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Abstract

We consider a probabilistic model, due to Lander and Waterman
and to Alizadeh, Karp, Newberg and Weisser, for the physical map-
ping of DNA molecules. Within this model, we answer precisely a
question of Alizadeh et al concerning the minimum number of probes
required to reconstruct the entire ordering of a given clone library with
high probability. We also examine the related problem of determining
the least number of probes required to construct a "spine" for the
library. We give a fairly precise characterization for this number.
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1 Introduction

The objective of many efforts in molecular biology, including the Human
Genome project, is to sequence chromosomal DNA, i.e. to obtain the se-
quence of A, C, T or G nucleotides which constitute one strand of each
molecule. This may be a complex task since, for example, in a typical human
chromosome there are on the order of 108 nucleotides, and the whole genome
comprises 23 pairs of chromosomes. Modelling this combinatorial complexity
leads to interesting mathematical and computer science problems. See [6].

A sub-goal of DNA sequencing is often to construct a physical map, which
specifies the location of specific identifiable fragments on the molecule. In the
usual procedures for physical mapping, it is necessary to extract information
from fragments of the molecule called clones. These might typically contain
about 104 nucleotides. A clone library is a collection of clones covering one or
more molecules of interest, for example the human genome. One approach to
physical mapping is to locate (by hybridization) the occurrence of short se-
quences called probes within the clones. See [2]. In practice, the identification
process may also involve errors, which further complicates matters.

Lander and Waterman [4] proposed a probabilistic model for the location
of clones in physical mapping. Their model was refined by Alizadeh, Karp,
Newberg and Weisser [2] to encompass the occurrence of probes within clones.
We will describe the model in detail in Section 2.

Assuming this model, the question was posed in [2] and [6] as to how many
probes are required to correctly order a given clone library, even assuming
that the data is error-free. ^Frorn the probabilistic viewpoint, the question
concerns the existence of a "threshold" [1]. In Section 4 we will answer
this question precisely. ^From a practical viewpoint, the numbers required
are fairly discouraging. Therefore, in Section 5, we will describe and exam-
ine a natural related problem, having a more modest objective than that of
ordering the entire clone library. Again we can give reasonably precise char-
acterizations for the numbers of probes required. For this second problem,
in contrast with the first, the numbers required are rather more encouraging
for the practitioner.

n^er^iy L!h**ar?es



2 The model

Let V = {1,2,... , n}. Then we will consider the following model:

(a) The genome is represented by the interval [0,L],

(b) There is a library of n clones, each being an interval C, (i € V) of unit
length with Ct C [0,L].

(c) The left end-points of the clones Xi (i € V) are independently and
uniformly distributed in [0, L — 1]. We assume that the X, are ordered
in increasing order. (Note that with probability 1 no two Xi are equal
in this model.) We will say Ct is "to the right" of Cj if X{ > Xjy

otherwise "to the left".

(d) There are m probes, and the occurrences of each probe form a Poisson
process with rate A on [0,L]. These m Poisson processes are mutually
independent.

We are interested in the case where L is large, and order-of-magnitude state-
ments will be as L —• oo. Thus we will use the phrase "with high probability"
in respect of any event to mean that its probability is 1 — o(l).

The problem is to correctly identify the ordering of the clones in the library
using only the information contained in the probes. Thus for each clone and
each probe we are told whether the clone contains the probe. The information
can be represented as a n x m 0-1 matrix. (See, for example, [2] for more
details.) We wish to determine the minimum number of probes which will
allow us to correctly order the entire library. Assuming the above model,
we answer this question precisely in Section 4, as follows. Let Po(n) be the
probability that n clones form one connected component, and p\(n) be the
probability that there is a unique order for all the clones consistent with
the probe information. Clearly pi(n) < po(n). Let us call n(L) minimal if
Po(n) —> 1, but, for any n\L) such that lim^^oo n'(L)/n(L) < 1, we have
Po(n') "-+ 0- Then we show that

Theorem 1 Let n(L) be minimal, and let m = /3(n)n log n as n —» oo, then



(ii) IfP(n) -+ P, a constant, px(n) -> exp{-eA/(2/?A)}.

(Hi) IfP(n) -> oo, pi(n) -> 1.

