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FUZZY LOGIC AND CATEGORIES OF FUZZY SETS

OSWALD WYLER

Introduction

This paper deals with three topics:
1. Fuzzy logic,
2. Categories of fuzzy sets,
3. Logic of fuzzy subsets.
While much of its contents can be found in my book [17] and in the existing

literature, it also includes new results and a large amount of unpublished folk-
lore. There is also a section discusssing a formal language for fuzzy logic, with
interpretations of formulas. Thus I believe that this coherent and not too tech-
nical survey of fuzzy logic and categories of fuzzy sets is useful. I have tried to
make the paper reasonably self-contained, except that I use the basic language
of categories freely. Proofs in Sections 1 and 2 are mostly omitted; they are
usually straightforward or can be found in the given references.

When L. ZADEH [18] introduced fuzzy sets, he regarded fuzzy sets essentially
as "crisp" sets with a [0,1]-valued membership degree function. Membership
degrees were soon perceived as truth-values, and this called for a fuzzy logic,
with truth-values in the unit interval. ZADEH used Lukasiewicz logic for propo-
sition al connectives, without saying why, and most users of fuzzy logic have
followed his example. There have been claims in the literature that Lukasiewicz
logic must be used in certain applications, but these claims do not stand up to
scrutiny.

As J. GOGUEN [6] soon pointed out, there is no mathematical need to use the
real unit interval as set of truth-values, or to use Lukasiewicz logic. For technical
reasons, truth-values must form a complete lattice, and preferably a complete
Heyting algebra. This puts intuitionistic logic at our disposal, but it does not
exclude non-intuitionistic propositional connectives and logics. We note that
every order-complete chain, and in particular the real unit interval [0,1], is a
complete Heyting algebra. Open sets of a topological space form a complete
Heyting algebra, and every finite Heyting algebra is of this type, up to an
isomorphism of Heyting algebras.
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In some respects, logic and set theory are Siamese twins. Set operations are
based on logical connectives and quantifiers, and these connectives and quan-
tifiers can be retrieved from the set operations. We cannot lay a foundation
for fuzzy sets without fuzzy logic, and a language for fuzzy logic is based on a
category of fuzzy sets.

Everybody working with fuzzy sets seems to agree that fuzzy sets are crisp
sets with additional structure, and that this additional structure includes a
degree of membership function with values in a complete lattice H. For the
categorically minded, fuzzy sets are the objects of a category, and this category
should be as set-like as possible. J. GOGUEN [6] was the first, but by no means
the last author to present such a category, and it seems likely that there is no
single category of fuzzy sets which satisfies all needs. There are basic questions
which have not yet been answered to everybody's satisfaction. Two of these
questions ask: how fuzzy should things be? Should equality be fuzzy or crisp?
And should morphisms be crisp maps, extensional maps, or fuzzy functions?
Another important question: what should the underlying fuzzy logic of our set
theory be?

We do not try to answer the first two of these three questions; thus Section 2
presents six categories of fuzzy sets, each equipped with fuzzy logic, from which
the reader can choose. On the other hand, we do not leave the choice of logics
open; we base our categories on intuitionistic logic. This needs some discussion.

When we choose a lattice H of truth-values for membership degrees, then
meets and joins in H define standard conjunction and disjunction. If H is com-
plete, then infima and suprema in H define universal and existential quantifiers
which generalize standard conjunction and disjunction. By basic principles, im-
plication should be right adjoint to conjunction, and this right adjoint exists
if H is a Heyting algebra. The standard logic thus obtained is intuitionistic,
it is always there, and it agrees with the basic categorical constructions. Other
logics can also be obtained and used, depending on the choice of H, but basing
a category of fuzzy sets on a non-intuitionistic logic seems to lead to complica-
tions. There may be gains justifying these complications, but I do not see them
at this time. Another point is that categories with intuitionistic fuzzy logic may
serve as models for categories with a non-standard fuzzy logic.

A sufficiently set-like category has an internal logic. This logic is intuition-
istic when it exists, but it may not be what we want and need. For example,
the internal logic of Goguen*s category of H- valued fuzzy sets is always crisp,
i.e. classical with just two truth-values. L.N. STOUT [16] has shown a way out
of this seeming contradiction. A generalization of Stout's theory, based on a
notion of fuzzy subset, was obtained in [17]. For the six categories constructed
in Section 2, we present this theory in Section 3.

In Section 2, we justify or motivate axioms for fuzzy sets and maps by
translating them informally into a first-order language. Section 4 tries to un-
dergird this by introducing an appropriate first-order language, modelled on the
MITCHELL—BENABOU language of topos theory, with interpretations in an un-



derlying category of fuzzy sets. The description of such a language is of course
just a starting point. Syntax and semantics of the language should be worked
out, with particular attention to validity of statements, but this is beyond the
scope of the present paper.

We use standard notations as much as possible, but a few remarks on nota-
tions may be in order.

For a product Ax B in a category C, and for morphisms / : X —• A and
g : X —• B, we denote by (/, g) the unique morphism of C characterized by

P* if,9) = /> 9° if>9) = 9,

for the projections A^-A x B-^B of the product.
We use the notation 5 C T, as introduced by G. PEANO [12], for subset

inclusion, including the case S C 5 . There is usually no need for a "proper
subset" notation.

Notations like f(A) and f"1(B) for direct and inverse images are too am-
bigouous to be acceptable, and we replace them by the following. For a function
/ : 5 —» T between sets, and for subsets A of S and B of T, we denote by

r{A) = {f{x) \xeA} and r(B) = [x € A \ f(x) € B}

the direct image of A and the inverse image of B by / . This defines functions
/ - : PS —> PT and /*" : PT —• PS between the powersets PS and PT.

Parentheses in function-value notation f(x) are often superfluous, and it
can be convenient to omit them. We shall always omit unnecessary parentheses
for arguments of functors, and we usually omit the parentheses for direct images
f~*A and inverse images f*~~B.

1. Fuzzy Propositional Connectives and Quantifiers

1.1. Generalities. Fuzzy logic deals with statements which have truth-
values in a complete lattice H, and preferably in a complete Hey ting algebra.
The standard choice for H is the real unit interval [0,1]. Nothing in the theory
of fuzzy sets prevents the use of another lattice of truth-values; this may in
fact be desirable for certain applications. Products [0, l ] n are an example, with
lists (*!,-••,<„) of real numbers 0 < U < 1 as truth-values. Open sets of a
topological space form a complete Heyting algebra, and Boolean algebras are
special Heyting algebras. Decreasing subsets of a preordered set are open sets
for a topology; this special case delivers all finite distributive lattices.

We do not deal with modal logic in this paper. Thus if o is a binary propo-
sitional connective, then the truth-value of a statement (p o ip will depend only
on the truth-values of (p and tp. This generalizes to other connectives, and it



means that we can introduce propositional connectives as operations on the set
H of truth-values.

1.2. Standard connectives. We recall that a lattice is an ordered set,
or "poset", in which every finite subset has an infimum, also called its meet,
and a supremum or join. Thus every lattice H has a greatest element (meet
of the empty subset), which we denote by T, and a least element _L. These
elements represent nullary propositional connectives "true" and "false". Any
two elements p, q of H have a meet pAq and a join pVq. Viewed as propositional
connectives, V is standard disjunction, and A standard conjunction.

A lattice H is called complete if every subset of H has a supremum in H,
and a Heyting algebra if we can define standard implication p —• q for all p, q
in H by requiring

t <p—>q iff t Ag < g,

for all t in H. This leads to standard negation, defined by

-*P = P -+ ±

for p £ H. A complete lattice H is a (complete) Heyting algebra if and only if
H satisfies the infinite distributive law

1.3. Other connectives. There is a general agreement that a fuzzy propo-
sitional connective, restricted to the crisp subalgebra {J_,T} of H, should re-
duce to the corresponding crisp or "classical" connective. With this in mind;
we define a fuzzy conjunction as a commutative and associative order preserving
binary operation & on H which satisfies T & p = p = p&T for all p 6 H.

