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ABSTIACT

Ve consider a class of stochastic linear functional differential systems

driven by semimartingales with stationary ergodic increments. Ve allow smooth

convolution-type dependence of the noise terms on the history of the state.

Using a stochastic variational technique we construct a compactifying stochastic

semiflow on the state space. A multiplicative Ruelle-Oseledec ergodic theorem

then gives the existence of a discrete Lyapunov spectrum and a saddle-point

property in the hyperbolic case.
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§1. Introduction.

In [20] the first author developed a multiplicative ergodic theory for a

class of n-dimensional stochastic linear functional differential equations

dx(t) = H(x(t-d),x(t),xt)dt + g(x(t))dw(t) (*)

xt(s) := x(t+s), - r < s < 0 , t > 0 , 0 < d < r

with state space M2 := Rn * L2([-r,0] ,R n). The analysis in [20] depended

crucially on the fact that the diffusion term g(x(t)) does not look into the

(past) history x(s), s < t, of the state. The present article is an attempt to

relax this limitation. (Note, however, the pathological example in Mohammed

[19], pp. 144-148.) Indeed we wish to extend the results of [20] in two

directions:

(i) Ve allow "smooth" convolution-type dependence on the history x(s),

t-r<s<t, in the noise coefficient.

(ii) The driving noise processes consist of a large class of semimartingales

with cadlag paths and jointly stationary (ergodic) increments. Vithin

this context, our results appear to be new even in the non-delay case

r = 0.

More specifically we look at a linear stochastic functional differential

equation

dx(t) = J /z(t)(ds)x(t+s) dt + dN(t) J K(t)(s)x(t+s)ds + dL(t)x(t-) (I)
l[-r,0] J -r

(x(0),x0) = (v,ri) € M2.

In the above stochastic f.d.e. (s.f.d.e.), /J is a stationary measure-valued

process such that each /*(t,*/) is an nxn-matrix-valued measure on [-r,0]. The

random field K(t)(s) is a.s. C in (t,s) and stationary in t. The process N is a



general nxn-matrix valued semimartingale (Metivier [17], Definition 23.7, p. 153)

with jointly stationary increments. The second noise process L is also

nxn-matrix-valued, has jointly stationary increments but admitting a

representation as a continuous local martingale plus a right continuous process

of locally bounded variation. The Ito stochastic differentials dN and dL are to

be understood in the spirit of the French school e.g. Dellacherie and Meyer [4],

Meyer [18], and Metivier and Pellaumail [16]. Assuming that (/*,K,dN,dL) form an

ergodic process and satisfy fairly general moment conditions, we show that (I)

has an almost sure Lyapunov spectrum

limilog||(x(t),x )||M

t̂ OD t X M 2

consisting of a discrete non- random set of Lvapunov exponents {A.}?- C R U {-OD}.

If none of the Lyapunov exponents X- is zero, we obtain a flow-invariant

exponential dichotomy for the stochastic flow I on M2 associated with the

trajectories {(x(t),xt): t > 0, (x(0),xQ) = (v,tf) 6 M2} of (I).

In order to construct a sufficiently robust version of the flow X of (I),

the key idea is to show that the s.f.d.e. (I) is equivalent to a random integral

equation (viz. equation (IV) of §4). Both the cocycle property (Theorem

(4.2)(vii)) and Ruelle-Oseledec integrability condition for the stochastic flow I

(Theorem (5.1)) are then read off from the integral equation. This method of

construction of the flow is different from the one used by Mohammed in [20]. It

has the added advantage of being conceptually simpler and perhaps more efficient.

This technique also points the way towards possible applications to certain types

of stochastic linear P.D.E.s.

Once the regular version of the flow I is constructed, the existence of the

Lyapunov spectrum (Theorem (5.2)) and the stable-manifold theorem (Theorem (5.3))

are established using Ruelle's infinite-dimensional multiplicative ergodic



theorem (Ruelle [23], [22]). This part of the analysis is closely parallel to the

one used by Mohammed in [20].

In order to outline the scope of the theory we indicate below examples of

linear stochastic differential equations which are covered by the theorems in

this article. The reader may formulate the appropriate conditions under which

these results apply to the examples listed below. Note that in all of these

examples the state x(t) is a multidimensional process.

Example 1: Linear o.d.e.'s driven bv white noise

P
dx(t) = a(t)x(t)dt + E tri(t)x(t)dVi(t) (1)

The matrix-valued processes a(t), <r^(t) are stationary ergodic and non-

anticipating; the Brownian motions V., 1 < i < p, are independent and one-

dimensional. The case of constant coefficients a(t) = a, ^(t) = a^9 1 < i < p,

has been studied by several authors e.g. Arnold, Kliemann k Oeljeklaus [2],

Has'minskii [7], and Baxendale [3]. The Lyapunov spectrum of (1) has been

discussed by Arnold & Kliemann [1] when a(t), <r-(t), i = l,...,p, are stationary

ergodic processes which are independent of V^, i = l,...,p. Note that our

results do not necessarily require that a(t), <r-(t), i = l,...,p, be independent

of the noises V., i = l,...,p.

Example 2: Random delay equations driven bv white noise
m p

dx(t) = I a.(t)x(t-d.(t))dt + I <r.(t)x(t)dV. (t) (2)
i=l * * i=l * *

The coefficients ai? a^ are matrices (possibly stationary) and the delays di

are non-anticipating stationary bounded processes with non-negative values. The

equation is driven by several Viener processes V.. The dynamics of (2) was

studied in (Mohammed [19] VI §3, pp. 167-186) within the context of Markov



processes on the state space C([-r,0],Rn) and under the condition that each d. is

fixed in t and is independent of (¥.,...,¥ ). A sufficient condition is given in

([19], Corollary 3.1.2, p. 184) which guarantees asymptotic stability in

distribution of the trajectory {x,: t > 0} of (2). Cf. also Lidskii ([14]) in

the case a^ = 0 and d^ larkovian. Observe that (2) reduces to (1) when d. = 0,

1 < i < m.

Example 3: Diffusions with distributed memory

dx(t) = I (r.(t)J K(s)x(t+s)ds dV.(t) (3)
i=l x -r x

The matrix-valued processes <r^(t), 1 < i < p, are stationary (ergodic) while

K(s) is just a deterministic matrix-valued function. The Brownian motions V-,

1 i i < P> are one-dimensional. Although equations like (3) fall under the class

studied by Ito and Nisio ([10]) and Mohammed [19], so far little is known

regarding the almost sure asymptotic behavior of the trajectory (x(t),x.) as
t -» CD.

Example 4; Linear o.d.e.'s driven bv Poisson noise

P
dx(t) = a(t)x(t)dt + I ^ ( t ^ t O d N ^ t ) (4)

The driving noises N.(t) are one-dimensional Poisson processes and the

coefficients a(t), <^(t) are stationary ergodic matrix-valued, for 1 < i < p.

For constant coefficients, a(t) = a, <r̂ (t) = <r^ a.s. for all t > 0, 1 < i < p,

the Lyapunov exponents of (4) were studied by Li k Blankenship ([12]) using

classical results on random matrix products.

Example 5: Linear functional differential equations driven bv Poisson noise

dx(t) = I M(t)(ds)x(t+s) dt + I ^.(t)x(t-)dN.(t) (5)



Here /i is a measure-valued process as in (I), ̂ (t) are stationary matrices

and N.(t) Poisson processes, i = l,...,p. Under suitable conditions on the

coefficients /*, <r., unique solutions to (5) are known to exist (Doleans-Dade [5],

Metivier k Pellaumail [16], Protter [21]). However, to our knowledge, issues of

almost sure asymptotic stability for solutions of (5) have hitherto not been

explored.

Example 6: Linear f.d.e.'s driven bv white noise

P
dx(t) = H(t,-,x(t),xt)dt + I gt{t ,-,*(*))& i W (6)

The coefficients H(t,•,-,•), g(t,*,«) are stationary ergodic processes with

values in L(M2,R
n) and L(Rn) respectively. The Brownian motion V(t) =

(Vj(t),...,V(t)) is p-dimensional. The case of constant coefficients

corresponds to equations like (*) whose Lyapunov exponents were studied in the

article [20] referred to earlier.

It is evident that the s.f.d.e. (I) also includes as special cases various

(finite) "linear combinations" of all the examples mentioned above.

§2. Basic Setting and Hypotheses

Ve wish to formulate the basic set-up and hypotheses on the stochastic

f.d.e.

= {I /*(t)(ds)x(t+s)]dt+dN(t)J K(t)(s)x(t+s)ds + dL(t)x(t-),t>0
lL-r,O] J -r

x(0) = v G »n, x(s) = 5(s), -r < s < 0; r > 0

which will be needed in the sequel.

(i)



Suppose ("j^5(^t)t>o>P) *
s a filtered probability space satisfying the

"usual conditions" (Metivier k Pellaumail [16], Dellacherie k Meyer [4], Protter

[21]). Let 0: Rxfl -» fl be a measurable flow preserving the probability measure P

viz:

(i) For each t > 0, 0(t,-): (fl, t̂) -* (ft,^) is measurable;

(ii) For each t € R, Po0(t,-)~1 = P.

(iii) For every t p t 2 6 R, 0{t2,-)°0(tv-) = ^ ( t ^ , - ) -

Ve shall impose two sets of hypotheses on the coefficients of (I). The

first set of hypotheses, denoted by ( C ) , i = 1,2,..., guarantees the existence

of a continuous linear stochastic flow on the state space M2 := Rn*IL ([-r,0],Rn)

with the Hilbert norm

l := |v|2 + J°h(s)|2ds v € Rn, V 6 L
2([-r,0],Rn). (7)

-r
\\(y,v)\\l

2

Observe that |«| stands for the Euclidean norm on Rn. The second set of

hypotheses (1^), j = 1,2,..., pertain to moment-type restrictions which are

designed in order for the stochastic flow to satisfy Ruelle-Oseledec

integrability condition (Theorem (5.1), §5). These integrability hypotheses are

spelled out in §5.

The space of all real n*n matrices is denoted by R n x n and is usually given

the Euclidean norm

The symbol i^([-r,0] ,Rnxn) shall stand for the space of all n*n-matrix valued

Borel measures on [-r,0] (or Rnxn-valued functions of bounded variation on

[-r,0]). This space will be given the a-algebra generated by all evaluations.



A solution of the stochastic f.d.e. (I) is a stochastic process x: [-r,©)*!!

-» Rn such that x|R+*ft has cadlag paths, is (^t)t>0'adapted and satisfies the

stochastic integral equation

J 1 /*(u)(ds)x(u+s)du+J dN(u)J K(u)(s)x(u+s)ds+J dL(u)x(u-), t>0
0 [-r,0] 0 -r 0

L J (II)
j?(t), -r < t < 0

almost surely. Note that in (I) and (II) all n-vectors are column vectors and

the products are to be understood in the sense of matrix multiplication.