Note that this number is in fact rather large, about nlogn. Therefore, in
Section 5 we examine a more modest objective: that we correctly order a
connected subset of the library which covers "almost all" of the genome. We
call this a spine of the clone library.

Remark We will see that we need n = L(logL+loglogL+a>) where LJ —> oo
with n. Our proof of Theorem 1 is given only for u = o(logL), but the reader
may check that when u = 7 log L, Theorem 1 remains true with the exception
that the limit in case (ii) is increased by a factor (7 + 1).

3 Preliminaries

Let Xo = 0, Xn+i = L and Z, = Xt- — Xt_i (i = 1,... ,n + 1). Suppose
Wi (i = l , . . . ,n + 1) are independently and identically distributed unit
exponentials. Then [5, p.75]

T = i y 4, Wi+w («' = l , . . . ,n + l) (1)
L W1 + h irn+i

Thus we are interested in the quantity T == ]C"ii Wj- Now T has probability
density function e~Hn/n\ and

i=o

Using this, we can show by standard estimations (see for example Alon and
Spencer [1]) that

Pr(|T/(n + 1) - 1| > e) < 2e-t2n'4/c (0 < e < 1).



Hence, for large n, T/(n + 1) will naturally tend to be very close to 1. For

example, putting e = 4^/logn/n gives

Pr(|T/(n + 1) - 1| > 4v/logn/n) = o(l/n3),

and so

Pr
(•• (n

- 1 = o(l/n3)

Hence with high probability all Zt can be approximated by LWi/n to relative

error O(y logn/n). We will use this approximation where appropriate.

Now observe that there is a "gap" in the coverage if Zt- > 1. However, letting
6 = Ayjlogn/n,

Pr(Vi:Z,->l) < Pr(Vi: W{ < (1 + e)n/L) + o(l/n3)

Now suppose n = L(logL + log log L + u) for some u/, we have

Pr(Vi : Zi < 1) < exp(-(l - o(l))e^) + o(l/L3).

Thus, if a; —* —oo, with high probability there will exist a gap. On the other
hand, an almost identical calculation gives

Pr(Vi: Zi < 1) > exp(-(l + o(l))e^) - o(l/L3),

so if u) —• oo, with high probability there will exist no gap. Hence constant
u is the threshold for connectivity of the clones. This result is well known
in different contexts, see [3] and the references contained therein. Note that
ordering will be impossible if the clone library is not connected since, no
matter how many probes are used, there will be know way of detecting the
order in which the disconnected pieces should be placed. Thus, to ensure
connectivity with high probability, we must have u; —• oo. Note now that, in
our earlier definition, the clone library is minimal if and only if u> = o(logn).
However, most of our proofs are easily modifed for the case u = il(log n). The



details are left to the reader. However, in practice, clone libraries are designed
to provide small constant coverage of the genome, with a coverage factor of
about five, say. In the model, fc-times coverage of an interval including most
of the genome corresponds to taking n(L) at around L(logL + k log log L),
or u) at about (k — l)loglogL. (See, by comparison, [3].) Thus this region
of greatest interest for u falls well within the scope of our results.

It will be observed, that in this model, short segments at either end of the
genome will (with probability 1) be uncovered by any clone. This is a small
deficiency in the model which we ignore, assuming that these segments are
to be handled separately.

4 Threshold

Let m = (5n\ogn. We show that the threshold for sequencing the entire set
of clones occurs at constant /?, and hence prove Theorem 1.

Let Ii denote the set of probes which fall in clone C, (i € V). Consider the
collection Dt of all difference sets Aj,t = Ij \ Ii for t,jf G V and i ^ j , and
let Djj = \Ajyi\. We show first that with high probability adjacent clones
have smaller difference sets than disjoint clones. We prove this is a slightly
stronger form than is needed here, for use in Section 5.

Lemma 1 Let 6 be such that (i) 6 = o(u/logn) and (ii) J(logn)/n = o(6).

Let D*(6) = me"A(l - e~A)(l - 6), and m(n) be such that (logn)/<52 = o(rn)
as n —•> oo. Then, for every i € V, with high probability

A+i,t < D* and mm{Djyi : Cj n d = 0} > D*.