There is also general agreement that fuzzy implication => should be right
adjoint to fuzzy conjunction &, i.e. that for p,q in H > we must have

iff

for all t in H. This determines p =̂  g uniquely. It is well known that a fuzzy
conjunction & admits a right adjoint implication p=^#, defined for all ptq
in JT, if and only if & satisfies the infinite distributive law

for all p in H and all families (g») of elements in if. A fuzzy conjunction which
satisfies this law is also called a t-norm.



Fuzzy negation ~p is always defined by

J L .

Thus q < ~p for p, q in if iff p & g = -L.
There is less agreement on how to connect a fuzzy disjunction with a fuzzy

conjunction &. We shall not need fuzzy disjunction; thus we do not discuss it
here.

1.4. Examples and comments. For the unit interval [0,1], standard
conjunction and implication are given by

(1) p A q = min(p, q) and p -> q = j J ^thlwUe.

Lukasiewicz conjunction and implication are given by:

(2) pkq = max(p + g - 1,0) and p=> g = min(l,g - p + 1) ,

and a third example is given by:

(3) p k q = pq and p => g = j J / p

In these three examples, conjunction is continuous, but implication is only
continuous for Lukasiewicz logic. It is a reasonable conjecture that Lukasiewicz
conjunction is the only *-norm in [0,1] for which both conjunction and impli-
cation are continuous.

This raises the question: how important is continuity of [0,1]-valued propo-
sition al connectives? We observe that every tf-norm is continuous from below
by 1.3.(1). All implications satisfy the laws

(\/pi) =* q = /\(Pi => q) and p => (/ \ qi) = /\(p => q{) .
t t s »

Thus p =$• q is continuous from below in p, and continuous from above in q.
We observe also that continuity only makes sense in the special case H = [0,1],
where it is based on order. In the general theory, only order matters.

Standard conjunction is idempotent: p A p = p for p G H. Non-standard
conjunctions and t-norms usually are not idempotent, but this does not seem
to be tremendously important. Non-commutative conjunctions and t-norms
have also been proposed, but the ensuing complications in fuzzy logic have not
been fully investigated. We would need two implications, one right adjoint to
functors pfz —, and one right adjoint to functors — & p , and the troubles just
begin with this.



1.5. Quantifiers. F.W. LAWVERE [9] observed, and practitioners of fuzzy
logic agree, that existential quantification is left adjoint, and universal quantifi-
cation right adjoint, to substitution. This determines existential and universal
quantifiers 3/ and V/ for morphisms, not just for variables.

In the setting of fuzzy logic, mappings 5 —• H for a set 5 form a com-
plete Heyting algebra Hs, with order and operations defined point-wise. For a
mapping / : 5 —• X1, substituting f(x) with x G S for y G T means that we
replace h : B —• H by hf:A—>H. This defines an operator from HT to Hs,
denoted by /*" : h »—• hf, which preserves order, suprema and infima, and all
propositional connectives defined pointwise.

We assign to / : S —• T quantification maps

3f:H
s-+ HT and V, : Hs — HT ,

left and right adjoint to /*", by requiring

3fa<(3 <=> a< f^/3 and /? < V, a <=> /*"/? < a,

for a : S —• H and 0 : T -> H. As a < f-/3 iff always a(x) < j3(y) for
y = f(x), we get

(1) (3 /a ) (y)= \ / a(x)

for y G T. A similar argument shows that

(2) (V/a)(y)= / \ a(x)
/(*)=y

for j / G T .
We note that in particular

(3, a)(y) = \ / a(x, y) and (V, a)(y) = / \ a(x, y) ,

for y ET and the projection q : S xT —* T. Thus 3g and Vg are quantifiers
(3x) and (Vx).

1.6. Formal laws. With fuzzy implication =£• right adjoint to fuzzy
conjunction &, every formal law for & produces a formal law for =>. From

we get

1.6.1. T=>p = p, and p=>q = T iff p <q.

Since p & q is monotone increasing in p amd q, we have

1.6.2. p k. q < p A q, and p —* g < p => q.
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The associative law for k, is equivalent to

1.6.3. (p&g)=»r = p => (q => r).

The idempotent law pkp = p, which is usually not satisfied for t-norms,
states that p < p = ^ g i f f p < g , but there is no similar simple translation
for the commutative law for &. This fact has led to the consideration of non-
commutative <-norms. However, the commutative law for & is often used, as
e.g. for the following formal laws.

1.6.4. p < (p=> q)=> q; in particular p < ~~p.

PROOF. We claim that p k, (p => q) < q, and we observe that

{p^q)kp<q iff P=>q<P=>q>

which is always true.

1.6.5. ph (p=>q) < q, and (p => q) & (q => r) < p=> r.

Fuzzy equivalence is defined by

We note some basic properties of this connective.

1.6.6. (i)
(ii) p&q = q&p.
(iii) (p <& q) & (q <& r) <

We note that there are two kinds of logical equivalence for fuzzy logic.
A statement "<p iff ^" means that (p is valid iff x/> is valid. Validity of a state-
ment <p & ip is stronger; it means that <p and tp always have the same truth-
value. We also note that validity of statements ip^ty or <p&xl> depends only
on the truth-values of (p and tp; and not on the particular t-norm & used for
=> and O .

We need standard connectives for two useful laws.

1.6.7. (i)
(ii) pA(p->q) = pA(p<-+q) = pAq.

The infinite distributive laws for k, and => can be stated as equivalences:

1.6.8. If x does not occur in a statement <p, then
(i) <pk(3x)rP & (3*)(^&V),
(ii) ( 3 * ) ^ = ^ <* (Vz)(V> =**>),
(iii) <p=>(Vx)iP o (Vs)(^=*V0,

for any statement ip.



1.7. Theorem. For every pullback square

P V > T

I-
S -f-> U

in Set, we iave g*~3j = 3vu*~ and g*~Vj = Vvtz4"".

PROOF. Let a : S -+ H. By the definitions,

fo-3/a)(y)= V <*(*)> a n d (3,^a)(t/)= \ / a(tiz),

for y E T. Now t/(z) = x induces a bijection between z E P with v(z) = y, and
x £ S with / (x) = ^(y). Thus the two suprema range over the same values,
proving the first assertion. Taking right adjoints, we get /*~V^ = Vuv"*". This
is the second equation with / and g, and u and v, interchanged.

2. Categories of Fuzzy Sets

2.1. Fuzzy and totally fuzzy sets. Throughout this section, we use fuzzy
logic informally, with truth-values in a complete Heyting algebra H. A fuzzy
set A will have fuzzy membership degrees 6A(Z), and a totally fuzzy set A will
have fuzzy equality 6a(x,y).

Thus we define an H-valued fuzzy set as a pair A = ( m , ^ ) , consisting
of a (crisp) set \A\ and a membership degree mapping €A ' \A\ —• H, with no
further conditions. We regard ^ ( x ) , for x E \A\, as truth-value of a statement
x 6 A, An //"-valued totally fuzzy set is defined as a pair A = ( |J4 | ,£A) ,

consisting of a (crisp) set |̂ 4| and a fuzzy equality mapping 6A > \A\ x |̂ 4| —» H,
subject to the two conditions of symmetry and transitivity:

2.1.1. 6A(x,y) = 6A(v,x),
2.1.2. 6A(z, y) A 6A(y, z) < 6A(x, z),

for all x,y,z in |^4|.
With 6>i(x,y) regarded as truth-value of a statement x =A J/> these axioms

say that the statements

x =>i y
and x =A y A y =A z => x =A

are valid for variables x,y, z of type A.
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2.2. H-sets and discrete # - se t s . A totally fuzzy set A has a fuzzy set
structure eA , given by putting

eA(x) = SA(x,x)

for x E |i4|, or in other words by requiring that

xeA <?=> x=Ax,

is valid for a variable x of type A. It follows easily that

for x,y in |A |, or in other words that

x —A y = > x € AAy € B ,

is valid for variables x, y of type A.
H-valued totally fuzzy sets will also be called H-sets.
On the other hand, we can regard fuzzy sets as totally fuzzy sets, with

We shall call JET-sets with this property discrete if-sets.

