppose u,v e R n are unit vectors at angle 6, and r i , . . . , r *

is a sequence of random vectors. Let p = cos0 = u • v, and denote by

Nk(p) = 1 — d>jb(p) the probability that u and v are not separated by r i , . . . , r*.

Then the Taylor series expansion

= a0

of Nk(p) about the point p = 0 converges for all p in the range \p\ < 1. 27ie

coefficients at- o/ i/ie expansion are all non-negative, and their sum converges

to Nk(l) = 1. TAe /irsi i/iree coefficients are a0 = I/A:, a\ = /if/(A: — 1) and

Proof We begin by computing the joint distribution of x = u-r and y = v-r,

where r = ( ^ , . . . , fn) is a random vector. Since the density function of r is

spherically symmetric, this joint distribution is dependent on 6 only, and not

on the particular choice of u and v\ for convenience let u = (1 ,0 , . . . , 0) and

13



v = (cos 6, sin 6,0,..., 0). Then

Pr(u -r <x and t; • r < y)

= Pr(£i < x and £1 cosfl + ^sin^ < y)

= — / / exp - - i —

where we have applied the change of coordinates £i = £i and 2̂ = ^i cos 6 +

£2sin0. The joint probability density function of x = u • r and y = v • r is

thus

2 ( 1 -

where p = cos^; this is the probability density function of the bivariate

normal distribution in standard form, with correlation p = cosO. Denote by

F(x,y;p)=fX f f(t,rr,p)dr,dt

the corresponding cumulative distribution function.

Let r i , . . . , Tk be independent random vectors; then

Vx{u and v are not separated by r i , . . . , r^)

= k x Pi(u • r\ = maxu • rt and t; • r\ = maxv • Vj)

= /°° f°° f(x,y;p)F(x,y;p)k-1dxdy.
J—oo J—oo

where

There is no expression for the integral I(p) in closed form, so we compute

instead a Taylor series expansion for I(p) about p = 0 using ideas (and

14



notation) from Bofinger and Bofinger [2]. The Mehler expansion [9] of the

bivariate normal probability density function

f(x, y; p) = g(x)g(y)(l + p & ( s ) & ( y ) + P2<h{x)<h{y) + • • • ) , (16)

converges uniformly for \p\ < 1. Three facts that follow easily from the

Mehler expansion and definition (15) of the Hermite polynomials are:

^ ) , (17)

(is)

and

(19)
dp1

We now evaluate I(p) and its successive derivatives with respect to p at the

point p = 0 by noting that F(x, y; 0) and f(xy y; 0) factorise into G(x)G(y)

and g(x)g(y), respectively. In this way we obtain a Taylor series expansion

for I{p) about the point p = 0. We defer an examination of the radius of

convergence of this Taylor expansion to the end of the proof.

Starting with / itself, we have

1(0) = (J' 9(x)G(x)k-ldxy = 1 , (20)

where the second equality can be seen by interpreting the integral as the

probability that the maximum of a sequence of k independent normally dis-

tributed is achieved by the first variable.1

1 Integration will be assumed to be over the infinite line when the limits of integration
are omitted.
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= (Jg{x)^(x)G(x)h-1 dxf + (k-l) (Jg(x)2G(x)k-2

By identities (18) and (19),

dp

(Passing the derivative through the integral is justified by Section 1.88 of

Titchmarsh's text on analysis of functions [8].) The first integral is simply

h\/k; the second may be simplified using integration by parts, and iden-

tity (17):

g(x)(g(x)G(x)k-2)dx = dx

hi

k(k-iy
Substituting these expressions for the two integrals yields

d~p

Differentiating with respect to p a second time, we obtain

(21)

a2/
dp2

/>=0

+ •%( Jt* ^ M > I I I f n \ HI* I ft\-4 I T * I f ^ 1 *Y*

-2)(Jg(x)3G(x)k-3dx\ .