Proof Let 6' be such that 8 = o{8') and 6' = o(u/\ogn). Then

Pr(Vi: Zi < 1 - <!>') > Pr(Vt : W{ < (1 - 26')n/L) - o(l/n3)
> ( l - e - ( 1 - 3 ^ l o ^ ^ ) ) w

- e - " / V ) + o(l/n3)



for large L. Thus, assume that all Zt < 1 - 6'. Now, if Cj D C, = 0, then
probes fall in / , \ /; independently Hence we have

Pr(3i,i : Dj,i < D*) < n2exp{-±£2me-A(l - e"A)} =

On the other hand, probes fall in A+i,, independently with probability dom-
inated by

But, for large enough n, (1 - \6'/(ex - 1))(1 + 6) < (1 - 6). Thus

Pr(A+M > D*) < nexp{~(i - o(l))62me'x(l - e~A)} =

D

Thus, all information concerning the ordering of the clones is contained in
the "small" sets in the Dt. Let us define a minimal set in X>, to be one which
is not properly contained in any other set in 2?,-. Let

Mi = {A e Vi; : A is minimal and |A| < D*}.

Now consider the graph G = (V,E), where {i,j} € 1? if either AJ)t- G Mi or
A,-j- G Af j . We now prove the crucial properties of G.

Lemma 2 With high probability {i, k} is not an edge for all \k — i\ > 2.

Proof Suppose the Lemma is false, and let us assume without loss that
k > i+2 and A t̂- € Mi. (The case k < i—2 is symmetric.) Hence C^nC,- ^ 0
by Lemma 1. Suppose i <j < k. Then C,- C CkUd. Hence /,- C JfcU/t-. Thus
-0 \ /i Q h \ U) i-e« Aj,i C Ajb,,* and we must have A t̂- = Ajb)t- by minimality.
Hence Ar?t- = At+i,t- for all i < r < k. We have four successively overlapping
intervals Ct-,Cj+i,Ct+2?Crt+3- The expected total number of quadruples of
successively overlapping intervals is at most

n(n - l)(n - 2)(n - 3) n^



Given such a quadruple, let w = Zt-+i,x = Zi+2,y = ^t+3- If the quadruple
satisfies At-+i,t- = At+2,« = At-+3,t-, then every probe which falls in [X,-+i +
l,X1+3 + 1] must also fall in [X,,X t+i + 1]. This has probability

Thus the event E\ that there exists any quadruple meeting this condition
satisfies

^ f'dw f1 dx f1 dy(l -
L 6 Jo Jo Jo

= ^ f'dw f dx f dy(l - iAe"2A(x + y))m + ^n"1)
L° Jo JO JO

where a = n""1/2,

< t z t d w f dx f ^(! - \te~2\x + y))m

L° Jo JO JO

< ^- f dw( T e " ^ 2 ^ where b = \e~2X/2,
L3 Jo \Jo }

D

Lemma 3 With high probability {i, i + 1} is an edge for i = 1 ,2, . . . , n — 1.

Proof Otherwise there exists an i such that At+i>t- ^ Mi and A^+i £ Mi+i.
This only occurs if, for some i, At-_i,t- C A,+iit- and At-+2,t+i C A,-if-+i. Let us
call this event £2> and let w = Z^x = Zi+\,y = Zt+2. As in Lemma 2, we
have a quadruple of sets which overlap in succession, and if £2 occurs, every
probe which falls in either [Xt_i,Xt] or [Xi+i + l,Xt-+2 + 1] must also fall
in [Xi,Xi+i + 1]. This has probability (1 - e-A(1+*>(l - e-*(™+y)))m Hence,
similarly to Lemma 2,

^ f'dw f1 dx fl dy{l - e-A(1+*>(l - e-M«+ir)))m = Q (\°V»\
L6 Jo Jo Jo \ n J



•
Prom Lemmas 2 and 3, we see that G will be a path with the possible
exception of cases where an edge of the form {i, i + 2} exists. If such an
edge exists then, unless {i — l,t + 1} is also present, G decomposes into
two smaller graphs joined by the bridge {i — 1,*}- Hence we can recursively
subdivide the order-reconstruction problem. The only difficulty occurs when
both {i — 1, i +1} and {i, i + 2} are present, since then it is not clear whether
i + 1 should be placed before or after i. Let £3 be the event that this happens
for some i, let £|f) be the event {/,+i = /,} and £4 = UIU^S0. Note that
£4 = {A,-+i>t = A,7,+i = 0}. Clearly, if £4 occurs, we cannot order all the
clones, since there will be a pair Ct, C,+i which could be ordered incorrectly
but consistently with the data. On the other hand, if £3 does not occur, then
we have argued that ordering is possible. (And is, in fact, achievable by a
simple polynomial time algorithm). Clearly £4 implies £3, since if Jt+i = Jt

then Af-|f-_i = A,-+ijt-_i and A^+2 = Aj+i^+2- We now show that the converse
is almost always true.