2.3. The category Setdc H > This is the category introduced by J. Go-
GUEN [6], with crisp equality and crisp morphisms. Its objects are discrete fuzzy
sets, and a morphism / : A —• B of Setdc H is a mapping / : \A\ —+ |B| of the
underlying crisp sets with

eA(x)<eB(f(x)),

for all x G |-<4|, or in other words such that

z € A => f(x) e B ,

is valid for a variable x of type A. Composition of morphisms is composition
of the underlying mappings.

It is easily seen that Set<*c H is a topological category over sets in the sense
of [1], with small fibres. Thus Setdc H is complete and cocomplete, with limits
and colimits lifted from sets. The forgetful functor from Set^c H to sets has
a concrete left adjoint V and a concrete right adjoint C, assigning to every
set 5 the void fuzzy set VS with Svs(z) = -L, and the crisp set CS with
ecs(*) = T,tot xeS.

It is well known, and proved e.g. in [17], that SetdcH is a quasitopos. This
fact does not help us much for fuzzy logic since Set<*c H shares with all topolog-
ical categories over sets the property that its internal logic is crisp. Overcoming
this handicap has been a strong motivation for STOUT'S theory of fuzzy subsets.



2.4. Settc H: totally fuzzy sets and crisp maps. We define a map or
crisp map f : A —> B of i/-sets as a mapping / : |A| —• |B| such that

,X') < 6B(fxJxf)

for x,x' in |A|, or in other words such that

x =A x1 => /(*) =B fix1)

is valid for variables x,x' of type A. It follows easily that

eA{x) < eB(fx), or x € A ==> f(x) e B ,

for x in \A\.
With composition of underlying mappings as composition, if-sets and their

maps form a concrete category over sets which we denote by S e t t c # . This
is a topological category over sets, not previously discussed in the literature,
with SetdcH as a full concrete subcategory. The full embedding / : Set<jci7 —*•
Settc if has a concrete right adjoint J, with 3A for an H-set A obtained by

^ -L otherwise.

The full embedding / also preserves all collectively injective initial sources, and
hence all categorical limits. Thus I also has a left adjoint (and left inverse)
K : SettcH —• SetdcH. If = is the equivalence relation on \A\ generated
by the pairs (x,x ;) with 6A(X,X') ^ J_, then the unit TJA ' A —• IK A is the
quotient mapping \A\ —• \A\/ = , with

£KA(V) = y £A(X)

for ye \KA\.

2.5. Finite products. Every categogy of fuzzy sets has a terminal object,
or empty product, which we denote by 1, with |1 | a singleton {•} , with fuzzy
membership CA{*) = T.

The product A x B of if-sets 4̂ and B is given by

1,4x51 = |>l|x|B|,
and 6Ay.B{{x,y),{x',y')) = 6A(x,x') A6B(y,y')

for x,x' in |^| and y, y1 in |B| . Projections of this product are the projections
oi\A\*\B\.

It is easily seen that this defines products A x B in the categorical sense,
for all six categories of fuzzy sets considered in this paper; see 2.16 below.
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2.6. Fuzzy relations. We define a fuzzy relation on an H-set A as a
mapping a :\A\—> H which satisfies the following inequalities:

2.6.1. a(x) < eA(x) for x £ \A\, and
2.6.2. a(x) A6A(x,x') < a(x') for x,x' in \A\.

This means that we require the validity of

a(x) = ^ x € A , and a(x) A (x =A %') => a(x') ,

for variables x,x' of type A We note that 2.6.2 is equivalent to

a(x)A6A(xix
f) = aOOA^z,*'),

for x,x' in \A\.
With pointwise order, a < /? iff a(x) < /?(x) for every x € \A\y fuzzy

relations on A form a complete lattice which we denote by HA. Arbitrary
suprema \Ji a,-, and nonempty infima fa a,-, in HA are obtained pointwise,
and eA is the top element of HA. It follows easily that HA is a complete
Heyting algebra, with implication given by

for every x E |J4|. We shall discuss this further in 3.8 and 3.9.

2.7. Binary fuzy relations. For H-sets A and 5 , a binary fuzzy relation
p : A —• B is defined as a fuzzy relation p o n i x B . We regard />(x,y) as
the truth-value of a statement xpy. The defining inequalities for relations then
become statements

xpy = > x e AAy e B ,

and xpy A x =A *> A j/ = B y' => x'py',

valid for variables x,x' of type A and y,y' of type B.
Fuzzy relations p : A —• B and a : B —+ C can be composed, with

(<r o p)(x, z) = \J (p(x, y) A <r(y, z))
ye\B\

for x G \A\ and z € |C|. This means that

x((T o p)z <=> (By)(xpy A

is valid, for variables x, y, z of types 4̂, B, C. Using the distributivity of A over
V in the complete Heyting algebra H, one sees easily that this defines a binary
relation a © p : A —• C. Composition is associative, and fuzzy equalities are
identity relations 6A : A —> A. Thus we have a category of if-sets and fuzzy
relations.
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Every fuzzy relation p : A —• B has a dual fuzzy relation pop : B —• A,
given by

pop(y>*) = p(*,y),
for x £ \A\ and y £ \B\. Dual relations satisfy (pop)op = p, and

(<7 o p)°P = pOp • (T°P

if either composition is defined.
Fuzzy relations on an H-set B can also be regarded as binary fuzzy relations

B —• 1. With this convention, we have a useful lemma.

2.7.1. Lemma. If p,cr : A —• J3 are binary fuzzy relations such that
(3 o p = f3 Q <r for all /3 in HB, then p-a.

PROOF. For ft = £B(2/»—) with y £ | 5 | , the compositions are p(—,y) and

2.8. Special fuzzy relations. For H-sets A and J5, binary fuzzy relations
/> : -4 —• J5 form a complete Hey ting algebra HAxB, with order and suprema
defined point-wise. It is easily seen that composition of relations satisfies infinite
distributive laws

NA ° # ) and

valid whenever either side is defined.
We say that p : A —• B is:
single-valued if always p(x, y) A p(x, t/) < 65(1/, y'),
injective if always />(«, y) A p(x',y) <8A{X, X') ,
totai if always \/y p(x, y) = ̂ ( x ) ,
surjective if always V* P(x> v) = ^B(J/) •

These properties are clearly dual in pairs. We note that a fuzzy relation p :
A-+B is

single-valued iff p 0 p°v < 6B ,
injective iff pop © p < 6A ,
total iff pop 0 p>6Ai

surjective iff p 0 p°P > 63 •
The first two inequalities are almost immediate; the other two inequalities take
a bit longer to prove.

It follows easily that all four classes of fuzzy relations are closed under com-
position and include all equality relation. We note that p 0 pop =.63 iff p is
single-valued and surjective, and that pop 0 p = 6A iff p is injective and total.

2.9. SettfH: totally fuzzy sets and fuzzy functions. For H-sets A
and B, we define a fuzzy function p : A—+ B as a single-valued and total fuzzy
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relation. Identity relations are fuzzy functions, and the relational composition
of fuzzy functions p : A —• B and a : B —• C is a fuzzy function <xp : A —• C.
Thus H-sets and fuzzy functions define a category which we denote by Set*/ H.
This category was introduced by D. HIGGS in a widely circulated but never
published preprint [7], and denoted by Set H. It has also been studied in detail
by M. FOURMAN and D. SCOTT in [4].

2.10. We note two useful special properties of fuzzy functions.

Proposition, (i) It p : A —> B is a total and a : A —• B a single-valued
fuzzy relation, with p < <r, then p = cr.

(ii) If cr o p = 6A and p o a = 6B , with p : A —> B and <r : B —+ A both
single-valued or both total fuzzy relations, then a = po p , and p and <r are
surjective and injective fuzzy functions.

PROOF. For (i), we have

<r<<Topopop<ao<Topop<p.