Throughout the article we shall adopt the following terminology regarding a

stochastic process {y(t,o/): t € R, w € fl} defined on the whole line. Ve shall

say that y is (7+)t>n-adapted if y(t,-) is 7~rmeasurable for all t < 0 and

7t-measurable for all t > 0. Similarly, we say y is an (7,)+^- semimartingale

(local martingale, etc.) if the restriction y|R+xfl is an (7t)t>0-semimartingale

(local martingale, respectively).

Hypotheses (C)

(Cj) The process pi Rxll -» M{[-T,0] ,Rnxn) is measurable (7t)t>Q-adapted and

stationary with the representation

/t(t,4r) = p{0,0(t,u)) t e R, 4; € fl.

(C2) For each u e ft and t > 0 let £(t,a/) be the positive measure on [-r,a>)

defined by

?()(A) U|(){(A) fl [-

for all Borel subsets A of [-r,a>). Note that \p\ denotes the total

variation measure of p with respect to the norm on Rnxn. It is easy to

check that, for each u e ft,



0

is also a positive measure on [-r,a>). Suppose that v{u) has a density jat
QS

with respect to Lebesgue measure which is locally essentially bounded for

each fixed weft. This implies that for each t > 0 and weft the measure
- \%~

0

has a locally bounded density fiJU'• Ve suppose further that the map

[O,oo) -> l2([-r,0],R)

t H
ds

is continuous for each weft. Note that the last condition is satisfied in

the deterministic case n(t,u) =/J°, t > 0 , weft, for a fixed

(C3) Let ^([-rjO],^
1 1) be the space of all C1 maps [-r,0] -4 R n x n given the

a-algebra generated by all evaluations. Assume that

K: OWl -̂  ̂ ([-r.O],*111111)

is a measurable (7, )t>Q- adapted (stationary) process such that

for all t G !R and all w G fl.

Suppose also that for a.a. u, K(t,a/)(s) is jointly C in

(t,s) G R+«[-r,0].

(C4) The process N: Rxfl -4 R
n x n is an (7t)t>()-semimartingale with N(0,4/) = 0 and

admitting the following additive cocvcle property

N(t+h,a/) - N(t,0) = H(h,^(t,4r))

for a l l t ,h G R and w G ft (Metivier [17], Definition 23.7, p. 153).



(C5) The process L: R*ft -+ R
n*n is an (7t)t>0-semimartingale admitting a

representation

L = M + V

where I is a continuous (7.).^-local martingale and V is an (7"t)t>Q-adapted

process whose sample paths are all right continuous and of bounded variation

on compact sets of R*. Suppose L and I are such that M(0) = 0, 1(0) = 0 and

are additive cocycles:

(8)
) t,h 6 R> 0 £ fl.

Remark:

Conditions (C.), (CL) imply that N and L have jointly stationary increments.

In fact (//,K,dN,dL) is a stationary process. As an alternative to the above

setting we could have started with a stationary process (/*,K,dN,dL) defined on

some probability space and having the required regularity properties. Ve then

form the underlying product path space and define a shift 6 on it by

where a = (0.,6/2) and the suffixes 1,2 refer to the components corresponding to

(//,K) and (N,L) respectively. It then follows that on the product path space

0(t,-) is measure-preserving and the canonical processes will automatically

satisfy Hypotheses (Cj), (Cg), (C 4), (Cg).

§3. Some Preliminaries

Our strategy for a sample-wise analysis of the s.f.d.e. (I) is to free the

equation of stochastic differentials and replace it by an equivalent random

family of integral equations. In order to construct these random integral

equations we shall require some preliminaries. These are discussed below.
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Recall that the driving cadlag process L splits up in the form L = I + V

where I is a continuous local martingale satisfying the additive cocycle property

in Hypothesis (Cg). Our first result in this section says that the additive

cocycle behavior of I induces a multiplicative cocycle property for the solution

p: R+xft -> R n x n of the linear s.d.e.

dp(t) = dl(t)p(t), t > 01

f(o) = i. I
(See assertion (iii) of Theorem (3.1)). In order to prove the cocycle property

for the solution of ip of the above equation we approximate the local martingale M

by a family of C processes {M }?. defined by

lT(t) := k J .MOOdu, t € R. (9)

k 1
It is clear that each I is {T,)t>n-adapted and has a.a. sample paths C with
(Mk)'(t) = k{M(t)-I(t- £)} for all t € R. Furthermore Hypothesis (Cg) implies

that each I has the property

Mk(t+h,a/) - M(t,tf) =I k(h

for all t,h 6 R, u € ft. Now for each k > 1, let <p : R*fl -• R n x n be the unique

solution of the random family of o.d.e.'s

dpk(t,-) = (Mk)'(t)^k(t,.)dt - ^d(M)(t,.)pk(t,.), t €

*,k(0) = I € V?xn k

where (M) denotes the Rnxn-valued quadratic variation process of I defined by

(Leandre [13]). Observe also that for each t, u, k, <p (t,w) is invertible

([13])-

Ve begin by showing that (I) is an additive cocycle whenever I is.
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Lemma (3.1):

Let NA: Rxft -» R, i = 1,2, be real {7^)t>^semimartingales such that

Ni(0) = 0 and

H . ( t + M ) - H.(t,ir) = H.(M(t,iO)

for all t,h e R, A; € ft, i = 1,2. TAen *Aere is a set fl^ € T of full P-tneasure

and a measurable version of the mutual quadratic variation denoted by [Nj,N2]:

R xfl -» R which satisfy

(i) P(ll1) = 1; 0(t,•)(**!) C Jl1 /or all t > 0;

(") [ N p N ^ t + M ) - [HlfH2](t^) = [N^NjCh,^,^)) (12)

for all h,t € R+ and u 6 flj.

Proof:

The relation (11) implies that the semimartingales N.+N2, ^\^o a^so

an additive cocycle property. So in view of the identity

it is sufficient to prove the lemma for a single semimartingale Q: R*fl -> R

satisfying (11). Vrite

W](t) = Q(t)2 - 2 J Q(8-)dQ(s), t > 0, a.s. (13)
0

(Metivier [17], p. 184). Approximate the process {Q(s-): s > 0} by the sequence

Qk(s) = k JS jQ^du, s > 0. (14)
S"Z

Then, for each k, I) is predictable and for all u 6 fl, lim Q (s,*y) = Q(s-,o;)
k

for every s e i+. Furthermore, it is easy to see that for every u e ft and s € R+

we have

|Qk(s,tf)| < sup |Q(u,w)|, k > 1
0<u<s
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i*e> {Q }v-i is dominated by the increasing process iJ(s,w) := sup |Q(u,u)|,
0<u<s

s > 0. Define the sequence of processes

[Q]k(t) := Q(t)2 - 2 jV(8)dQ(s), t > 0, k > 1. (15)
0

Then by the dominated convergence theorem for stochastic integrals (Metivier

[17], Theorem 24.2, p. 171) it follows that, for each t > 0, {[Q]k(t)}£=1

k.
converges in probability to [Q](t). In fact there is a subsequence {[Q] }^_j of

{[Q] }£ = 1 such that for a.a. u e ft the sequence of paths {[Q] *
J('5'')}^_^

converges uniformly on compact subsets of R+ to a limit
k.

[Q](t,») := lii [Q] J(t,*), t 6 R+ (16)
j-HD

(Metivier [17], Theorem 24.2, p. 171). Ve now show that each [Q] , k > 1, is an

additive cocycle over 0. Using integration by parts we can replace the right

hand side of (15) by a version of [Q] , denoted by the same symbol and satisfying

k\ ( ) ( s , * O (17)
0

for all u G fl, t e R+. Fix t,h e R+, u € fl and consider

rh
+ 2 j q(s,0(t,4/

o

rh
2 J

+ 2Q(tf»)Q(t+h,4r)
rt+h ,.

+ 2j q(s,
t
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r t + h

+ 2 J

0

2 j= [q]k(t+h,*) - [q]
k(t,*). (is)

Define the set II. 6 7 of full P-measure by

fl. := {A/: 0 G G, lim [Q] J(t,<y) exists uniformly for t

in bounded subsets of R }.

To prove that flj is 0(t,-)-invariant, fix u G Il1 and t € R
+. Then it follows

from (18) that
k. k. k.

lim [Q] J (h^(t ,^)) = lim [Q] J(t+h,ir) - lim [Q] J(t,*/)
j-HD j-HB j

exists uniformly for h in bounded subsets of R . This says that 0(t,w) G flj.

Thus ^(t,-)^) C U1 for all t > 0. If we set k = k. in (18) and let j -> <D we

immediately get

0) = [Q](t+h,4r) - [Q](t,^), t,h > o, » G n r

This completes the proof of the lemma. D

Remark:

In Lemma (3.1) the semimartingales N., i = 1,2, need not have continuous

sample paths. However if both N.,N2 are sample continuous, it is easy to modify

1L so that for each v G 1L, [JL ,N2] (• ,6/) is continuous and assertions (i), (ii)

of the lemma hold.

The next lemma shows that under Hypothesis (CL) each (p ,0) is a

multiplicative cocycle.



14

Lemma (3.2):

Suppose M satisfies Hypothesis (CJ. Then there is a set fl« G 7 of full

P-measure such that 0(t,-)(ft2) C fl2 for all t > 0 and

pk(t1+t2,*/) = p
k(t2J(tvu))V

k(tvu) (19)

for all k > 1, t p t 2 € R
+, a e Jl2.

Proof:

Since • satisfies Hypothesis (Cg), it follows from equation (10), Lemma

(3.1) and the remark following it, that'there is a version (M) of the quadratic

variation of I and a set 1L G ? °* * U H P-measure such that 0(t,-)(fl2) C fl2 for

every t > 0,

<M>(t+h,*0 - <I)(t,aO = ( M X h , ^ , ^ ) (20)

for all a e fl2, t,h 6 R
+, and (!)(•,v) is continuous for every u e IL.

To prove the multiplicative cocycle property (19) let us fix t^ > 0, k > 1

and w e ft2. Ve shall consider the two R
n"n-valued paths

zx(t) := V
k(Utvu), z2(t) := ^ ( t , ^ ^ ) ) ^ ^ ^ ^ , t > 0. (21)

Note that z1(0) = z2(0) = ^ ( t v u ) and from (IIIk) it follows that

( ^ ( ^ j j ^ j J C ^ K , t > 0.
Also

dz2(t) = (M
k)'(t,<?(t1,w))z2(t)dt - ^d<I)(t9#(t19«))s2(t)y t > 0.

Therefore by uniqueness of solutions to (HI^) we have z^t) - z2(t) for all

t > 0 and (19) holds.