Lemma 4 Pr(£3 \ £4) = o(l).

Proof We will use the notation from the proof of Lemma 3. If £3 occurs,
then for some i, the following two events occur.

(i) Either A,-_i>t-+i G A<t+i or Af-+i,,-_i € M ' - i ,
(ii) Either Al+2,,- € Mi or Af?1+2 € Mi+2-

Reasoning as in Lemmas 2 and 3, this gives four possible cases:

(a) For some i, At-_ijt-+i = At-,t-+i and At-+2,t = A,+i,t-. Call this event £a.
we see that every probe which falls in either [-X,-_i, X(] or [Xi+i + 1 , J\Tt+2 +1]
must also fall in [Xi,Xi+i + 1]. The probability of this was bounded by
O(log n/n) in the proof of Lemma 3. Thus Pr(£a) = O(logn/n).

(b) For some i, At-_i>t-+i = At-,t+i and At-,t-+2 = A,-+i,t-+2- Call this event
£&. We see that every probe which falls in [X,-_i,X,-] falls in [J\Tt-,Xt+i + 1]
and every probe which falls in [Xt-, Xi+i] falls in [Xt+i, Xi+2 + 1]- Thus every
probe which falls in [Xt_i, X t+i] falls in [X,-+i,Xt-+2 +1] . But the probability



of this event can bounded as in the proof of Lemma 2. Thus

dx f dy{\ - e-^+*\l - «-*•+•>))"• = 0
Jo

[ f y{ \ )) ()
o Jo \ n J

(c) For some i, A,-+i,t-_i = At-,,-_i and At+2,t = At-+i,,-. This event, £c say, is
simply the reverse (in clone ordering) of £&, and hence Pr(£c) = O(logn/n).

(d) For some i, At-+i,t-_i = A ^ - i and A,-,t-+2 = A,-+i,,-+2. Call this event
£%\ for given i, and let £d = U ^ i ^ i 0 - N o t e t h a t SJp C £$\ so we must
estimate more carefully than above. If £^ occurs, then every probe which
falls in [X{ + l,Xt-+i + 1] falls in [X,_i,Xt- + 1] and every probe which falls
in [X,-,Xt+i] falls in [Xt+i,X,+2 + 1]- The probability of this event is

since the following two events are disjoint. A given probe falls

(i) in [Xi + l ,X J + i + 1] and not in [Xt_i,Xt- + 1].

(ii) in [Xt-,Xt+i] and not in [X t + i ,X t + 2 + 1].

Let Nd be the number of events £)p which occur. Then, using the exponential
approximation to the distribution of the Zj (j = i, i + 1, i + 2), and writing
a = n/L = logL + loglogL + a;,

E(Nd) «

n J°° J°° J°° (l - (1 - e-Xx)(e-*1+w>> + e-*1^))™ a V ^ * ^ dw dxdy

w n J°° r J°° exp (-m\e-\e-Xw + e~Xy)x) a3e~a(w+x+y) dw dx dy

roo roo a2e~a(W~*~y}
= na / / —-—T7—r r-r dw dy

Jo Jo m\e~x(e-Xw + e"A^) + a
n a roo roo a2e-a(w+y)

« —;—r / / —r T-dwdy
m\e~x Jo Jo e~Xw + e~xy

m\e-x Jo Jo e~Xw/a + e~xy/a W y

10



—:—r.~ (since a —> oo with n)

A

(since a « logn, m = fin log n).