For (ii) with p and or total, we have

a < pop o p o a = pop , and pop < />op o (rop O <T = cr.

The proof for p and cr single-valued is similar.

2.11. S e t t e # : Totally fuzzy sets and extensional maps. One trouble
with maps of H-sets is that they are not always extensional, i.e. the statement

Q/x){x€A=*f(x)=Bg(x))

may be valid for distinct maps fyg : A —+ B. We say that crisp maps / , g :
A-+ B are extensionally equal if the displayed statement is valid, i.e. if

£A(X) < 6B(f(x),g(*))

for all x € \A\. Extensional equality clearly is an equivalence relation; we define
an extensional map [f] : A —* B as an equivalence class of a map / : A —• B
for this relation. We note that extensional maps were called crisp in [17]. With
composition [g][f] = [gf] if gf is defined, totally fuzzy sets and extensional
maps form a category which we denote by SetteH.

This category has been constructed in two different ways. From a map
/ : A —• B, we can construct the set Rf of all pairs (x,y) in \A\ x |J5| with
CA(X) < ^ B ( / ( ^ ) , J/)« D. PONASSE [14, 15] characterized sets R of this form by
the following three properties:

(i) For x in \A\, there is always y in \B\ with (x,y) £ R,
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(ii) If (:r,y) 6 R and (x'yy
f) e.R, then 6A(x}x') < 8B{y,y')>

(iii) If (x,y) £ R and eA(x) < 6B{y,y')> then (x,y ;) E i i ,
and used them as morphisms R : A —•> B of totally fuzzy sets. A set R satisfying
these conditions always contains graphs of mappings / : \A\ —• \B\. These
mappings are crisp maps / : A —• B, with R = Rj, and Rj = Rf iff / and
/ ' are extensionally equal. Composition is given by RgR/ = iJ^/, for maps
f :A-> B and g :B ->C.

PONASSE called Settc«7, with J denoting the complete Heyting algebra of
truth-values, a category of totally fuzzy sets (ensembles totalement flous) and
denoted it by JTF.

2.12. Fuzzy functions induced by crisp maps. The second construction
is due to G.P. MONRO [11]. From a mapping / : \A\ —* |B|, we construct
(/) : \A\ x\B\-+H by

</)(*,») = **(«) A M/(*),y),
for (x,y) 6 \A\ x \B\. We say that (/) is induced by / , and note the following
result.

Lemma. (/) is a fuzzy function from A to B if and only if f is a map from
A to B, and (/) = {/'), for maps f,f':A-+B,ifff and f are extensionally
equal. Moreover, id^ induces 6A, and (g)(f) = {gf) if a composition gf of
maps is defined.

MONRO defined the category M o d # of H-valued models as the subcate-
gory of Set if = SettjH with non-empty if-sets as objects, and with fuzzy
functions (/) induced by crisp maps as morphisms. In view of the Lemma
just stated, we replace extensional maps by induced fuzzy functions, replacing
[/] : A -> B by (/) : A - • B for a map / : A -* B. With these replace-
ments, SetteH without the empty set becomes MONRO'S subcategory Modi f
of Set H. We note that

((7 0 </»(*,*) = ^(X) A *( / (*) ,*) ,

for (x, z) G \A\ x |C|, if / : A —• B is a crisp map and <r : B —• C a fuzzy
function.

2.13. Singletons. We say that a fuzzy relation /? on a totally fuzzy set
B is a singleton on B if /?, considered as a binary fuzzy relation B —• 1,
is injective, i.e. if

/?(y)A/?(y') <6B(v,y')

for all j/,y' in |B| . With £sB(<r) = Vy<=l£| ̂ fa)' a n d

T) = \ / ((r(y)Ar(y)) = £5B(<T)A / \ (*(y) «-> r(y)) ,
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for singletons <r, r on B, singletons on B form an H-set. We denote this H-set
by SB.

Regarded as fuzzy relations /? : 1 —• B, singletons on B are partial maps:
single-valued but not necessarily total.

Every mapping £s(y,—) : | £ | —• # is a singleton on B, and

>—) :B-+SB

defines a map s : £ —• SB, with

= <r(y) = ($)(y,c

for y E |i?|, a singleton <r on 2?, and the induced fuzzy function (s) of s. It fol-
lows that {$) is injective and surjective, and thus an isomorphism of Set*/ H
with inverse (s)o p , but not necessarily an isomorphism in S e t t e # .

For a fuzzy function p : A —• B, the mappings p(x,—) : \B\ —• H, for
# € |A| are singletons on -B. It is easily seen that this defines a map

r : x •-• p (x ,—) : J4 —• SB ,

with (r)(x, s(y)) = p(x, j/) for (ar, y) in |̂ 4| x \B\. Conversely, if y> : A —* SB in
Settj H, then <p = (5) 0 /? for a unique p : A —> B, and hence y> = (r) for the
map r : A —• 5 B obtained above from p. Thus every morphism y? : A —̂  5 B
in Sette H is induced by a map, and composition by ($) defines a bijection
between morphisms p : 4̂ —• B in Sett/ # and morphisms (r) : A —• 5JB in
Sette # . This bijection is clearly natural in A; thus H-sets of singletons define
a right adjoint of the embedding Set t e H —• Sett/ if.

2.14. Six categories of fuzzy sets. In addition to the four categories
already described, we have a category S e t ^ i f of discrete .ff-sets and exten-
sional maps, and a category Setdj H of discrete i7-sets and fuzzy functions.
The latter category was introduced by M. EYTAN [3], who denoted it by FuziJ.

The six categories can be arranged in a commutative diagram

SetdeH •

I I
if 1- Sette H • Set t / H

of categories and functors. In this diagram, the vertical arrows are full em-
beddings, and the horizontal arrows are bijective on objects. The horizontal
arrows at left are full, but not faithful, and the horizontal arrows at right are
embeddings, but not full embeddings.
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2.15. Void fuzzy sets. We say that an H-set A is void if €A(X) = J- f°r

all |x| 6 A. A void H-set is necessarily discrete, and there is a void set A with
|J4| = S for every crisp set 5 . The empty H-set is void.

For a void H-set A and an H-set B, there is exactly one fuzzy relation £ :
A —> f?, with C(z> y) = ± for all (x, y) in \A\ x \B\, This relation is an injective
fuzzy function, and surjective iff B is void. Every mapping / : |J4| —• \B\ is a
map f : A —> B with (/) = £. It follows that all void sets are isomorphic in
Sett/ H and in Set# H, and initial objects of these categories.

If p : A —+ B is a fuzzy function with I? void, then A is void, and /> an
isomorphism in Setdj H and Settj H.

The situation is more complicated for Set*e H and Set^c H. In these cat-
egories, only the empty set is an initial object. All non-empty void sets are
isomorphic, with exactly one morphism to any non-empty iiT-set, but there is
no morphism from a non-empty object to the empty fuzzy set.

We conclude from this discussion that it is always safe, and in the extensional
case definitely a simplification, to remove the empty fuzzy set from categories
of fuzzy sets with extensional maps or fuzzy functions as morphisms. If we
do so, we must modify the functors in 2.14 from categories with crisp maps to
categories with extensional maps or fuzzy functions, by 0 •—• 0 for a specified
non-empty void H-set 0.

2.16. Adjunctions and finite limits. We have already described in 2.4
the left and right adjoint functors of the full embedding SetdcH —+ SettcH,
and in 2.13 the right adjoint S of the embedding SetteH —• Sett/ H.

Two crisp maps f>g : A —• B of discrete if-sets are extensionally equal
if and only if / (x) = g(x) for all x £ \A\ with €A(X) ^ J-. It follows easily
that the functor SetdcH —> SetdeH has a left adjoint R, if the empty set is
removed from Setde H, with RA obtained for a non-empty discrete fuzzy set
A by removing all x in \A\ with £A(X) = J-j with SRA{B) = £A(X) f°r *-lie
remaining elements of |yl|. For an extensional map (/) : A —• B, the map R(f)
is the restriction of / : \A\ —• \B\ to \RA\ and \RB\.