The following theorem shows that (jf,0) is a multiplicative cocycle:
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Theorem (3.1):

Suppose M satisfies Hypothesis (CJ. Then there is an (7^)t>Q- adapted

version <p: R+*ft -> Rn*n of the solution of (III) and a set flg C fl such that

(i) fl3 e 7, P(n3) = 1;

(ii) ^(t,-)(fl3) £ ft3 for all t > 0;

(Hi) KVV") = KV^tpAOMV") (24)

/or aU tpto > 0 and every w 6 1L;

(it;) ^(-,4/) 25 continuous for every w £ IL.

Proof:

The idea is to show that the sequence of multiplicative cocycles {(ip 5^)}r?=

(Lemma (3.2)) has a subsequence {(^ >^)}v'-i w^ich converges almost surely

uniformly on compacta to the required cocycle (p,0). Ve break the proof up into

three steps:

Step 1:

Ve use a smooth partition of unity to approximate the identity map

id n : R n x n -• R n x n by a sequence of bounded Cm maps f : R n x n -+ R n x n,
Rnxn m

m = 1,2,3,..., satisfying

whenever ||A|| < m; and fm, together with all its derivatives are globally bounded

on R n x n, for each m > 1. For each k,m > 1 let /: R+xJl -» R n x n be the unique
m

sample continuous solution of the d.e.

= (Mk)'(t)fm(^(t))dt - ̂ (M>(t)f n(^(t)), t 6 R
nxn

Following Mackevicius ([15], Example 1, Corollary 1) we see that there is a

sequence of a.s. finite stopping times {T.}? < such that T. f © a.s. a s j -*OD and
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lim E sup |Mk(t)-M(t)|2 = 0 (25)
0<t<T.

for j = 1,2,3,... It is easy to see that (III?) can be localized on each

stochastic interval C0,T-3 to give

d^(tATj) = d(Mk)(tATj)fm(^(tATj)) - ̂ (iKtAtyyfttAT..))

J) =1. k'j

Since each f is C00 with bounded derivatives and {M (-AT^)}t=i *
s a sequence of

S symmetric approximations to the continuous local martingale I(-AT.), it

follows from Theorem 1 of (Mackevicius [15]) that

lim E sup ||pk(t)-p (t)||2 = 0, m,j = 1,2,..., , (26)
k->a> 0<t<T.

where j? : R+xfl -» Rn*n is the unique sample-continuous solution of the

Stratonovich s.d.e.

dpffl(t) = odM(t)fm(^(t)) - *

r.(o) = i.
Step 2:

k mVe shall prove that {tp }^_. converges to p locally uniformly in probability

i.e. given e,6 > 0, j = 1,2,..., there exists In* (= ko(c,5,j)) > 1 such that

P| sup |f>k(t)-p(t)| > e 1 < 6 (27)
<-0<t<T. J

for all k > kQ. To this end we fix e>6 > 0 and j > 1 till further notice. Since

sup |p(t) | < OD
0<t<T.

a.s., we may choose and fix m > 1 sufficiently large such that

pf sup | f ( t ) | > • - j] < f . (28)
" " j

Now
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pf sup | f k ( t ) - p ( t ) | > cl < P1 + P9 + Po (29)
l-0<t<T. J l

where

P1 := P| sup |y
4)<t<T.

:=pf sup
k)<t<T.

and P, := pf sup |j> (t)-|»(t)| > j ] .

By (26) there exists kQ = ko(e,£,j,m) > 0 such that

P2 < | (30)

for a l l k > kQ. To estimate Pg observe that the coefficients of (IIIm) and (III)

agree on the ball Bffl = {A: A 6 Rnxn, ||A|| < n} of radius m. Hence pB and ip

satisfy the same s .d .e . whenever jf> ( t ) , jc(t) € BB. So by uniqueness of solutions

the following estimate easily follows

P 3 < p f s u p | j > ( t ) | > • - f l < I ( 3 1 )
6 <-0<t<T. *J 4

because of (28). Similarly, ^(t) = f?k(t) whenever ^(t) or ip (t) e Bm and it

follows from (30) and (28) that

1 <p[sup1 l-o<t<T.

< pf sup |f£(t)-« ( t ) | > 4l + p [ SUP If.OOl > m " 4lL0<t<T. 0J L0<t<T. J

J cl J

sup I jc(t) I > m - 7
l-0<t<T. 6i

Combining (29), (30), (31) and (32) immediately gives (27).
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Step 3:

For each j = 1,2,..., the sequence y jJ := sup \p (t)-p(t)|, k > 1
0<t<T,

converges to zero in probability as k -> © because of (27). Hence by induction on
k i k m

j, there exist subsequences {p }jLj» j = 1>2,..., of {p } £ - with the following
properties

(a) {p >J}v_i is a subsequence of {f '•*}?!_i *or ea°h j > *5

(b) for a.a. w G ft, lim p'J(t,tf) = p(t,6/) uniformly for t G [0,T.(^)].

k7 k7 V' m k mThe diagonal subsequence {p := p ' }v/-i °^ {^ K-i converges to p a.s.

uniformly on [0,T] for every 0 < T < cu (cf. Protter [21], Lemma (2.3)). Define

the set

fig := {v: w G fl2> lim p (t,(y) exists uniformly for t G [0,T]

for every 0 < T < ©}.

Clearly 11. 6 7 and P(fig) = 1. To see that fig is shift-invariant, let a G fig,

t1?T > 0. Then the limit

lim ^ ' ( M O M , * / ) ) = lim ^'(t+t-,*) lim ^ ( t . , * / ) " 1

k'Ha) k'^cD x k'-*,

exists uniformly for t G [0,T]. Note that in the above equality we have used

Lemma (3.2). Hence 0(tvv) G fig. This proves assertions (i), (ii) of the

theorem. To complete the proof of the cocycle property (24) pick a version of p,

also denoted by the same symbol, such that

p(t,*/) := lim p*''(t,4r), v G fig, t G R+

and pass to the limit as k' -• QD in the identity

U G fig, tx,t2 G R
+.
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By [11] and [13] we know that ^ ( u ) exists a.s. for all u > 0 and is sample

continuous in u. Ve may then consider the stochastic integral JQ p (u)dN(u).

The next result gives a version of this integral which satisfies the additive

property (33) below. This fact will be needed in the construction of the flow of

the s.f.d.e. (I).

Theorem (3.2);

Assume Hypotheses (C.) and (CJ. Then there is a set ftg C ft^ e 7 of full

f-measure and a cadlag (7^) + ̂-adapted process Z: R+xft -» RnxIi such that

(i) 0(t,-)(ft5) Q ftg for all t > 0;

(ii) Z(t,-) = J ^1(u)dN(u) for each t > 0 a.s.;
0

(Hi) Z(t1+t9,a;) - Z(t19«r) = p~
1(ti>v)Z{tO90(ti9v)) (33)

for all t^jtg € R+ and every w e flg.

N.B.

The version p above is the one given by Theorem (3.1).

Proof:

The idea of the proof is to approximate the stochastic integral

ft < r̂  k -1
J p (u)dN(u) by J (p )" (u)dN(u), use integration by parts to read off the
0 0

additive property (33) and then pass to the limit as k -> ».

For each k > 1 define the cadlag process Z^: R* x ft -* R n x n by

t k -1

Zk(t,6/) := (fy'
1^,*)*^,*) - J d^ ^du ^ N(u,^)du, t 6 R+, u G ft. (34)

0
k -1Since (p ) has paths locally of bounded variation, then integration by parts

gives

, N ft k j
zir(t>0 = J (V ) (u)dN(u), t 6 R , a.s., k > 1. (35)

0
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Now, since I satisfies Hypothesis (C.), it follows from Lemma (3.2) that

for L,u e R+, a e flo.

Using (34), (36) and the additive cocycle property of (N,0), a simple

computation shows that

for t1,t2 G R
+, w € ft2, k > 1.

For a.a. w 6 ft, p(t,*/) is invertible for all t € R+ (Jacod [11], Leandre

[13]); so it follows immediately from the cocycle property (24) that the set of

full P-measure

ft 4 := {u: w 6 (L, p(t,*/) is invertible for all t 6 R+}

+ k' m

is 0(t,*)-invariant for every t e R . Let {ip }±'-\ ̂ e *̂ e subsequence of

{̂7 }? j constructed in Step 3 of the proof of Theorem (3.1). Then, for each

^(t,d/) = lim (<p ) (t,of), t 6 R (38)

uniformly for t € [0,T], 0 < T < D.

Now use the dominated convergence theorem (Metivier [17], Theorem 26.3, p.
k* m k7 m183) to find a subsequence {$ K » = 1 of {ip } ^ ^ such that for a.a. u 6 ft the

limit

Z(t,*,) := lim (^(^'rhnm*) = wjVVjdNOO (39)
k'^cD 0 0

exists uniformly for t € [0,T], 0 < T < a>. Let flg be the set of all u G ft4 such

that the above uniform convergence (39) holds. Therefore for each u e flg,

tj 6 R+, the sequence
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converges uniformly for t 6 [0,T] as k' -» GD. Hence flg is 0(tp - ) " i n v a r i a n t - The

proof of the theorem is completed by passing to the limit as k* -> OD in the above

relation. D

§4. The landom Integral Equation

Ve are now in a position to formulate the random integral equation which we

advertised in §1. Ve shall first show that this integral equation is pathwise

equivalent to our s.f.d.e. (I). Ve then establish the existence of a unique

solution to the integral equation which depends linearly and continuously on the

initial data (v,^) G Mo. The cocycle property for the trajectory

I(t) := (x(t),x.), t > 0, then follows directly from uniqueness of the solution

to the integral equation.

Throughout this section we assume Hypotheses ( C ) i = 1,2,3,4,5 and take

(p: R*xft -> Rnxn, Z: R+xft -> R n x n to be the processes constructed in Theorems (3.1),

(3.2) of the last section.

Let [M,N] denote the Rnxn-valued mutual variation process of I and N viz.

[M,NJ = ([M,N]i;j) where

1 = (Mij)i,j=l' N = (Nij)i,j=r From Hypothesis (C4), (Cg) and Lemma (3.1), it

follows that there is a version [I,N] of the Mutual variation of I and N and a

set Kj e T of full P-aeasure such that $(t,-)(1l1) C I(1 for all t e R
+ and

{([I,N](t,6/),0(t,4/)): t 6 R+, u € flj} is an additive cocycle.