Now let N be the number of events £, which occur. The event 8^ occurs
if and only if there is no probe in [Xiy Xi+i] which is not in [Xt+i, Xt+i + 1]
and no probe in [X{ + l,X,-+i + 1] which is not in [XuXi + 1]. Thus, using
disjointness as in (d) above,

E(N) « n /°°(1 - 2e~A(l - e-Xz)mae~Xzdz
Jo

too

« n I

~ 2mAe"A

eA

But this is asymptotically equal to E(iV<f). Now £4 C £3 , and hence

Pr(£3n£4) < Pr f U (̂ 3° n £4
(t)))

<

= E(Nd)-E(N)

We have therefore shown that, asymptotically, ordering depends on the oc-
curence or otherwise of £4, and that the expected number of such events is
eA/(2/?A). We now complete the proof of Theorem 1. •

Lemma 5 Pr(£4) -> exp{-eA/(2/?A)} as n -^ 00.

11



Proof Let // = E(JV) = ex/(2/3\). Then Pr(£t) « /x/n. Let us say C, misses
Ci if Cj U Cj+\ does not meet C, U C,+i. Let i/t be the number of Cj which
do not miss a given Ct. Then if £ = [10 log n], say,

Pr(mpi/t- > 40 log n) < 4 L J T 7

Thus we may assume max,*/, < 40logn. But, for given i and j such that
Ci does not miss Cj, a calculation similar to that in part (a) of the proof
of Lemma 4 gives Pr(£t n £,) = O(l/m2). Thus P r ^ | £•) = 0(n/m2)
However, if Ci misses Cj then £t, £j are independent. Consider £ 5 Pr (flies ^i)
over all sets S size k for constant fc. If Ct- misses Cj for all i,j G 5 then
Pr(rii€5^t) ^ (A4/72)^- Hence the contribution to the sum from these terms
is /j,k/k\, since there are about nk/k\ such sets. However if S contains two
sets that do not miss, let r be the maximum number of i G S such that the
Ci miss one another. The contribution from such sets is then at most

Hence, for k = 1,2,3,..., we have

S:\S\=k

Then, by inclusion-exclusion,

D

Hence, we have Theorem 1 for constant /?. For ft —> oo slowly enough, we
therefore have Pr(£4) —• 1, and for (3 —> 0 slowly enough, we have Pr(£4) —>
0. Theorem 1 now follows by observing that the probability that we can
reconstruct the clone ordering is monotone in the number of probes for a
fixed number of clones.

12



5 Constructing a spine

In this section, we consider the problem of constructing a spine, i.e. a subset
of the clone library which is correctly ordered and covers the genome, with
the exception only of regions of length o(l) at either end as L —» oo. We will
show that this requires considerably fewer probes than in Section 4, since we
are not obliged to give any ordering information on the clones which are not
in the spine. We will show that m = o(log3 L) probes will always suffice, and
that G(logL) probes are both necessary and sufficient for this task.

Suppose dOCj 7̂  0, and Xj—Xi = x. Then Djj is binomial with parameters
ra, e~"A(l — e~Xx). Let us write /i(x) = me~x(l — e~~Aar) for the expected value.
Clearly fx(x) is an increasing function of x.

Let 6 = o(S') and 6' = o(u/\ogn) as in Lemma 1, and also let e be such that
e = o(£'), and 6 = o(e). Then, for each i 6 V, define

Si = {j : ri*2) < DJ4 < //(I - 6)}.

Now consider the following algorithm for finding an ordered subset of the
clones.

(0) Pick any clone C t l , and find a j \ e S( such that Djuix is maximum.
Place clone Cjx adjacent to Ctl in the chosen subset. Let i <— %uj «— jl%

(1) If there is A; € Sj such that £>,•,* > Dj^ and D^t- > £>j,j, pick one such
that Dkj is maximum. Place clone Ck adjacent to Cj on the opposite
side from Ct- in the chosen subset. Let i <— jy j <— k and repeat this
step.

(2) Otherwise reverse direction. Let j <— i\, i —̂ j i . Repeat step (1) until
the loop terminates again, then stop.

Theorem 2 Ifm(n) is such that logn/62 = o(m), then with high probability
the algorithm will succeed in correctly determining a linear order on a subset
of the clones. Futhermore, if S is the set of clone numbers in the chosen

13



subset, then \S\ = 0(L) and

-Xi< 62
y Xn - maxX,- < 62.

j£S

We will prove the theorem in the following sequence of Lemmas.

Lemma 6 If j G Si, then d 0 Cj ^ 0.

Proof This follows directly from Lemma 1. •

Lemma 7 If Xn - X{ > 62, then S{ ^ 0.