For special Heyting algebras H, there may be other adjunctions related to
the diagram of 2.14, but we shall not discuss them.

Finite products are constructed in the same way in all six categories of 2.14,
and hence preserved by all functors in the diagram of 2.14. For fuzzy functions
p : C —• A and a : C —• B, we get (p, a) : C —• A x B by putting

{p, cr)(z, x, y) = p(z, x) A *(z, y),

for z,x,y in \C\ x \A\ x \B\. It follows immediately that (p,0") is induced by
the map (/, g) if p and <r are induced by maps f : C —* A and g : C —• B.
We shall see in 3.12 that equalizers, and hence also pullbacks, are constructed
in the same way in the four categories with extensional maps or fuzzy functions
as morphisms; thus the embedding functors between these categories preserve
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all finite limits. The embeddings Set r f c# -+ SettcH and Set^iJ —• SetdeH
have left adjoints and thus preserves all categorical limits. The following ex-
ample shows that the functor / « - • ( / ) : Se t t c # —• SetteH does not preserve
equalizers or pullbacks.

2.16.1. Example. Let B be a fuzzy set with two elements 0,1, with
eB(0) = eB(l) = T and 6B{0,1) ^ ±. There are two maps f,g : 1 - • B, with
an empty equalizer in Set tc H. By 3.12, the equalizer of (/) and (g) in Set tc H
is a non-void singleton; thus the functor / •-+ (/) does not preserve the equalizer
of / and g.

2.17. Topoi and quasitopoi of fuzzy sets. GoGUEN's category
is a topological universe, a topological quasitopos over sets. Unfortunately, this
makes the internal logic of SetdeH crisp, hence useless for purposes of fuzzy
logic. The category Se t t c # of H-sets and crisp maps is cartesian closed, but
not a quasitopos.

As is well-known (see e.g. [7, 4, 17]), the category Set*/ H of H-sets and
fuzzy functions is a topos, with H- valued internal logic and with very pleasing
set-theoretic constructions. However, most practitioners of fuzzy logic prefer
extensional maps to fuzzy functions, which brings us to Settc H. This is a qu-
asitopos, with i/-valued internal logic and equally pleasing set-theoretic con-
structions, and equivalent to the full subcategory of Sett/ H given by separated
objects, in the topos-theoretic sense.

The other categories in 2.14.(1) are not topoi or quasitopoi, except for special
Hey ting algebras H (see e.g. [13] or [2]).

2.18. Two special cases. If H is a singleton, then H-sets and discrete
H-sets just are sets, and maps just are mappings. Any two mappings / :
S —• T become extensionally equal; thus we have exactly one extensional map
f : S —+ T, except for S non-empty and T empty. For fuzzy functions, even
this distinction disappears; we have exactly one p : S —• T for any two sets S
and T.

The case H = {-L,T} is a bit more interesting. In this case, an H-set A
is a triple (|A|,SA,c*yt), consisting of a set |J4|, a subset SA of \A\, and an
equivalence relation a A on 5A, given by x 6 SA iff €A(X) = T, and XOCAV iff
$A(X, y) = T. For discrete H-sets, a A is the identity relation on SA- Crisp
maps f : A-+ B map SA into SB and preserve equivalence. A map f : A —> B
induces a mapping [/] : SA/OCA -+ SB/OCB of equivalence classes, and maps
/,# : A —> B are extensionally equal iff [/] = [g]. Fuzzy functions with non-
empty codomain are induced by maps, and in addition there is a unique fuzzy
function Z —* 0 for every void H-set Z.
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3. Fuzzy Subsets and their Logic

3.1. Subsets and insertions. Fuzzy relations on an if-set A can also be
viewed as fuzzy subset structures of A. We assign to every fuzzy relation a on
A a fuzzy subset A fa of A, with

(i) \A\a\ = \A\, and
(ii) 6Ala(x,x') = a(x) A6A(x,x') = a(x') A6A(xyx') for s,x' in \A\.

This equality relation is clearly symmetric and transitive, with

eA\a(x) = a(x)

for x G |J4|, and idj^j lifts to a map

j a : A\a —+ A

which we call the insertion of A fa into A.
This works equally well for all six categories Setary H introduced in Section 2,

and we shall see that many properties of fuzzy subsets are shared by the six
categories. We note that a fuzzy subset of a discrete H-set is again discrete.

3.2. Categories MA. As already noted in 2.6, fuzzy subsets structures
of an H-set A form a complete Hey ting algebra HA . The top element of HA

is eA, with A \eA = A and insertion id>t, and A f JL is void for the bottom
element. If a < /? in HA, then A fa is a fuzzy subset of A\fi, with j a = jpja,p
for the insertion ^'a>^ : A\a —• -Af/?. Thus fuzzy subsets of an if-set A and their
subset insertions form a category, isomorphic to HA regarded as a category.
We denote this category by MA.

For the two categories with crisp maps, fuzzy subset insertions are monomor-
phic and epimorphic. Regarded as extensional maps or fuzzy functions, fuzzy
subset insertions are injective (2.8), and hence monomorphic. Thus categories
MA are full subcategories of the slice category {Setxy H)/A, in each of the six
categories SetxyH.

In the three categories of discrete H-sets, every map idj^j : C —• A is
(or induces) a subset insertion. This is not the case for totally fuzzy sets, where

need not be injective, and may be injective but not a subset insertion.

3.3. Direct and inverse images. For a map / : A —• B and fuzzy subset
structures a of A and /3 of B, we define the image f~*ot of a by / by putting

= V («(*)
for x E. \A\, and the inverse image f*~/3 of 0 by / by
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for x £ \B\. It is easily verified that f~*a is a fuzzy subset structure of B, and
/—/? a fuzzy subset structure of A. We note that

for a map f : A —+ B of discrete H-sets.
For a fuzzy function p : A —* B, v?e define the image p~*a and the inverse

image p*~fi by putting

(1) (/>"*a)(y) = V (al

(2) (P^)W= \/ Wx,
ve\B\

for y 6 | 5 | and x £ |A| respectively. These again are fuzzy subset structures
as desired.

For a map f : A—+ B, the maps /"* and /*"" clearly satisfy

(3) r = </r and r = </r;
thus /"* and /*" are well defined for extensional maps. For a fuzzy function
p : A —• B > the maps p~*a amd p*~ ft clearly preserve order and thus define
functors

p^ : MA -> AfB and p^ : MJ5 — MA.

If we regard a and 0 as binary fuzzy relations a : A —• 1 and /? : J9 —* 1, then
clearly

(4) p~*a = a o pop and p*"/? = /? o p.

It follows that p""* and p*~ are functorial, with

(id^)^ = UMA = ( id^)-

for a fuzzy set >1, and

(cr o p)"* = <r~* o p"* and (a* o p)4" = p*~ o cr^

if a composition cr o p of fuzzy functions is defined.
By (3), the properties obtained in the preceding paragraph for fuzzy func-

tions are also valid for crisp maps and extensional maps.

3.4. Theorem. For a fuzzy function p : A—+ B and fuzzy subset structures
a of A and ft of B, the following are equivalent.

(i) a(x) A p(z,y) < /%) for all x € \A\ and ye\B\.
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(ii) a</>^/?.
(iii) p~a</3.
(iv) p « j a = jp o <r for a fuzzy function <r : .A fa —• B\j3.
If p is induced by a map f : A —* B, then a in (iv) is induced by the map

By 3.3.(3), this result applies to all six categories of fuzzy sets.

PROOF, (i) <=*• (iii) is immediate from the definition of p~*<x.
If (iii) holds, then a/>°P < Ppp°*> < p by 2.8, and (ii) holds. Conversely,

if (ii) holds, then a < <xpopp < /?p, and (iii) is valid.
From the definitions, we have

0>*j*)(*,v)= V (ft(*)AM*.*')A/>(*',y))
*>e\A\

= a(*)A \ / {6A{x,x')t^p{x\y)) = a{x)f\p(x)y),

and similarly (jp o cr)(x,y) = or(x,y) < ^(y) if a in (iv) exists. Thus we have
(i) <=* (iv).