Let ng c fl be as in Theorem (3.2) and flg := fl- n IKj. Denote by E the vector

space of all Borel-Measurable maps g: [-r,oo) -» Rn such that g|[-r,0] belongs to
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n

L ([-r,O],ir) and g| [O,OD) is cadlag. For each u e flg define the linear map

1(4/): £ -» £ as follows: For any g e 5 set

I(")(g)(t) := g(t) a.e. t € [-r,0] (40)

and

- J Z(u,4;){K(u,4;)(0)g(u) - I(u,*)(-r)g(u-r)
0

,tf)(s-u))g(s)ds}du+Z(t,4;)J K(t)4;)(s)g(t+s)ds
-r

r^ 1 r r^ 1
+ J V (u>w) J /x(u,«)(ds)g(u+s)du+J <p (u,w)dV(u,4;)g(u-)

0 [-r,0] 0
- J f^u^^il^iM,,,) J K(u,*/)(s)g(u+s)dsl (41)
0 -r J

for t G R+.

Our first result in this section (Theorem (4.1) below) shows that the random

family of integral equations

x = I(a,)(x), x e £ , a/eft6 (IV)

(x(0),x0) = (v,»?) 6 M2

is equivalent to our s.f.d.e. (I).

Note that, if we fix and suppress v e t and use the cocycle property for

{vJ)t then (IV) reads

x(t) = p(t)[v- fz(u){K(u)(O)x(u)-K(u)(-r)x(u-r) + f ^(K(u)(s-u))x(s)ds}dul
L 0 u-r J

+ *?(t)Z(t) J K(t)(s)x(t+s)ds + J f>{t-nj(\x,')) [ /t(u)(ds)x(u+s)du
-r 0 [-r,0]

+ J r(t-u,^(u,-))dV(u)x(u-)-J J
0 0

J K ( ) ) [ , N ] ( u ) J I(u)(s)x(u+s)ds,
0 -r

t 6 R+ (IV)

x(t) = »/(t) a.e. -r < t < 0.
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The existence of a unique (cadlag (^t)t>0" adapted) solution to the above

integral equation will be established in Theorem (4.2). Ve now prove:

Theorem (4,1):

The s.f.d.e. (I) and the random integral equation (IV) are equivalent:

Every cadlag (7^)<>Q-adapted solution of (IV) is a solution of (I). Conversely,

every solution of (I) has a version which satisfies (IV).

Proof:

Fix (V,J?) e M2 and let x: [-r,a>)xfl -+ R
11 be a solution of the s.f.d.e. (I)

starting off at (V,J/).

The Revalued process

H(t) := v + J f /*(u)(ds)x(u+s)du + J dV(u)x(u-)
0 [-r,0] 0
rt r0

+ J dN(u) J K(u)(s)x(u+s)ds, t € R (42)
0 -r

is clearly an (7t)t>0-semimartingale because x is {7+)t>Q-adapted. Denote by

[M,H] the B.V. process
n

1 1 ^ ( ) t 6 R+., ! ] ^ ^ , [1,1] .(t) := E 11^,1^
3=1 J J

Applying the integration by parts formula (Metivier [17], Equation (26.9.3), p.

185) to the process

x(t) := f(t)fv + jV^nJdlCii) - J%"1(n)d[H,r|(u)], t € R+,

it is easy to see that x satisfies the linear s.d.e.

(V)
dx(t) = dl(t) + dl(t)x(t), t E R

x(0) = v
a.s.

Now our s.f.d.e. (I) says that x also satisfies the above s.d.e. (V). So by

uniqueness of solutions to (III) we get that
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x(t) = x(t) = p(t)|v + J f (u)dH(u) - J p~ (u)d[I,H](u)| (43)
1 0 0 J

for all t G R+, a.s. (see also Jacod [11], Theorem 2).

Inserting I from (42) into (43) and using the definition of Z (Theorem

(3.2)) we get

x(t) = ,>(t){v + J f\n) f ,,(u)(ds)x(u+s)du + J »f V W u M u - )
1 0 [-r,0] 0

+ J dZ(u) J K(u)(s)x(u+s)ds

VVWlMKu) JrK(u)(s)x(u+s)ds}, t G R+. (44)

Note that the last term in the above relation is obtained via the equality

flj dN(u) J K(u)(s)x(u+s)dsl(t) = J d[M,N](u)J K(u)(s)x(u+s)ds, t e R+. (45)
L 0 -r -I 0 -r

Now in (44) integration by parts (Metivier [17], p. 192) and Hypothesis (Co)

yield:

J dZ(u)J K(u)(s)x(u+s)ds = Z(t)J K(t)(s)x(t+s)ds - J Z(u)i J K(u)(s)x(u+s)ds du
0 - r -r 0 - r

= Z(t) J K(t)(s)x(t+s)ds - J Z(u)i f K(u)(s'-u)x(s')ds'du
r 0 a u u r
J ()()() J () f
-r 0 au u-r

j= Z(t)jK(t)(s)x(t+s)ds - ̂ ( ^ { K ^ ^ x H - K(u)(-r)x(u-r)}du
-r 0

1 () f0 u-r

Substituting the above relation into (44) implies that x satisfies the integral

equation (IV) a.s. for all t e R+.

Conversely, let x be a cadlag (T+ )t>0~adapted process which solves the

integral equation (IV). Using (46) it is easy to see that x satisfies (44). If
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we define H by (42) as before, then (43) holds. The latter relation implies that

x fulfills (V) and is therefore a solution of our s.f.d.e. (I). This completes

the proof of the theorem. D

The following result is the main theorem of this section. It is crucial for

the existence of the Lyapunov spectrum of our s.f.d.e. (I). Basically it says

that the random integral equation (IV) has a unique solution which yields a

robust version of the trajectory (x(t),xt) of (I).

Theorem (4.2)

Let Hypotheses (C) be satisfied. Then for each w 6 fig and (V,J?) e M2, the

integral equation (IV) has a unique cadlag solution x(- ,6/,(v,i/)): [-r,©) -» R .

Define the map I: R+xfixM2 -* M2 by

X(t,*,(v,*)) := (x(t,ir,(vf9)), ̂ ( - ^ ( v , * ) ) ) (47)

for t 6 R+, u 6 fig, (V,J?) G M2. Then the following is true:

(i) For each (v,fl) € M2, {X(t,•,(v,^)): t 6 R*} is the unique

{7\)t^Q-adapted trajectory of the s.f.d.e. (I) starting off at (v,^).

(it) For every u 6 flg and (v,jy) e 1L, the path !(• ,^,(V,J/)): R
+ -* M2 i5

cadlag.

(Hi) The map X(t,A/,-): I 2 -» M 2 t5 con<inuott5 linear for all t 6 R + and

(iv) For each v 6 fig,

R+ - I(M2)

t M X(t,«,-)

t\s Borel-measurable and locally bounded with respect to the uniform

operator norm on I»(M2);
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(v) For each t > r and u € flg, X(t,a/,-): M2 -» M2 is compact]

(vi) The event ftg Aa$ /ttZZ P-measure and is shift-invariant:

(vii) iCtj^Ctp^;),.) o X(tp*/,.) = I(t1+t2,^,-) (48)

/or all w e HQ and tj,t2 6 R
+.

Proof;

Ve establish a unique cadlag solution x(- ,• ,(v,^)): [-r,oo)xfl -> Rn for the

integral equation (IV) using the classical technique of successive

approximations.

Fix o) 6 flg and 0 < T < OD till further notice. Define a sequence of

successive approximations

{xk(t,*/,(v,?)): t € [-r,*), (v,?)) G I 2}, k = 1,2,...

as follows
>(t) a.e. t € [-r,0)

(49)
v t > 0

xk+1(t,U,(v,Ti)) = HM)(J(.9*,{Yti)))(t), t > -r, (50)

and

(v,^) e M2, k > 1. It is clearly seen, by induction on k, that x (-^(v,^)) 6 E

for k > 1 and (v,y/) 6 Mg.

In order to examine the convergence of the sequence {x (t,fi/,(v,^))}f=:| we

first contend that there are positive numbers Cj, C2, Co (depending on d/, T, /t, N

and L only) such that

f |g(u)|du + C3 flg^-JIdlVKu) (51)J 2 3
for all g e S and 0 < t < T.

The proof of (51) goes by estimating separately each of the eight terms on

the right hand side of (41). Ve shall only indicate here how to treat the two
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terms
rt . r

3Jg) := p{t,t>) J i 1 ^ , * ) J /*(u,a/)(ds)g(u+s)du (52)
0 T-r,O]

f* -1 f°
2 0 ' -r

Changing the variable s to s-u*in (52) and recalling Hypothesis (C2) we see that

sup I K t ^ l l l j V 1 ^ ) ! ! I |g(s)|M(u,*/)(-u+ds)du
0<t<T J0 [u-r,u]

^WJih-^ll^ |g(s)|[J%(u,W)(-)du](ds)

II • s u p
w 0<s<T

, 0 < t < T (54)
-r

where

:= sup ||F(t,«)||, I I J T 1 * . , * ) ^ := sup ||^X(t,,a/)
0<t<T * 0<t<T

and j^(") is the locally bounded Radon-Nikodym derivative of v with respect to

Lebesgue measure on [-r,a>). Similarly, using Hypothesis (Cg)> ve have

V^Hi^dpi,!!]^^) JUK(u,*)(s-u)g(s)ds
u- r

T

0 < t < T (55)

where ||K(-,w)(-)|| = sup ||K(t,w)(s)|| < CD, by Hypothesis (Co). The reader may
" -r<s<0 6

0<t<T

check that all other six terms on the right hand side of (41) satisfy similar

estimates to (54) and (55).



28

Furthermore, for each g e £ let

denote the jump of I(w)(g) at t € [0,a>). Noting that

sup ||AN(t,A/)|| < OD, sup ||AV(t,«/)|| < OD a.s.,
0<t<T 0<t<T

it follows from (41) that

|AI(*)(g)(t)| < C4|AZ(t,^)|-J
t|g(u)|du + |g(t.)|-|AV(t)|

< C5{J |g(u)|du+ |g(t-)|}, 0 < t < T, (55)'

for positive constants C4, Cg depending on 0, T, K, N, L.

For the time being let us suppress u 6 flg and (V,J?) G !«; so we write
k:= x (t,0,v,J7),

increasing cadlag path

k k + +
x (t) := x (t,0,v,J7), k > 1 and let a: R -* R stand for the non-negative

fl(t) := t + |V|(t,<y), t > 0.