Proof Note that /i(l — e) > D*(6'), as in Lemma 1. Thus, if i ^ n, there is
a least one j (i.e. i + 1) such that Djj < fi(l — 6). Also, //(e2) ^ m\e~xe2 <
\m\e-x6f2 « |/i(<5/2). Thus, if X, - X{ > 6n for any ij, then

Hence

Px(3i,j : X,- - Xi > 612 and Di(t- < //(e2)) < n
2 e x p ( - | ( i ) V ( ^ ) )

since logn = 2

Thus if Si = 0, we may assume X, - Xi < 6'2 for all j such that Ct- fl Cj-^ 0.
Let Xj be maximum such that Xj < Xi +1. Clearly J\Tj+i ^ [J\Tj, Xt- +1], and
thus if j < n we have Zj+\ > 1 — £'2, contradicting the proof of Lemma 1. •

Lemma 8 If Xn — Xj > 62, there will exist a choice for k in step (1) of the
algorithm.

Proof We have /i(62) « m\e~xe2 > 2m\e^xS2 « 2//(*2). If Xj - Xt- < 62 for
any i, j with j G 5,-, then

> //(e2)) < exp(-i//(62)).

14



Hence,

Pr(3i,i : Xj - Xt < 62 and D^ > //(e2)) < n2 exp(-^(62)) = o(l),

since since logn = O(/J,(62)). Thus we may assume that Xj - X( > 62. If
j ^ n, from Lemma 7 there will exist a k G Sj, and we will have Xk-Xj > 62.

First suppose C, D Ck # 0, so C, n C,- D Cfc # 0. Then A,,* C Al>fc, thus
Djjk > Diik only if AJ)fc = A,,*. But since X,- - Xt > 62 and X* - Xj < 1,
the existence of such an i, j and k has probability less than

n3(l - e"2A(l - e-X62))m

Similarly, since Xk - Xj > 62 and Xj - Xt < 1, n3 Pr(Di)(- > Dkyi) = o(l).

Suppose finally, that C,-n Cfc = 0. Now £)_,,,- < fi(l - e) < £>*(£), since i € S"j.
But, from Lemma 1, D*,, > I>*(<5), so £>*,, > D i ) t . Similarly Di>k > D*(6).
Let e' be such that e' = o(e) and 5 = ©(e7). Then ]i{\ - e) < (1 - ^ ( l - e'),
so if Xk - Xj > 1 - e7, then

Pv(DkJ < /x(l - «)) < e x p H e ' ^ l - e')) = o(n"2).

Inflating the right side of the above inequality by n2 deals with the existence
of any such pair A;, j . Since Dkj > Dkj we may now assume Xk — Xj < 1 — e7.
But D*{6) > (1 + OK 1 - O>'so

> D*(6))) < exp(- i^( l - 0 ) = o(n~2),

and inflation by n2 can be used as previously. •

Lemma 9 It is correct to place Ck on the opposite side of Cj from C*.

Proof Suppose Xk < X{ < Xj. Then, since k € Sj, we have Ck ClCj ^ Q
and hence Ct fl Cj n C^ 7̂  0. But then Dj^ > A,Jb a contradiction.

Thus suppose X( < Xk < Xj. Then, since j G 5,-, we have d CiCj ^ 0 and
hence Ct- fl C,- PI Ck ^ 0. But then Z)jjt- > £)fcjt-, again a contradiction. •

Theorem 2 now follows. We see that when we are building the subset from
"left to right", we cannot terminate until we have encountered a Cj such that

15



Xn — Xj < 62. Similarly, by symmetry, when we are building the subset from
right to left, we cannot terminate until we have encountered a Cj such that
Xj — X\ < 62. Thus we have only to verify the claim concerning the number
of clones selected.

Lemma 10 The algorithm will select O(L) clones.

Proof We will merely sketch the method, leaving the routine calculations
to the reader.

Let j G B if and only if there is no k for which Xj + 5 < Xk < Xj + 1 . Then,
since Pv(Xi > L - 2) = 1/(L - 1),

n ( l - ^ - ) + O(l/L) < nexp(-i(a;+logn)) + 0 ( l / L ) = o{n2'*).

Thus Pr(|J5| > n2/3) = o(l). If j i B, let k be such that Xj + \<Xk<
Xj; + | . By straightforward calculations we obtain

Pr(Dfcj- < /<e2)) = o(n"2), Pv(Dk<j > /i(l - e)) = o(n~2).