If p is induced by f : A —+ B, then

in (iv); thus <r is induced by / : A\a —• B\/3 if (i)-(iv) are valid.

3.5. Theorem. For a map f : A —+ B or a fuzzy function p : A —* B f and
for fuzzy subset structures 0 of B and a = p*~/? of A, the commutative square

A\a -i-* B\P A\* -^-*

(1) \JQ \jfi °r \JQ |i/?

A -t-> B A - £ - B

of 3.4.(iv) is a pullback square.

PROOF. For maps, with p induced by / : A —•• J9, (1) lifts a pullback in
Set; thus (1) is a pullback for / : C - • B with \C\ = |A| and

Since *A(^,X') < 6B{fxJx'), this means that C = A[/*"/?.
For fuzzy functions y? : C —• A and ip : C —> B\/3> with /> o ̂ > = jp o >̂,

we have
<p(z,x)Ap(x)y) < tp(zyx)
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for x E \A\, ye\B\f ze\C\, and hence

(p(z,x) Ap(x,y) < p(x,y)Ap(y).

Taking suprema Vy
 a n ^ using totality of p, we get

<p(z,x)AeA(x) = <p(z,x) < (P^ £)(*)•

Thus <p = j a © X for a fuzzy function x • C —• ^4fa, by 3.4 for idc and j a .
Then also rp = <r o x since j# is monomorphic; thus the Theorem is valid for
fuzzy functions.

If (p is induced by a map, then so is x by 3.4, thus the Theorem is also valid
for extensional maps.

3.6. Covers. Using a concept of [5], we say that a morphism f : A -+ B is
a cover if /"* €A = £B -

In Sett/ H and its subcategories Set tc H, Set# H, Set<fc H, covers are
the same as surjective morphisms. It follows that covers in these categories are
epimorphic. Conversely, it can be proved that epimorphisms in Settf H and
in Settc H are covers. Epimorphisms in S e t ^ i / and in Set# H need not be
covers.

Covers in Set^H and in S e t t c # can have any underlying mapping and
thus need not be epimorphic. In SetdeH covers are the same as final maps
/ : A —• JB, i.e. maps with the following property: if a map h : A —• C factors
h = gf at the set level, then g : \B\ —* \C\ always lifts to a map g : B —• C.
This is not the case for SettcH. For example, if A is an /f-set, and if C is the
discrete H-set with \C\ = |J4|, and ec(x) = e^C )̂ for a: € |<<4|, then the map

: C —• J4 is always a cover, but final only if A is discrete, and C = -A.

3.7. The following result shows that covers and fuzzy subset insertions
define a factorization structure in the sense of [1], or a diagonal polarity in the
sense of [17], for each of the six categories considered in Section 2.

Theorem, (i) Every morphism p : A —» B has a unique factorization
P = jp o e into a cover e followed by a fuzzy subset insertion. If p is a fuzzy
function induced by a map f : A —* B, then e is induced by f : A—* B\P.

(ii) Every commutative diagram

Bf/9
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with e a cover and jp a subset insertion, has a unique diagonal T : C —• B\f3
with T o e = p and jp o r = a. If a is a fuzzy function induced by a map
g : C —• J?. fc-faen r is induced by g : C —+ B\/3.

PROOF. For (i), we must put /? = p~*eA > and then p factors as claimed,
by 3.4.

For (ii), we have tc = e~*£A, and hence

But then a factors a = jp o r by 3.4, with re = p since j ^ is monomorphic.
If a is a fuzzy function induced by a map g, then r is induced by g.

3.7.1. Remark. In the factorization pja = jpa of 3.4, the morphism a is
a cover iff /3 = p"~*a. Thus the left adjoint /"* or p~* of the pullback functor
/*" or p"~ is obtained by (cover, insertion) factorizations. This is a special case
of a general result for factorization structures; see [1] or [17].

3.8. Propositional connectives. The top element of a Heyting algebra
HA is €A , corresponding to id^ in MA, and the bottom element has constant
value X, corresponding in MA to the insertion of the void fuzzy subset of A
into A.

Unary and binary propositional connectives can be carried out pointwise in
complete Heyting algebras H^, and the result is natural in A in the sense
that

(i) r(pop') = (ri3)<>(r0'),

for /?,/?' in i / ' 5 ' , a mapping / : |A| —* \B\ and a binary connective o, with a
similar formula for a unary connective. This follows immediately from the fact
that tf-p)(x) = /?(/*) for x E \A\.

Algebras HA need not be closed under pointwise connectives; thus a further
step is needed. Since HA is closed under suprema in H^, the embedding
IA : HA -+ J/M has a right adjoint MA : H^ -> tf'4, called modification,
with

V ^ ̂ A I T < a}

for a € HM. Now

(2) aoa' = MA{IAaoIAa'),

with the pointwise connective at right, is the best we can do. However, the
naturality expressed by (1) is usually lost by this process.

For standard connectives, we can do better.
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3.9. Proposition. Standard conjunction and disjunction in HA are given
by pointwise evaluation, and implication by

(1) (a - a')(x) = eA(x) A (a(x) - a'(x)),

for x 6 |-A|. Aii standard connectives in algebras HA are preserved by inverse
image functors.

P R O O F . The first part is clear for A, and follows for V immediately from
the (V, A) distributivity of HA . Now if

* < 6A(x,x')A(a{x)-+a'{x))9

then we have

tAa(x') = tAa(x')A6A(x,x') = t A a(x) A 6A(xyx')

< a'(x)A6A(x,x') <<*'(*')•

Thus t < a(x') -*• a ' (x ' ) , so that a -> a ; defined by (1) is in
By 3.3.(3), it suffices for the second part to consider p*~ : HB —• HA for a

fuzzy function p : A —> B. Since p*~ has a left adjoint and a right adjoint, by
3.11, it preserves top and bottom of HA. For /? A /?' and x G |^4|, we have

(P-/?)(x) A (p /̂3')(̂ ) = V (tf*.»)A /'(v))A V (p(x> y')A W ) )
ve|B|

y.y'

V
y,y'

using single-valuedness of />. The proof for /? V ff is similar, but simpler.
For implication, we have

and

Now the following Lemma, which is of independent interest, completes the proof.

3.10. Lemma. For a in HA, @ in HB, and p : A—> B, we have:

p~* (a A p*~/3) = p~*aA(5.
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PROOF. Starting with the value of the lefthand side at y € \B\, we have

V (a(x) A p{x, y) A V 0>(*. v') A /?(l/')))
»'€|B|

= y(a(x)A0(y')Ap(x,y)Ap(x,y'))
*,y'

= \ / (a(x) A /?(y') A p(x, y) A /»(*, y') A ̂ B(y, y'))

*) A P(*. ») A ^(V)) = /?(») A \A t t ( * ) A * * • » ) ) -
X

which is (/T*a A P){y).

3.11. Quantifiers. It is universally agreed, following [9], that universal
quantifiers are right adjoint, and existential quantifiers left adjoint, to substitu-
tion, and it is also generally agreed that substitution is represented in categories
by pullbacks of sub objects.

This means in our present context that substitution is given by pullback
functors /*" : MB —• MA, for morphisms / : A —• B, and that existential
quantifiers are given by factorization functors

3f = / - : MA-> MB.

For a fuzzy function p : A —• B, and for fuzzy subset structures a of A and (5
of B, we want

0 < Vpa «=!• p-/? < a ,

and this is the case iff

for all x € |-A| and y € |£ | . Thus we must put

(1) (V,a)(y) = eB(y) A / \ (p(x, y) - a(x)) ,

for all y 6 |B|. This defines the universal quantifier functor
Since /*" = (/)*" for a map / , we put

for a map or extensional map / . We note that for a map / : A —* B of discrete
J/-sets, this specializes to

(V/a)(y) =
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By 3.3, the assignments A •-• MA and / H-* /*", or p w p*", define
contravariant functors on the six categories of 2.14. It follows by adjunction
that existential and universal quantifiers define covariant functors on these six
categories.