Ve shall show that there are positive constants C^ := Ci((t/,T,/i,N,L),

i = 6,7,8,... independent of k, (v,tf) such that
k-1 k-1

U k + 1 ( t - ) - x k ( t - ) | < C 6 a(t-) sup |x 2(t)-x 1(t) I, k > l (56)
(k-1J! 0<t<T
k- 2 k- 2

| A x k + 1 ( t ) - A x k ( t ) | < C 7
 C 6 a^ sup |x 2(t)-x 1(t) I, k > 2 (57)

(k-2)! 0<t<T

and

|xk+1(t)-xk(t)| < C g
 6

 (k.2), sup I ^ O O - x ^ t ) ! , k > 2 (58)

for all 0 < t < T. To prove (56) we use induction on k > 1. Note first that it

holds trivially for k = 1. Suppose now that (56) is true for some k > 1. Then

it follows immediately from (51) and (56) that there is a positive constant Cg
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such that

|xk+2(t-)-xk+1(t-)| < C6 f'|x
k+1(u-)-xk(u-)|da(u)

0

< C6 ft* sup Ix^tJ-x
1^)! f'aK) 1

0 (k-1)! 0<t<T 0

< Ck a(t- ) k sup IxV)-* 1^)! (59)
0 k! 0<t<T

where we have used the inequality

r* v 1 1 v

J a(u-) da(u) < £ a(t) , t > 0, k > 1. (60)
0 ~ K

Note that the above inequality (60) is easily checked by using successive

integrations by parts and the fact that a is non-negative and non-decreasing.

This proves (56).
k k-1To prove (57) we replace g in (55)' by x - x " and use (56) and (60) to

obtain

|Axk+1(t)-Axk(t)| < C5{J
t|xk(u-)-xk'1(u-)|du + |xk(t-)-xk

_^6 J a(u-)k"2do(u) + L6 a^'J [ sup |i
(k-2)! 0 (k-2)! Jo<t<T
k-2 k-2

< C7 °6 *&'^ sup |x2(t)-x1(t)|, 0 < t < T
(k-2)! 0<t<T

where

C7 :=C5[a(T)+l].

The inequality (58) now follows directly from (56), (57) and the obvious

inequality

|xk+1(t)-xk(t)| < |xk+1(t-)-xk(t-)| + |Axk+1(t)-Axk(t)|, 0 < t < T, k > 1.

Now let B := {(v,»?): (V,J?) e M2, |f(v, 17)|(M < 1} be the closed unit ball in

I2. Ve no longer suppress a e flg, t, (v,»/), but rather think of x as a function
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k + Tl

x (•,*>,•) of (t,(v,^)) G R *M2 into 9r. It follows easily by induction from

(50), (49) and (51) that for each k > 1 we have

||xk|| := sup sup |xk(t,*/,v,>/)| < a>. (61)

0<t<T (V,I?)GB

In particular for fixed k > 1 and t > 0, each x (t,a/,-): M2 -> R
n is a continuous

linear map.

Let E be the space of all bounded maps f: [0,T]xB -+ Rn such that for each

(vjfl) G B, f(-,v,^) is cadlag, and for each t € [0,T], f(t,-) is continuous on B.

Ve equip E with the Banach norm
||f||E = sup sup |f(t,v,j?)|.

0<t<T (V,J?)GB
Then E is a real Banach space. It follows directly from (58) that the series
GO

E k+1 k{x (•,*/,-)-x (•,#,•)} m ay b e compared with the convergent exponential series
k=2

OD

I CS CJT 2 ° ( T ^ ) k " 2 S UP SUP |x2(t,^,v,J7)-x1(t,^,v,i7) |.
k=2 * D (k-2)! 0<t<T (V,J/)GB

QD

Hence the series E {x + (-,a/,-)-x (*,̂ ,-)} is absolutely convergent and so the
k=l

sequence {x (*,6;,-)}t=i converges to a limit x(•,#,-) G E. This limit extends by

linearity to a map x(-,#,-): R+XM2 -• R
n such that for each t € R+,

x(t,6/,*): M2 -» R
n is continuous linear; and for each (v,i/) G M«j X(-,^,V,J;):

R+ -* Rn is cadlag. Furthermore,

sup sup |x(t,6/,v,^) | < OD. (62)
0<t<T (v,j?)eB

Let us momentarily suppress u and fix (V,J?) G Mj- Since all the processes

appearing on the right-hand side of (41) are (7. )t>Q-adapted (Hypotheses C), we

can easily see by induction on k that each x (t,-,v,^) is 7\-measurable for

t > 0. Letting k -• a> we get that X(-,-,V,J/) is an (7t)t>Q-adapted solution of
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the integral equation (IV). This implies by Theorem (4.1) that it is also a

solution of the s.f.d.e. (I).

To prove uniqueness of the solution of the integral equation (IV) for each

v € flg, let y(-,tf): ["r>«0 -» R11 be any solution in S of (IV) with (y(O),yQ)

= (V,TI) = (x(0),xQ). Then using (51), (55) and the same argument underlying the

proofs of (56), (57) and (58) the reader may check that

,a>)| < CJT1 a(t';tf) sup |x(t,tf)-y(t>4;)| (63)
[FIJI " 0<t<T

tf)| < C ?
 C6 «(*>*) sup |x(t,*)-y(t,*)| (64)
1 (k-1)! 0<t<T

and

lx(t,*/)-y(t,*,)| < Cfi
 C6~ a}t'lt) ' sup |x(t,ir)-y(t,»)| (65)

0 (k-1)! 0<t<T

for all 0 < t < T and every integer k > 1. It follows from (65) (e.g. let k -• OD)

that x(t,u) = y(t,6/) for all 0 < t < T and pathwise uniqueness follows.

Let the flow I: R 4 x II « I 2 •• I 2 be defined by (47). Then it follows from

(62) that for each u € flg we have

sup sup ||X(t,4/,v,J7)||H = sup sup (|x(t,w,v,j/)|2 + J |x(u,6/,v,>?)|2du)
0<t<T (v,j/)eB "2 0<t<T (v,j/)eB t-r

< a> (66)

The Borel measurability of X follows easily from the corresponding property for

x. Hence (iii) and (iv) are proved.

To prove (v) we fix tQ > r and u 6 flg. If we define X
k: R+xflxM2 -» M2 by

Xk(u,tf,(v,j?)) := (xk(u,tf,v,)/),xk(.,4;,v,»7))

for u € R+, (V,J?) 6 I 2, then it is clear that each X(u,*>,•): M 2 -* M2 is

continuous linear and
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lim sup ||Xk(u,4r,.)-I(u,*,-)llLrM , = 0. (67)

k-*o 0<u<T L ^

Hence it suffices to show that I (tQ,4/,-) is compact for every k > 1 as the

compactness of X(to,a/,«) will then follow from (67). In order to do so we pick a

sequence {(vj>9j)}?=i
 c B and show by induction on k that there is a subsequence

{(vi/>*?i/)>i/=1
 of {(vi^i))i=i such that {xk(u,6;,vi/,i7i,)}?/=1 converges

uniformly for u 6 [0,T]. This will obviously imply that {I (to,^,vi, ,i/i,)}®/=1

converges in 1L because uniform convergence implies convergence in In. Therefore

it remains to justify our inductive hypothesis. First note that

{x (u,0,Vp^) = v^}°?=1 clearly has a subsequence uniformly convergent for

u 6 [0,T], because |v.| < 1 for i = 1,2,... . Suppose next that the inductive

hypothesis holds for some k > 1. In the subsequent computation we shall denote

all subsequences of a given sequence by the same symbol in order to simplify

x
notation. So we pick a uniformly convergent subsequence {x (u,6/,vi,^i)}"_1 of

{x (ujft/jV.,*/.)}0?.. Note that the

v but not on u e [0,T]. Now write

{x (ujft/jV.,*/.)}0?.. Note that the choice of such a subsequence may depend on k,

where

Ii(g)(t) := f(t)g(O)

I2(6)(t) ==

Is(K)(t) := F(t) A2(u)g(u)du

I4(g)(t) := f(t)

I5(g)(t) := f(t) f f A3(u,s)g(s)ds du
0 u-r

0 < t < T,

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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I6(g)(t) := m J* A4(t,u)g(u)du (75)

I7(g)(t) := Pit) j Y o i ) f A(u)(-u+ds)g(s)du (76)
0 [u-r,u]

I8(g)(t) := f(t) fdA6(u) J\4(u,s)g(s)ds. (77)

Observe that in the defining relations (70)-(77), g € £, u G fig is suppressed,

A2, Ag, A4, Ag, ip are continuous Matrix-valued processes and ,̂ A^, Ag are cadlag

matrix-valued processes of bounded variation. Our strategy is to show that each

sequence {I-(x (•,0,v^,i^))(t)}?=j, j = 1,2,...,8, has a subsequence converging

uniformly on [0,T]. Ve shall only discuss the cases j = 6, 7. The remaining

cases may be treated similarly. Consider first the sequence

{I6(x
k(.,o;,vi^i))(t)}?=:L for 0 < t < r and write

J A4(t,u)»?i(u)du+J A4(t,u)x
k(u,w,vi^i)du}, (78)

i fO i f̂  k
Ji(t) := J A4(t,u)j;.(u)du, J2(t) := J A4(t,u)x (u,w,v.,j/.)du. (79)

t-r 0

Then by continuity of A. it follows that J^, J« are continuous functions

[0,r] -» Rn and

sup |J.,(t)| < ||A.|| sup
0<t<r 1 " 4 CD i>l -r

4||- < . (80)

because \\t).\\ „ < 1 for all i > 1. Similarly by (61) we see that
r

sup |Ji(t)| < m. (81)
0<t<r z

i
Ve now show that the families {jj: i > 1}, {ji: i > 1} are equicontinuous.

Let c > 0 be given. Then by (uniform) joint continuity of A., there is a



34

6 € (0,e) such that

||A4(t2,u) - A4(t1,u)i| < e (82)

for all u 6 [0,T] whenever Itj-tgl < 6, t j , t 2 € [0,T]. So suppose t ^ t j € [0,r]

are such that t^ < t2 and t2-t1 < 6. Then

J
+ J ^(tg.uJ-A^tp

<- ll9iH/?P4||Jt1-t2|
1/2 + 6||9i

Also by (61) we have

+ J 1||A4(t2,u)-A4(t1,u)|||x
k(u^,vi,j?i)|du

k k
|x || := sup sup |x (u,a/,v,fl)| < w. (61)

where

Hxkl,
m 0<u<T (v,i

Hence by Ascoli's theorem there is a subsequence of {J^ + J^lj^p denoted also by

the same symbol, such that {jj(t) + J ^ ^ i s l c o n v e r S e s uniformly on [0,r].

Therefore since f is locally bounded it follows from (78) that the corresponding

subsequence {Ig(x (• *0jVj,i^))(t)}"=j converges uniformly for 0 < t < r. A

similar argument to the above yields the uniform convergence for r < t < T of a

further subsequence of {IA(x (• ,0,v. ,J?-))(t)}. Hence the above subsequence

converges uniformly on [0,T].

Next let us look at the sequence {Iy(x (• ,tfjV.,ty.))(t)}°? j for 0 < t < r.