Thus with high probability we will have k G Sj in all such cases.

Now, if Xj + - < Xk < Xj + I and Xi < Xj, similar calculations give

Thus k will be a valid selection in step (1).

However, if £ G Sj is such that Xe < Xj +1, then letting t = \{n{\) + /i(|)),
further calculations show

Pi(Dej >t) = o(n-2), Pv(Dkd < t) = o(n"2),

so with high probability 2}^ < JD^J. Thus if j ^ B, the maximization in
step (1) will ensure that we choose k so that Xk — Xj > \.

Now suppose the algorithm chooses g clones Ct- with i £ B, and 6 with i e B .
Then these cover an interval of length at least \{g — 1) < L, so g < 4L + 1.
Thus the total number selected is

g + b < AL + 1 + n2 /3 = O(L).
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•
Note that if m(n) = u'logn/62 and 6 = u//logn, where u/ = o(u) but
a/ —• oo, then

m = log3 n/c/ = o(log3 n).

Thus o(log3 n) clones will always suffice. On the other hand, suppose u =
logn/\/Z7, where a;7 tends arbitrarily slowly to infinity. Thus the the number
of clones is "maximally minimal". Then letting 6 = 1/u/, say, gives m =
(u/)3logn, so we need a little more than logn probes.

We also have the following

Corollary 1 / / m{n) = log3 n, then \JjeS Cj = U^i Q.

Proof First suppose u = O(\/logn). Take 6 = u//logn, where u/ = O(UJ)
but u/ —> oo. Thus log3n probes suffice, and 62 = o(l/logn). Hence

Pr(Zn < 62) = 1 - exp(-(l + o(l))(f)2 logn) = o(l),

and thus, by Lemma 8, the loop in algorithm must terminate with j = n.
Similarly for the reverse direction.

Now if y/\ogn = o(o;), take 6 = 1/u;. Then a little greater than a;2logn =
o(log3n) probes suffice, and again 62 = o(l/logn). The remainder of the
argument is as before. •

Thus, with log3 n probes, we guarantee to cover the entire interval represented
in the clone library with high probability .

Although our proofs are given only for LJ = o(logL), similar methods extend
to faster growing values of a;. However, we may deduce from the above that,
if we take u = G(logL), O(logn) probes will suffice. We use the following
simple Lemma.

Lemma 11 Let f(n),g{n) be positive functions. Iff = o{h) for all positive
h{n) such that g = o{h) as n —> oo, then f = O(g).

Proof If / 7̂  O(g), there is an increasing sequence ct- —• oo such that for
all i, there exists nt- such that /(n t) > c,-̂ (nf-). Assume without loss that nt-
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is nondecreasing, and define h by h(n) = Cig(n) if nt- < n < n,-+i. Clearly
g = o(/i), so / = o(/i). Thus /(n t) < ctflf(nt) for large i, a contradiction. •

Lemma 12 Let e > 0. Ifn(L) > (1 + £)logL, t/ien O(logn) profees suffice
to determine the spine.

Proof For a fixed number of probes m, the algorithm above clearly cannot
have smaller probability of success with a larger number of clones. Thus the
number ra(n) required for any given probability of success is nondecreasing
with n. Thus, if m* is the number required when n = (1 + £)LlogL, m* <
ra(n) for all n such that u = o(logn). Let h be arbitrary such that logn =
o(ft), and let r = (/i/logn)1/6. Thus r —> oo. Let u = logn/r, <5 = 1/r2,
and m = r5logn. Then Theorem 2 applies, and hence m* < m = o(/i). We
now apply Lemma 11, with g = logn, / = m* to complete the proof. •

On the other hand, we have the following simple lower bound.

Lemma 13 At least LlogL clones and log2 L probes are necessary to deter-
mine a spine.

Proof We need LlogL clones for connectedness, without which we clearly
cannot determine a spine. Any spine must obviously have at least L clones.
Since it is unambiguously ordered, no two clones can contain the same set
of probes. Now, with m probes, there are at most 2m different sets. Thus
2m > L. •

We may sumarise these results in the following "optimality theorem".

Theorem 3 n = G(LlogL) clones and m = 0(logL) probes are necessary
and sufficient to determine a spine.
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