3.12. Equalizers. For the topological categories SetdcH and SettcH,
equalizers are embeddings and lifted from Set. For the other four categories
of 2.14, the following result describes equalizers.

Proposition. For fuzzy functions p : A —* B and a : A —• B, the subset
embedding j ^ : A \fi —• A with

ti*) = V (p(*,y)A<r(*,y)),

for x £ \A\y is an equalizer of p and a.

If p and <r are induced by maps f and g, then

fi(x) = eA(x) A6B(fx,gx)

for x £ \A\, and j ^ is an equalizer of (/) and {g) for extensional maps.

P R O O F . If p<p = a<p for <p : C —-• A, then

<p(z,x)Ap(x,y)<<p(zyx)h \f (^(z.x^Aorix^y))
«'€|A|

= \/(<p(z,x)A(<p(z1x')A<r(x\y))

%y)) = <r(x,y)

for (x,y,2r) in \A\ x \B\ x |C|, and

<p(z,x)Ap(x)y) = <p(zix)Ap(xiy)Acr(x,y)

follows. Taking suprema V and using the totaltiy of /?, we get <p(zi x) < ji{x).
Thus (p factors rpj^ by the proof of 3.4. Similar computations show that

p(x,y)AJn(x) = <r(x}y)A j^(x)

for (x,y) in |̂ 4| x |J?|, so that pj^ = ^
For the second part, if p = {/) and r\> = (</), then

l*(x) = eA(x)A \/ (6B(fxiy)A6B(gx,y)) = eA{x) A6B{fx,gx)
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for x G \A\, and if <p in the preceding paragraph is induced by h : C —• A, then
ip is induced by h : C —• Af/i, by 3.4.

3.13. Theorem. Let FS be one of the categories of 2.14. For a pullback
square

( l)

in FS , the following are equivalent.
(i) g— o 3 / = 3 t o t i " . (ii) ^ o V / = Vv o w*" .
(iii) /*" o 3^ = 3 U o v*~ . (iv) /*" o V^ = Vu o v4" .
(v) The functor FS —• SettfH in 2.14 preserves the pullback (1).

Except for FS = SettcH, these conditions are satisfied for every pullback
square in FS.

The maps / and g of 2.16.1 provide an example of a pullback in SetfCH
for which (i)-(v) are not satisfied.

PROOF. AS in the proof of 1.7, (i) <=> (iv) and (ii) <=» (iii) by adjunction.
It will be convenient to extend the notation (/) from maps to fuzzy function,
putting (/) = / in this case. Then (iii) is valid, by 3.3.(4) and 2.7.1, iff

(i) requires equality for the dual relations; thus (i) <=> (iii).
Now the relations {g)op © (/) and (v) o (t/)op can be regarded as fuzzy subset

structures /i and v of A x B. For fuzzy functions, we get

Kx,y) = \J (f(x9z)Ag(y9z))

for (x,y) in |̂ 4| x \B\; this becomes

//(x,t/) = eA(x)AeB(y)A6c(fx,gy)

for crisp or extensional maps.
The map (tx, v) : P —• A x B in (1) is the equalizer of fp and gq for the

projections p and q of Ax B. For S e t t / # and its subcategories, this equalizer
is given by the subset structure

A (*«)(*• y. *)) = V(/(*. * ) A n(v
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this is the structure /i of the preceding paragraph. We have u = pj^ and
v = qjp , and thus

Thus (i)-(iv) are valid in these categories.
For Settcff, the pullback P is lifted from sets, with

M') = 6A{ut,ut')A6B(vt,vt')

foiteP.lt follows for v = (v){u)op that

K*>y)= \/ (6A(ut,x)A6B(vt,y)).
te\P\

Now /* = (u,v) defines an embedding h : P —* A x B, with f = h~*ep.
The induced fuzzy function (h) is injective; thus (/i) : P -+ (A x B)\v is an
isomorphism of Set*/ H. This shows that v = /i iff the pullback (1) remains a
pullback in Settj H, proving (iii) <=£• (v).

Except for FS = S e t , c # , the functor / > - > ( / ) : FS -* Settf H in 2.14
preserves all pullbacks, by 2.16.

3.14. Powerset objects. In category theory, powersets represent relations.
For a set T with powerset PJ1, introduce a backward membership relation

9 T : PT -* T by putting B BT yjov y eT and J 9 c T , i f f y € # . If />: 5 -> T
is a relation, then p = 3 T °^ for a mapping h : S —• PT iff

yeh(x) <=^ arpy,

for a: G 5 and y £ T. This mapping A is called the characteristic mapping
of p.

This can be generalized to categories with relations, which includes our six
categories of fuzzy sets. We say that a relation 9#: PB —* B, in a category C
with relations, represents relations with codomain J9 if every relation p : A —* B
has a unique factorization p =BB ° (h) with /i : yl —• PB in C, and (h) the
relation induced by A. In this situation, PB is called a powerset object of B,
with membership relation BB. If the factorization always exists, but is not
unique, then we speak of a weak powerset object.

For topological spaces with continuous maps, and with relations p : X —* Y
given by subspaces (and hence by subsets) of the product space I x 7 , a pow-
erset object PY is the powerset P|Y| of the underlying set \Y\ of the space Y,
with the indiscrete topology. This generalizes to all topological categories over
sets.
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Categories with relations were dicussed in a paper by A. KLEIN [8], for
categories with (cover,insertion) factorization structures, with epimorphic cov-
ers and monomorphic insertions. This setting excludes fuzzy sets or if-sets
with crisp maps. An exposition of relations in categories which includes these
examples is planned, but cannot be accommodated in this paper.

3.15. Fuzzy powersets. Let FS be one of the six categories of 2.14, and
let (/) be the fuzzy function induced by a morphism / of FS , with (/) = /
if the morphisms of FS are fuzzy functions. We define the fuzzy powerset PB
of an object B of FS as the object with underlying set HB of fuzzy subset
structures of B, with e?B{P) = T for f3 G HB. If the objects of FS are
discrete H -sets, then PB is a crisp discrete if-set. If the objects of FS are
totally fuzzy sets, then we define 6PB by

y€|B|

for /?,/?' in HB. In other words, we require

with y a variable of type B.
For all six categories FS , we put

for /3eHB and y € \B\.
We skip the proof that this always works, i.e. that 6PB always is a fuzzy

equality, and 9#: PB —* B a fuzzy relation.

Theorem. The fuzzy powersets just defined are powerset objects for Set t e H
and Sett/ H, and weak powerset objects for the other four categories of 2.14.

P R O O F . For a fuzzy relation p : A —•• B and x € |J4| , put

(XP)(x) =p(x,-):\B\-*H.

This is in HB , and it is easily verified that we have defined a map XP : A —• PB.
Moreover by the definitions,

9 B ((xp)(x),y) = />(x,y)

for (x,y) € \A\ x \B\. Thus BB °{XP) = P> an(* PB is a weak powerset object
in each of the six categories.

If p =3B °<P for a fuzzy function y? : A —> PB in Set*/ H, then

p(Xfy) =
P
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for (x,y) in \A\ x \B\. Thus y>(x,y) A 0(y) < p(xy) for /? in if1*, and

It follows that

( ) ( ) A

for (*,/?) in |J4| x HB. But then <p = (xp) by 2.10.(i), and PB is a powerset
object in Set*/ if and in Set tc H.

4. A Language for Fuzzy Logic

4.1. Outline. We shall describe a language for fuzzy logic, consisting of
typed terms and statements, and based on a category FS of iT-valued fuzzy
sets or totally fuzzy sets, where if is a complete Heyting algebra of truth-values.
We do not specify the requirements for FS, but all six categories introduced in
Section 2 qualify. Types of terms will be objects of FS, and statements form
a type Q which need not be an object of FS. We shall also describe models
of the language obtained from interpretations of its formulas, where formulas of
the language are its terms and statements, but we shall not discuss validity of
statements for these models.