The first integral is just h2/k. The second, using integration by parts and

identity (17), is

j{g{x)<j>x(x))(g{x)G{x)k-2)dx = —j^j J(-V2g(x)<f>2^))G(x)k-1 dx

16



A further application of integration by parts reduces the third integral to the

second, from which

Jg(xfG(x)k-* =

Substituting these expressions for the three integrals yields

d2i

V*2 *2( fc 1) *2(* 1)(* 2 ) / 2

2/if
y§ r\Z \ h»Z \?£\k* 1 1 k*^lh* 1 if I* 0\ I (L* 1 if t* Oi
\J Is —f\ \ rVllv JL I A / I A / -*- / V **' ^ I / \ " / "̂  / V ^* ~ I

(22)

In principle the process of repeated differentiation by p could be continued

indefinitely; for any i, the ith derivative of I{p) evaluated at p = 0 is a positive

linear combination of squares of one-dimensional integrals. This observation,

combined with (20), (21), and (22) establishes the claims concerning the

Taylor expansion of /(/>).

It remains to show that the Taylor expansion of I(p) is valid for \p\ < 1 and

hence — by continuity of I(p) at p = 1 and the fact that all terms in the

expansion are positive — for \p\ < 1. Observe that /(/>) is defined by an

integral of the form

(23)

where Si(x}y) = Y,ljLifUj{x,y) is a sum of terms Uj{x,y), and each term

tij(x, y) is a product of factors of the form g{x)g{y)(l)i{x)(f>i(y). Now / / \Uj(x, y)\ dx dy <

2.6, since / \g(x)cl)i(x)\dx < 1.6 and max* \g(x)<j>i(x)\ < 1 for all /. (These

facts follow from the key inequality on page 324 of Sansone's treatise on

orthogonal functions [7], which bounds |<£/(#)| by cexp(—x2/4) for an ab-

solute constant c; note, however, that the bound given by Sansone is for

un-normalised Hermite polynomials.) Noting that nt- = O(ik~~l), we see that

17



the sum

t=0 j=0

converges, provided \p\ < 1. Thus — by uniform convergence of the Mehler

expansion, and the theorems contained in Sections 1.71 and 1.77 of Titch-

marsh [8] — it is permissible to integrate (23) term by term, yielding

t=0

The above expression is a power series expansion of I(p) valid for \p\ < 1,

which must be identical to the Taylor expansion, by uniqueness. •

Denote by Ak(p) the function

Ak(p) =

and recall that the performance ratio of the fc-CUT heuristic is given by

ak = min^ Ak(p).

C o r o l l a r y 1 ak > 1 - k"1, for all k>2.

Proof At p = 0, the numerator and denominator of Ak(p) are both k — 1;

at p = 1 they are both 0. Since the power series expansion of Nk(p) has only

positive terms, the numerator is a concave function in the range 0 < p < 1,

and hence Ak(p) > 1 in that range.

Turning to the case p < 0, note that Nk(l) = 1 and Nk(-l) = 0 implies

Hi evenaf = \\ furthermore, since h\{k) increases with k and /ii(3) =

18



(using calculations described by David in [3, Section 3.2]), we have ai >

9/4TT(A: - 1). Therefore,

- k 4*(k - 1) 2 " k

where the second inequality is valid over the range —l/(k — 1) < p < 0, since

9/4TT - 1/2 > 1/5; hence

It is easily verified that the above expression is strictly greater than 1 — A:""1

over the closed interval —l/(h — 1) < p < 0. •

Corollary 2 ak - (1 - k~l) - 2Ar2lnfc.

Proof Galambos [4, Section 2.3.2], gives the asymptotic distribution of

the maximum of k independent, normally distributed random variables. In

particular the quantity h\(k), which is just the expectation of the maximum,

satisfies hi (k) ~ \/2 In k. Thus we have the asymptotic estimate

Nk(p) = 1 - I + (1 + e(k)) ̂ -p + 0{P%

where e(k) is a function tending to 0, as k —> oo. The result follows by

arguments used in the proof of the previous corollary. •

Corollary 3 a2 > 0-878567, a3 > 0-800217, a4 > 0-850304, a6 > 0-874243,

<*io > 0-926642, and a100 > 0-990625.

Proof The value of a2 was obtained by Goemans and Williamson. For

k > 3, we use the bound Nk(p) < 1 — l/k + a\p + a2p
2 + />4/2, valid for

19



— 1 < p < 0, and evaluate a\ and a<i numerically. (Observe that the coefficient

of (? is positive, and hence the term itself makes a negative contribution.)

Note that by computing further terms in the Taylor expansion of Nk(p) it is

possible to give better bounds on a*; e.g., by expanding to the term in p4,

we obtain a3 > 0-832718. •
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