From (76) we obtain
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(83)

where

(84)

(85)

• rt r
Jo(t) := J A,(u) I ^(u)(-u+ds)j7.(s)du6 0 5 t"-r,O] 1

J4(t) : = J A5(u) ^ ^ ( u ) ( - u + d s ) x (s,«,vif9i du

for 0 < t < r. To prove that {Jjft)}? * has a uniformly convergent subsequence

we pick a uniformly convergent subsequence of {x (s,6/,Vp^)}^_j and use

Hypothesis (C2) to see that for the corresponding subsequence of {J^(t)} we have

fY|xk(s,4;,vi,J7i)-x
k(s,4;,vj,J/:J)|^u)(ds)du}||A5||(B

< sup

which goes to zero as i,j -> a>. Thus {J^(t)} has a uniformly convergent

subsequence. To prove that {JoCt)}*-! is uniformly bounded we use (84) and

Hypotheses (C2), (C&) to get

|jj(t)l < f{l r I|A5(u) || 11 [u. r>0] (s) 11 ̂ (s) | |/i(u) (-u+.) I (ds)}du

• l » s l

< I|A5I

< HA 1

du(r)
ds

dj
c

A

iikiiiff2{r

1
L

dl/(t)
ds

0
-t /o

ds [
A.

CO

= sup
-r<s<0

i(s)

d^r)
ds

r / i > 1
X y X x ±

CD

||A || = sup ||A (u
0 ° 0<u<r 5

where

A similar computation shows that
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0 di/(t2)

-r

<- «M. -as2- -aiHU («»>
for 0 < t-, tg < r and i > 1. Because of the (uniform) continuity of the map

[0,r] 3 t H ^ ^ 6 L2([-r,0],IR) (Hypothesis (C2)), the above inequality implies

that {Jo(t)} is equicontinuous for 0 < t < r. Therefore {Jo(t) + J^(t)} has a

uniformly convergent subsequence for 0 < t < r. Thus (83) implies that

{I7(x (•^,v^,^i))(t)}?=1 has a uniformly convergent subsequence on [0,r].

Using the inductive hypothesis and the relation

J A5(u) J /i(u)(-u+ds)xk(s,w,v.,J7i)du,
r [u-r,u]

for r < t < T, it is easy to see that {I*{x (• ,^,v-,»;•) )(t)}?j has a subsequence

which converges uniformly for 0 < t < T.

In view of (70), (71), (72), (73), (74), (77) the reader may check that the

remaining six sequences {I(x (• ,w,v-,j?-))(t)}"=1, j = 1,2,3,4,5,8 have

subsequences which converge uniformly for 0 < t < T. Therefore the inductive

hypothesis is valid for k+1 and X (to,&/,-) is compact for every k > 1. This

completes the proof of assertion (v) of the theorem.

Assertion (vi) holds trivially because flg = ftg fl flj and flg, flj are of full

P-measure and are 0(t,•)-invariant (Theorem 3.2).

Finally we prove the cocycle property (vii) for (X,0). Fix t^ > 0, w 6 flg

and (V,T?) E M2- Let y 1(-,^): [-r,a>) ->Rn, i = 1,2 denote the paths

y1^,*/) := x(t^(t1,(t/),X(t1^,v,^)), t > -r (87)

y2(t,(y) := x(t+t1,6/,v,j7), t > -r. (88)
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Note that the cocycle property (48) will follow immediately if we show that

y 1 ^ * ) =y2(t,*0, t > - r . (89)

To prove the above relation (89), first observe that

Ve shall next prove that y satisfies the integral equation (IV) with u replaced

by 0(t*,w) viz:

y2(t,tf) = I(f(t1,i0)(y
2(.,»))(t)> t > 0. (91)

Since y also satisfies (91) with the same initial condition X(tj,0,v,7),

uniqueness of the solution to the integral equation will give (89) and hence

(48). Because of the relation

(91) will follow from

Therefore it remains to prove the above relation (92). To do so we outline the

following rather lengthy computation. Start with the left hand side of (92) and

use the definition of 1(0(^,6/)), Theorem (3.2)(iii), Theorem (3.1)(iii),

hypotheses (C^), (Cg), (Cg) and the additive cocycle property of [I,N] to get

r
x[K(u+t1,w)(O)x(u+t1,6;,v,>7)-K(u+t1,4;)(-r)x(u+t1-r,fi;,v,J7)

+r
u+tj-r

°
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+ V>{Ut.,u)\ ip (u+t^w) I1 0 1 t-r,O]
ft 1

+ ^(t+tt,w)J <p (u+t1,w)dV(u+t1,w)x((u+t1)-,4;,v,j/)
1 0

.^yJ K(u+t1,(y)(s)x(u+t1+s,w,v,i;)ds. (93)
x
 T

 l

J
0

J (^^t
0 l

In the above relation we change the variable u to u-tj and substitute for

I(o;)(x(-,a;,v,>/))(t1) from (41) to obtain

- K(u,ft/)(-r)x(u-r,w,v,>?) +

u-r

,u)\ K(t1,w)(s)x(t1+s,<y,v,»/)ds. (94)
-r

The equality (92) now follows from (94) by integrating the relation

u -r

*r
u-r

with respect to u between t. and t^+t. This completes the proof of the cocycle

property (48). D

Remark:

The continuity of X(t,0,-): M2 -» M2 in the norm ||-||g is guaranteed by

Hypothesis (C2)- On the other hand, if the state space M2 is replaced by the

space D := D([-r,0] ,Rn) of all cadlag paths i\\ [-r,0] -» Rn with the supremum norm
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:= sup |J?(S)|, then Hypothesis (C9) may be dropped and Theorem (4.2) will
-r<s<0

hold with M 2 replaced by D.

§5. Lyapunov Exponents

In this section we prove the existence of a countable set of Lyapunov

exponents

li» Jlog ||X(t,.,v(0>?(0lli (95)

for the stochastic flow of the s.f.d.e. (I) which we constructed in §4 (Theorem

4.2). Such a Lyapunov spectrum corresponds to almost sure exponential growth

rates for trajectories {(x(t),xt): t > 0, (x(0),xQ) = (V,J?)} of (I) starting off

at possibly random initial states (V,J?) G IL (ft,M2;7*0). The existence of the

Lyapunov spectrum is achieved using Ruelle's infinite-dimensional discrete

version of Qseledec's multiplicative ergodic theorem (Ruelle [23], [22]). In the

hyperbolic case, when all the Lyapunov exponents are non-zero, we establish an

exponential dichotomy for the flow which is invariant under the cocycle (X,0).

The continuous-time limit (95) is shown to exist by noting the compactness of

X(r,o/,-) (Theorem (4.2)) and then discretizing (95) using multiples of the delay

r:

lim * log ||X(kr,.,yf9)|L . (96)

A key step in identifying the limits (95) and (96) is to establish the

integrability property

E sup
0<t1,t2<r
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where I M I W M \ is the uniform operator norm on L(M2) (cf. Lemma 4, §4 in [20]),

Much of the work in this section is directed towards realizing the above

integrability property. To begin with we shall use the following moment

hypotheses on the driving processes in the s.f.d.e. (I):

Hypotheses (I):

(I.) If v is the measure defined in Hypothesis (C2), suppose that

E sup ^ M | 3 < . ;
-r<s<2r a s •

(I2) E sup ||K(t,-)(s)||4 < • ;
z 0<t<2r

-r<s<0
E sup IIITRT K(t,«)(s)|| + ||̂- K(t,*)(s)|| | < OD, E{|V|(2r,-)} < OD;

0<t<2r l ^ os >

-r<s<0

11*11 denotes the (Euclidean) norm on Rnxn.

(Io) Write the semimartingale N in the form N = N +V where the local (?+)+>A~

martingale N = (N--)? •_, and the bounded variation process V = (V^-)™ .satisfy

X |AV? (s)|2]'

E{|vJj|(2r,.)}
8 < « ,

for all 1 < i,j < n. Note that |v9.|(2r,-) is the total variation of v9.

over [0,2r] and AV-.(s) is its jump at s.
J

(I4) Write M = (
Mi0i 1=i

 an^ suppose that

for all 1 < i,j < n.
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(Ic) Suppose there exists a non-random time tQ > 0 such that

E KMii^PKV-) ei-(o,8).
l "i V / J

Our first goal is to establish the integrability property (97) under

Hypotheses (C) and (I). To do this we stress the dependence on w e fl of the

"constants" Cj, i = 1,2,...,8 appearing in (51), (55)', (56), (57), (58). From

the proof of Theorem (4.2) ((58)) it follows that for each u G flg we have

sup |x(t1
0<t pt 2<r

 L

|<l

< sup Cfi(0(to,fij))exp| sup CR(^(to,4/))- sup a(i,0(to,v)) \
0<t2<r * l l0<t2<r

 b Z 0<t2<r
 l )

sup

sup |x2(t1,^(t2,4;),v,»/)| (98)
0<t15t2<r

 x Z

(99)

(100)

7 5 5 (101)

C5(*/) = sup ||f»(t,tf)|| • sup ||I(t,*0(s)||-sup l|AZ(t,4/)||
0<t<r 0<t<r 0<t<r

se[-r70]
+ sup ||AY(t,i»)||. (102)

0<t<r
Note that the integrability property (97) is implied by

J log+ sup |x(t1,^(t9,6;),v,^)|dP(6;) < a.. (103)
fl 0<tj,t2<r
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Taking log+ in (98) and using the elementary inequality

log+(a+b) < log+a + log+b + log 2, a,b e R* (104)

we see that

log* sup |x(t1

< log+ sup C8(0(t2,«>)) + sup Cfi(0(t2,tf))- sup a(T,$(t2,u))
0<t2<r

 8 l 0<t<r ° l 0<t<r 1

log+ sup
0

p 8 ( ( 2 , ) ) p fi((2,))
0<t2<r

 8 l 0<t2<r ° l 0<t2<r

+ log+ sup |x2(t1}^(t9,6;),v,j/)| + log 2. (105)
0<t1$t2<r

 l *

In view of the above inequality we establish (103) by showing the existence

of appropriate higher order moments for each of the random variables appearing on

the right hand side of (105). This is done in the following sequence of lemmas

under Hypotheses (I) and (C).

Our first lemma asserts that Hypotheses (Ig) and (Cg) are sufficient to

guarantee the existence of all higher order moments for the stochastic flows

{?(t): t > 0}, { ^ ( t ) : t > 0} (Theorem 3.1).

Lemma (5.1):

Let M satisfy Eypotheses (C^) and (I5). Then for each 0 < T < a> and every

integer p > 1,

E sup k(t,-)H2p < -, (106)
0<t<T

E sup ||*T1(t,-)H2p < -, (107)
0<t<T

and
E sup I|p(t1,0(t2,.),-)U

2P < • • (108)
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Proof;

For each t e R+ we write

where
n t

Pij(t) = 6^ + E J fsj(u)dMis(u), i,j = 1,2,...,n a.s.