The language to be described is a variant of the MITCHELL-BENABOU lan-
guage of topos theory, as described e.g. in [17], and in a slightly different form
in [10].

4.2. Terms. Terms are recursively defined as follow.
4.2.1. Every variable is a term, and there is a sufficiently large supply of

variables of type A for every object A of FS.
4.2.2. There is a term • of type 1, with 1 a fixed terminal object of FS.
4.2.3. For terms $ of type S and t of type T, there is a term (s,t) of

type S xT.
Generalizing 4.2.3 recursively, we get a term (<i, • • • ,<n) of type Yl?=i Ai for

terms t{ of types A{, with () = • for n = 0.
4.2.4. For a term t of type A and a morphism / : A —• B in FS, there

is a term f(t) of type B.
This last requirement may have to be modified if interpretations of state-

ments with non-standard propositional connectives are desired.
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4.3. Statements. Statements are recursively defined as follows.
4.3.1. For terms s and t of type A, there are atomic statements

(t) G A and (s) =A (t).

4.3.2. For a term t of type A and a fuzzy subset structure a of A, there
is an atomic statement a(t).

4.3.3. The elements T and J_ of H are atomic statements.
If a is a unary propositional connective and <p a statement, then a(<p) is a

statement.
For statements y>, ̂  and a binary propositional connective o, there is a

statement (<p) o (V>).
4.3.4. If ^ is a statement and x a variable, then (Vx)(v?) and (3x)(ip)

are statements in which all occurences of the variable x in <p are replaced by
links to the quantifier. Thus the variable x does not occur in the quantified
statements.

4.4. Parentheses and Substitution. In 4.2 and 4.3, we have put paren-
theses around all formulas which appear as building blocks of mor complex
formulas. These parentheses can often be omitted, but we do not try to formu-
late rules for this. Of course, "Polish" notation would allow us to do away with
parentheses altogether.

Formulas can be interpreted as rooted trees in the obvious way, with the
operations introduced in 4.2 and 4.3 as nodes. Leaves of these trees are variables,
links to quantifiers, the term *, and nullary propositional connectives. Every
node has a unique path to the root of the ree. If a leaf is a link to a quantifier
(3x) or (Vx), then the quantifier is in the path from the leaf to the root of the
tree, and the first quantifier (3x) or (Vx) in this path.

Our language allows unrestricted substitutions of terms of the same type
for variables. Substituting a term E of the same type for an occurrence of a
variable x in a formula F means replacing the leaf x in the tree for F by the
tree for E. We denote by F[E *HX] (read "£ for x") the result of substituting
the term E, of the same type as x, for all occurrences of the variable x in the
formula F. We note the following obvious fact.

4.4.1. If u is a variable of the same type as x, but not occurring in a
formula F, then (F[u *-»x])[E <-*u] is the same formula as F[E <-HX] .

4.5. Products of types. We denote by Tx the type of a variable x.
For a finite set L of variables, we denote by PL "the" product YlxtL T*, with
projections ir% : PL —• Tx. We put in particular P{x} = Tx and P§ = 1.
If L C V, then 7r£ © 7r£' = *•£', for x e L, defines a projection 7r£' : PL> —• PL .
In particular, n^ is the unique morphism PL —• 1 •
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It will also be convenient to put Lx = L U {x} if x ^ L. Then PLX is a
product PLXTX, with projections Trf* and ir%*, and every element v of |PL X |

can be regarded as a pair (t, u) in |Pi,| x I?1*! > with t = ^^ (v ) and u = ^ ( v ) .
If variables x and y have the same type and do not occur in L, then

for a morphism 7r£* : PL* -» PLy. This is obviously an isomorphism, with

inverse TCL% .
We note that always 7r£" = 7r£' o ir%" if the three projections are defined.

4.6. Interpretat ions of terms. Proceeding recursively in the obvious
way, we assign to every formula F a finite set of all variables occuring in F.
This set, called the support of F , may be empty, as e.g. for the term * or
a statement (3x)(x € A). If F is a term of type A, and L a finite set of
variables containing the support of F y then we define the interpretation \F\L
as a mapping \PL\ —> \A\, or as a crisp map Pi, —• A in FS, by the following
rules.

4.6.1. \X\L = TT£ for a variable i in I .
4.6.2. |(s,tf)|z, = (|S|L> |£|L) ' PL —* A x B if the interpretations \S\L :

PL —• A and \t\i : PL —» B are defined.
4.6.3. | • \L = TT̂  , the unique mapping or morphism Pi, —• 1.
4.6.4. | / (*) |L = / * \AL if the righthand side is defined.
For a list t\, • • •, tn of terms of types A{, it follows that

\(tir~,tn)\L = (|*iU,---.|<nU> :•

if the interpretations |t,-|£ are defined.

4.7. Heyting algebras [A> H]. In order to interpret statements, we assign
to every object A of FS a complete Heyting algebra [A, H] of mappings a :
\A\ —• H > ordered pointwise and satisfying the following conditions.

4.7.1. [A,H] is closed in H^ under meets a A a', and under arbitrary
suprema.

4.7.2. [A,i7] contains the algebra HA of fuzzy subset structures of A.
4.7.3. For every map / : A —> B in FS, there is a composition map

/*"" : / ? • - > / ? . / from [J9,#] to [A,i/] which preserves infima and suprema.
These maps are functorial, with

(id^)*"" = i&lAtH] i and

if of is defined in FS .
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As in 3.8, there are modification functors MA : H^ —* [A,H], left adjoint
to the embeddings I A : [ A # ] —• #'"*'; thus we can use (1) and (2) in 3.8 to
obtain propositional connectives in the algebras [A, H].

Examples of algebras [A, H] are the algebras H^ and the algebras HA

of 2.6. Other examples are the sets of mappings a : \A\ —• H which satisfy just
one of the conditions 2.6.1 and 2.6.2.

4.8. Interpretations of statements. An interpretation \<P\L of a state-
ment (p will be an element of the complete Heyting algebra [PL,H] , as follows.

4.8.1. For terms s,t of type A, with \S\L and \t\z, defined, we put

\t € A\L = eA • \t\L , and \s =A t\L = SA . {\s\L, \t\L).

4.8.2. For a subset structure a of an object A of FS , and for a term t of
type A with \1\L defined, we put

4.8.3. |T|x, and \1.\L are the top and bottom elements of [PL,H). For
statements <p and ^ with \<p\z and IV'U defined, we put I D ^ U = : D ML for
a unary propositional connective o, and |̂ >o^>|£, = \<P\L O \IJ>\L for a binary
propositional connective o.

4.8.4. If x of type A is not in L and I^IL* is defined, then

\(3x)<p\L = 3p\<p\Lx and |(Vz)^|L = V P M L * ,

for p = Trf;̂ , and we put

\(3x)<p\L9 = | (3X)^|L • ̂ x and | (VX)^|L* = I ( V * M L * ^ •

4.9. Discussion. Our description of the formal language for fuzzy logic
is not meant to be complete; other constructions can be added if they can
be interpreted. Parentheses used in the description of 4.2 and 4.3 are often
superfluous and should then be omitted.

For finite sets L and M of variables, with \F\L defined for a formula F of
the language and L C M, we need

(1) \F\M = \F\L-*%.

We also want

(2) I^P^rfU = |FUy(idpLI|EU>,

if the substitution at left and the interpretations in the righthand side are de-
fined, with y not in L, and not occurring in the term E.
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These laws are proved recursively, by induction over the length of the tree
corresponding to F. We omit the details, noting only three points.

The first point is that (2) is automatically valid if y does not occur in F,
so that F[£ <-*y] is F and \F\Ly = \F\L • ?r£y .

For propositional connectives, we need naturality, such as

(a • wf) o (/?•*£) = (a o/?).*f

for a binary connective o, and a,/? in [ P L , # ] .
For quantifiers (3x) and (Vx), we need 3.13.(i)-(iv) for a pullback square

3.13.(1) with / = Trf* or g = 7rfr. We note that such pullbacks are preserved
by every functor which preserves finite products.
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