Recall that ||-|| denotes the Euclidean norm on Rn*n and so the function ||-|| p is

smooth on R n x n for any integer p > 1. Hence by Ito's formula (Metivier [17],

Theorem 27.1, pp. 188-189) we obtain a.s.

J
i,j,s=l 0
n

n t

||Kt)||2p = 1 + 2p I J UW
i j l 0

+ 2P(p-l)

(u), t > 0 . (109)

Define the continuous increasing process
n

i,k,s,q=l

and a sequence of stopping times

rm := inf{t: t > 0, ||p(t)|| > m}, m = 1,2,3,... .

Set

Pm(t) := jo(t A r m), t > 0, m = 1,2,... . (Ill)

Since I is a martingale, (109) implies that

2p < 1 + 2P(p-l)n
6E

4 rLA7m 9n
. -̂.̂ *l? I "Ml - / . \ I I^Pjj0 / . . \

+ p n Hi I II10 f U 1 II ( lp ( UJ •
0 m
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Hence there is a deterministic constant Cg = Cg(n,p) > 0 independent of m and t

such that

B
p < 1 • CgE ^I^WII^dTCii), t > 0 (112)

where 7 is the continuous predictable increasing process

7(t) := 0(t) + t, t > 0. (113)

For a.a. 0 € ft we denote by 7" (•,#) the inverse of 7(-,tf). Then *or eac^

7" (t,*) is an (7t)t>Q-stopping time. Thus in (109) we can replace t by

7' (t,*)Ar and take expectations to get

+ CQE f
 (t)|km(u)||

2Pd7(u)

Pdu, t > 0. (114)
y 0

Applying Gronwall's lemma to (114) gives
C t

n^d'Ht))]^ < e 9 , t > 0 (115)

for all integers m > 1. Now from the definition of <p ((111)) it is clear

that a.s.

for all t > 0. Since the right hand side of (115) is independent of m, it

follows from Fatou's lemma that
C t

B||r(7"1(t))||2p < lainf E|k,(7"1(t))||2p < e 9 < .. (116)
ffi—HE

Now let k > 1. Then by similar reasoning we may replace 7" (t) in (116) by

7-1(t) A k and get
C t

E|k(7~1(t)Ak)||2P < e 9 , t > 0. (117)
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Since f> is an (^t)t>0-martingale and 7~*(t) A k is a bounded stopping time, it

follows from Doob's optional sampling theorem that {^(7" (t)Ak): t > 0} is an

)XVA-martingale and

C T
E sup H K f V ) A k)||2P < C^EUKf^T) A k)||2P < C1Qc

 9 (118)
0<t<T 1U

(Ikeda k Vatanabe [9], p. 34). The constant C.Q does not depend on k or T.

Taking liminf as k -> OD in (118) and using Fatou's lemma once more gives

C T
E sup ||p(7~1(t))H2p < C 1 0 liminf *MI~\T) A k)||2P < C1Qe

 9 < ..
0<t<T 1U k-KD 1U

Since 7 ([0,T],-) = [0,7 (T,-)] a.s., the above inequality now reads:

C T
E sup., ||p(u)||2P< C 1 Q e 9 (119)

0<u<7 !(T) 1U

for every T > 0.

By Hypothesis (Ig) we can define the deterministic time

TQ := essup P(tQiu).

Then TQ+t0 > 7(tQ) a.s. and so tQ < 7"
1(T0+t0) a.s. Replacing T by TQ+t0 in

(119) we see that

Oft C Q (T n +t n )
E sup | |f(u)| |2 p < Cine 9 ° °

0 i U
p ||f()|| i n e < a, (120)

0<u<tn
 i U

- - ufor all p > 1.

Now invoke the cocycle property for p, Holder's inequality and the

measure-preserving property of 0(to,-) to get

1/2
E sup ||Ku,-)H2p< [E sup |k(u,(?(to,.))l|

4pl • [E|k(to,-)I|
4P1

0<u<2tA !• 0<u<tft
 U J L U J

- - 0 - - 0

= [E sup llfCu,-))!!41*]1- hf(to,-)ll
4pl'

L 0<u<t. J L U J
0<u<tQ

< GO.
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Hence by induction it follows that

E sup ||p(u,.)||2p < „
0<u<mt0

for every integer m > 1 and (106) holds for every T > 0.

In order to prove assertion (107) of the lemma, note first that a simple

application of the product rule shows that <p~ is the unique solution of the

matrix s.d.e.

f x ( ) = -if V j d i o o + ̂ ( t j d o o o o , t > o
(VI)

it

where (M)^ := I <Mik,Mkj) (cf. Leandre [13], p. 273).

Vrite ^ - 1(t) := (^J(t))J . 1 and apply Ito's formula as before (cf. (109))

to get

nn t

+ c u : I IJ IIJP"1^)
i,j,s-l 0

n t; I J ||r-1(u
i j j jS-1 0

n t

• E J
1J3 >*>^9S,r-l 0

(121)

a.s. for all t > 0. The constants C ^ , CiO, C1Q depend only on p. For each
"~ XX XZ Xo

m > 1 define

T' := inf{t: t > 0, sup ||p"1(71(s))|| > m}
m 0<s<t

and

:= 91{t A 7~ 1(rO), t > 0.
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It is clear that a.s. H^^t)!! < m for a11 t > 0. In (121) we replace t by

s A 7" (r'), square both sides and take E sup. to get
m O^s^'^t)

-1,

E sup 1 \\fm\s)\\^ < 1 + C14 E
0<s<7 (t) 0

^ f (t)llr^1 («)H4pd^(u)>, t > 0, (122)

where the constants C.*, C 1 5 depend only on p and n.

Now j9(7~1(t)) < t a.s., so (122) implies

E s u p . I I ^ " 1 ( s ) I l 4 p < 1 + C 1 6 E J
7 s u p | k m

1 ( s ) | | 4 p d 7 ( t i ) , 0 < t < T
0<s<7^(t) m iD 0 0<s<u m

= 1 + Clfl J E sup, H^1(s)||4pdu, 0 < t < T,
lb 0 0<s<7 1(n) m

with Cjg = C16(n,p,T) > 0 and independent of m > 1. Hence by Gronwall's lemma,

E sup , ||^"1(s)||4p < e 16 , 0 < t < T, m > 1. (123)
C K s ^ ^ t ) m

If m > sup H P ' V 1 ^ ) ) ! ! , then
0<s<T

. Hfl^sJH = sup , HfT^s)!!, a.s., 0 < t < T.
0<s<7 1(t) m 0<s<7 1(t)

Thus it follows from (123) and Fatou's lemma that

E sup 1 ||f»~1(s)||4p < e 16 < a,, 0 < t < T.
0<s<7 (t)

Now using the above inequality, Hypothesis (I&) and the cocycle property for f

one easily obtains the assertion (107) of the lemma.

Finally note that (108) follows immediately from (106), (107), the cocycle

property for ip and Holder's inequality. This completes the proof of the lemma, D
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Lemma (5.2)

Suppose E{|V|(2r,-)}p < GO for a fixed p > 1. Then

E sup {*(r,0(t9,.))}
P < ». (124)

0<t2<r
 Z

Proof:

The lemma follows directly from

a(i,0(t2,v)) = r + |V|(r,tf(t2,6;))

and the fact that
lvl(r^(t2'

6/)) - |V|(r+t2,6/) + |V|(t2,tf) (Hypothesis (Cg)). D

Lemma (5.3);

i e < JT,iK satisfy Hypotheses ( # r ) j (^/)> ^w^ let p > 1 be such that

E{(Mi;j>(2r,.)}P < ° (125)

, - ) } P < » . (126)

E{[V?.](2r,-)}P = E[ I |AV?.(s)|2l < co for all 1 < i , j < n. (127)
^ l-0<s<2r 1J J

TAen

p {
0<t2<r

E sup {|[M,N]|(r,tf(t9,-))}P < »• (128)

Proof:

First observe that the given hypotheses on N and V imply that

E{[Ni:j](2r,.)}
P < «»>, i,j = 1,2,...,n. (129)

To see this, we write

(130)
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a.s. for i,j = l,2,...,n, by the Kunita-Vatanabe inequality (Elliott [6], p.

126). Hence by Holder's inequality

P ^ ^ ] (2r,

< (D, i,j = 1,2,... ,n

and (129) holds.

To prove (128) we recall that |[M,N]|(r,-) is the total variation of the

R11*11- valued process

[1,1] = [M i J - j^u . iy ]
measured with respect to the Euclidean norm ||-|| on Rnxn. Then by the

Kunita-Vatanabe inequality we have a.s.
n n

n n
V V 1/2 r i \^l/2

" ni,j=l k=l lk r' kj

for all 0 < t2 < r. Taking supremum over t2 and expectations we see from

Holder's inequality that
n n

Esup {|[M,N]|(r,*(t2,.))}P<C17 I E (E{[M J(2r,.)}P)1 /2(E{[Nki](2r,-)}P)1 /2

0<t2<r l i , j = l k=l 1K *J

< Cn I \ I E{[Mik](2r,.)}P]1-2f I E{[Nki](2r,.)}Pl1/2

i,j=llk=l J L k = l J J

which is finite by (125) and (129). This completes the proof of the lemma. D

The following lemma gives an integrability property for the process Z

defined in Theorem (3.2):
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Lemma (5.4);

Suppose M satisfies Hypotheses (CJ and (Ij* Let N , V be such that

E{[N$.j](2r,.)}2p<«> (131)

? j
4 p < » (132)

for all 1 < i,j < n and a given p > 1. Then

E sup ||Z(t1^(t2,.))||
P< oo. (133)

0<t1}t2<r
 L *

Proof:

From Theorem (3.2)

Z ( t p 0 ( t 2 , . ) ) = v(t2,.)mt2+tV')-Z(t2,-)} a . s . , t r t 2 > 0. (134)

Therefore
1 /I 1 /2

JE | | Z ( t ) | | 2 p }
1 /I 1 /2

E sup ||Z(t1,#(t2,.))||
P<2P{B8«p ||p(t2,.)H

2p} • JEsup ||Z(t,.)||2p} .
0<tx,t2<r

 l Z I 0<t2<r
 l * l 0<t<2r J

(135)

In view of this and (106) of Lemma (5.1), it is sufficient to prove that

E sup ||Z(t,.)||2p < w. (136)
0<t<2r

Now write Z(t) = (Z-.(t))? . 1 where

=ljj(t) • I ^ t ) , (137)

n t

ijj(t) = = ^ 1 ^ ( u ) d N ^ ( u ) , (138)

n t

Iii(t) := X J ^(u)<(u), (139)

for t > 0, 1 < i,j < n, a.s.
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Therefore (136) will follow from

E sup |I^(t)| 2 p < OD, m = 1,2, 1 < i,j < n. (140)
0<t<2r 1J

It remains to prove (140). Using the martingale property of the Nj, and standard

estimates on the stochastic integral in (138) (Metivier [17], E. 3, p. 212),

there is a deterministic constant C l g = Clg(n,p) > 0 such that

E sup \lUt)\2^ < C I l\f% ^
0<t<2r 1J 1B k=l '0

<C l g J i

n

< C Z E l s u p
1 8 k=l l

< Clg { I E sup I ^ C u ) ! } ^ I E([Nj ](2r,.))M
18 lk=l 0<u<2r 1K J lk=l KJ J

which is finite by (107) and (131).

The estimate

E sup II^OOI2? < Sf i,j = 1,2,...,n
0<t<2r 1J

is obtained in a similar way from (139) by using (107) and (132). This proves

(140) and the lemma. a

The next lemma establishes the integrability of the second term on the right

hand side of (105).

Lemma (5.5):

Assume Hypotheses (C) and (I). Then

E{ sup <U0(t2,.)) sup a(r,tf(t2,.))}<»• (141)
0<t2<r

 b l 0<t2<r
 l
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Proof:

Let u € flg. Then, by (99),

C6(*(t2,*)) = C2(f(t2,i0) + C3(9(tvM))f t2 > 0 (142)

where C2(-) and C«(*) are the random variables appearing in (51). Recall that

these were arrived at by estimating each of the eight terms on the right hand

side of (41). In particular, replacing a by 0(t2,tf), w

sup C3(*(t2,i0) < sup \\<p{tv0{*v
u))W' (143)

< t < r 6 Z 0<tt<2x 1 *0<to<r

Furthermore, substituting 0(t2,<c/) for u in (41) and using the cocycle property

for if (Theorem 3.1), the stationarity of /*,K (Hypotheses (Cj), (Cg)) and

Hypothesis (C2), the reader may check that
4

sup C9(0(t9,4/)) < I Cj(tf) (144)
0<t2<r

 z Z i=i z

where

d(») := 6 sup ||F(tlf#(t2,iO)||
2 sup ||Z(t,o»)||. sup ||K(t,4»)(s)|| (145)

0<t1}t9<r
 L L 0<t<2r 0<t<2r

1 z -r<s<0

:= 2r sup "-/A */A AX"2 P
0<t<2r

x I sup ||ll(t,6;)(s)|| + sup ||lK(t,A/)(s)||l (146)
0<t<2r UL 0<t<2r

-r<s<0 -r<s<0
d(4;) := sup IIKVfCt,,*))!!- sup

0<t1,t2<2r
 x z -r<s<2r

dv(u){s) (147)
Is

sup \\V(tlye(t2>i,))\\- sup ||K(t,^)(s)||-sup | [M,N]
0<t15to<2r l * 0<t<2r 0<t9<r

(148)
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Now multiply (145) by a(r,0(t2,w)), take supremum over t2 e [0,r] and note

that all the factors involved belong to L (fl,R;P) by virtue of Lemma (5.1)

(p = 4), Lemma (5.4) (p = 4), Hypothesis (I2) and Lemma (5.2) (p = 4). Therefore

by a simple application of Holder's inequality (Hewitt and Ross [8], p. 138), we

see that

E sup cl(>)o{T,6(t2,')) < Co. (149)
0<t2<r

By similar reasoning the random variables sup Ci(-)a(r,0(to,»)), i = 2,3,4,
0<t2<r

 l Z

have finite expectations because of Hypotheses (I2)> (Ij) and Lemma (5.3)

(p = 4). Since the left hand side of (143) is square-integrable (Lemma (5.1)),

the assertion (141) of the lemma is proved. o

The integrability of the first term in the right hand side of (105) is given

by

Lemma (5.6):

Assume Hypotheses (C) and (I). Then

E sup Cfi(0(to,-)) < w.
0<t2<r

 8 l

Proof:

From (100), (101) and (102) we see that

sup CJ$(to,u)) < sup Cfi(0(to,4/))a(r,0(to,w)) +
0<t2<r

 8 z 0<t2<r
 b Z l

+ sup \\<p{\v6{%vu)\\- sup ||I(t,*r)(s)|| • sup \\Ll{tv6{tvu))\\
0<t1?to<r

 l Z 0<t<2r 0<t1 ,to<r
 l L

1 Z~ -r<s<0 " 1 2"

[ sup a(T,6(t7,u)) + lj
L 0 < t 2 < r Z -I
[
L0<t2<r

sup HAVttj.^to.tfJJIlf sup
X L L0<t 2<r

o(r,tf(t2,«)) + l l , «eH f i . (150)
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But, by Theorem (3.2) ( i i i ) ,

sup \\lZ(tv${t2tt>))\\ < sup |||»(t2,¥)||. sup ||AZ(t1+t2,tf))||
0<t rt2<r L Z 0<t2<r Z 0 < t t < r 1 L

< 2 sup ||f(t9,«OII sup ||Z(t,^)||. (151)
0<t2<r * 0<t<2r

Also by Hypothesis (Cg) we have

sup ||AY(tlff(t2,*))ll = sup ||AY(t1+t2,»))||

< |Y|(2r,«r). (152)

Combining (150), (151) and (152), the Hypotheses (C) and (I) easily imply

that

E sup Cft(0(to,-)) < *
0<t2<r * Z

(cf. Lemma (5.5) and its proof). o

Ve are now ready to prove the basic integrability property for the cocycle

(M):
Theorem (5.1):

Assume Hypotheses (€) and (I). Then

E sup log+\\l{tv$(t2t-),-)\\U1L\<*' (97)

0<tpt2<r 1 Z hK*V

Proof:

As noted at the beginning of this section, it is sufficient to prove (103).

In view of (105) and Lemmas (5.6), (5.5), we need only show that

E log+ sup \x2(tv0(t2,.),(v,Ti)) - x
1(t1>tf(t2>-),(v,>0)| < • (153)

0<t1}t2<r
 x Z 1 z

and
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E log+ sup \x2(t.,8(t2,-),(v,ri))\ < OD. (154)
0<t1,t2<r

Observe first that

x1(tv9(t2,u),{y,ti)) = v, tj,t2 > 0, v e n6, (V,J/) G M2

2
and so (154) implies (153). The prove (154) we use the definition of x

(relation (50)) and the estimate (51) to obtain

|

(155)

for all a € ftg, 0 < t^to < r, (v,i/) € M2- Taking suprema over 0 < t^, t2 < r,

(Y,TI) E I 2 with ||(v,^)|| < 1 and expectations in (155) immediately gives (154)

because of Lemmas (5.1) and (5.5). This completes the proof of the theorem. D

Once the integrability property (97) is established we can now state the

following multiplicative ergodic theorem for the stochastic flow (X,0) of (I).

The proof of the theorem is analogous to that of Theorem 4 in Mohammed ([20], §4)

for the white noise case L = V, N = 0. In the case when $ is ergodic the theorem

gives a discrete set of non-random Lyapunov exponents for I. The reader may

supply the details of the argument by consulting the proof of Theorem 4 in [20]

(pp. 117-122). See also Lemmas 6 and 7 ([20] pp. 113-117).
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Theorem (5.2);

Suppose 9 is ergodic and let the stochastic f.d.e. (I) satisfy Hypotheses

(C) and (I). Then there exist

(a) a set ft* e 7 such that P(fl*) = 1 and 0(t,•)(***) C fl* for all t e R + ,

(6) a fixed (i.e. non-random) sequence {^}T=i of real numbers,

(c) a random family {E.(A/): i > 1, v € fl } of closed finite-codimensional

subspaces of I«,

satisfying the following properties:

(i) if the Lyavunov spectrum {^}*=i is infinite, then \^ < X^ for all

i > 1 and lim X- = -OD; otherwise the spectrum is a finite set {^J)A=
i-to

with N > 1 a non-random integer and X™ = -m < A» -• < ... < Ao < X..

(ii) for each u € fl ,

Bi+1(ir) C E.(*) C ... C B2(if) = BjCir) := I2, i > 1.

(tit) for each v 6 fl and (v,jy) e Ei(a/)\Ei+1(6/),

lim |

i g | | ( ) l l L ( M )

(iv) for each i > 1, the family {E^(tf): v 6 fl } is 7-measurable into the

Srassmannian of Mo and is invariant under the cocycle (X,0) i.e.

I(t,^,O(Ei(6/)) C E ^ ^ t , ^ ) ) , u G ft*, t > 0,

(v) for each i > 1, codim E.(*/) is fixed independently of u e ft .

As in [20] we say that the s.f.d.e. (I) is hyperbolic if its Lyapunov

spectrum does not contain 0. By a straightforward adaptation of the argument in
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Corollary 2 of [20] (pp. 126-130) we get the following version of the

stable-manifold theorem (viz. an exponential dichotomy) in the hyperbolic case:

Theorem (5.3): (Exponential Dichotomy)

Let Hypotheses (C) and (I) hold and 0 be ergodic. Assume that the s.f.d.e.

(I) is hyperbolic. Then there exist

(a) a set U € 7 such that

(b) a measurable splitting

(a) a set ft* € 7 such that P(Q*) = 1 and 0(t,•)(«*) = ft for all t € R,

*I 2 = U{v) e 5(6/), u 6 ft

with the following properties:

(i) U(w), S(v), to 6 ft , are closed linear subspaces of M2, dim U(u) is

finite and fixed independently of u 6 ft .

(ii) The maps of H U(U) , 6/ H 5(A/) are 7-measurable into the Grassmannian

of I2.

(it*) for each w G ft and (v,»/) 6 //(^), there exist t^ = t1((y,v,^) > 0

and a positive 6*, independent of (u,v,rj)9 such that

, t > t r| | ( ^ ) | | M
2 2

(iv) for each u 6 ft and (v,i/) £ £(0), there exist tg = t2(tf,v,?7) > 0

and a positive £2> independent of (u,v}ri), such that

PCt.M*.?))!!! < ll(v>9)llH e"
 2\ t > t2.

(v) For each t > 0 and a G ft ,
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Remark:

Under the hypotheses of Theorem (5.2), the Lyapunov spectrum of (I) does not

change if the state space M2 is replaced by D := D([-r,0],R
n) with the supremum

norm ||*|| . In fact the existence of the limit

l i m l l o g | | X ( t , 4 , , ( v , * ) ) | | M , a / € (I*
tH X M 2

implies the existence of
1 *

lim -r log ||I(t,6/,(v,i/))|| , w € ft
t-HD

and both limits agree for (v,T)) e 1L. To see this the reader may note the

inequalities:

h " r+ '"' V'̂  ^
< sup ||X(t+s,*/,(v,7/))||M , t > r,

x -r<s<0 M2
*

for u e fl and (v,jy) 6 M 9.
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