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Abstract. The asymptotic properties of solutions to a time—dependent nonlinear Volterra

integral equation are studied in a general Banach space. The concept of completely positive

kernel plays a crucial role in the analysis.

1. Introduction. The purpose of this paper is to discuss the asymptotic behavior as t-*» of

solutions to the abstract Volterra equation

t
n(t) + J b(t-s) (Au(s) + g(s) u(s)) ds 3 f(t), t e R+ = [0,+*), (Vb g f)

in a real Banach space X. Here b: R -> R is a completely positive kernel, A is a nonlinear

(possibly multivalued) m—accretive operator in X, g: R -» R is a given function, f maps

R into X, and the integral is taken in the sense of Bochner.

General existence, uniqueness and continuous dependence results for (Vb j) have been

established by Crandall and Nohel [8] and Gripenberg [10]. The asymptotic properties of

solutions of (Vb A have primarily been studied in the case when g = 0. See e.g.

[2,4,5,13,16]. Recently, Kato, Kobayasi and Miyadera [15] have discussed the asymptotic

behavior of solutions to a class of functional—differential equations related to (V* c r). When

applied to (Vb f) , their theory requires that 0 e R (A) and g e L (R + ) , being thereby

restricted to bounded solutions.

The present work is mainly concerned with the "unbounded behavior", as t-K», of

solutions to (V, X so that we generally assume that R(A) is zero free and g i L (R )•

Our study can be viewed as an attempt to extend earlier results obtained by Israel and Reich

[14], and Kobayasi [17] for (Vj £) (that is, the case when (V^ f) reduces to an evolution

equation), as well as the asymptotic theory developed in [13,16] for (V, Q J). Although we

consider (V, )̂ in a general Banach space, we emphasize that our results are new even in



Hilbert space. We also note that (VK r) is a special case of the more general equation

t
u(t) + J b(t-s) A(s)u(s)ds 3 f(t), t e R + , (V)

where {A (t), t e R + } denotes a family of m-accretive operators in X. An analysis of

asymptotic properties of bounded solutions of (V) has recently been carried out in [1], under

the assumption that X is a Hilbert space, and A(t) is cyclically maximal monotone for

each t > 0.

The plan of the paper is as follows. In section 2 we recall for easy reference some basic

facts about m—accretive operators and completely positive kernels, and we comment briefly on

the existence and uniqueness of solutions to (V^ ^). The main asymptotic results are

presented and proved in Sections 3 and 4, respectively. An application of physical interest is

discussed in Section 5.

2. Preliminaries. Let X be a real Banach space of norm ||-||, and dual (X , | | - | | * ) - T l i e

duality pairing between X and X will be denoted by < , >. Let A be a set-valued

operator in X with domain D(A) and range R(A). We say that A is accretive if IJXj — X2II

< II *j - Xj + A (yj — y2)ll> for all A > 0 and y^ e Axj, i = 1, 2. A is called m-accretive, if

it is accretive and R(I + AA) = X, V A > 0. (Here I stands for the identity on X). When A is

m-accretive, one can define its Yosida approximation A^ by A^ = A (I-J^)> ^ t h

J^ = (I + AA)"" , A > 0. It is easily seen that J * is nonexpansive on X, Ax is Lipschitz

continuous on X, and A ^ x e A J ^ x , x e H .

We will frequently use the following characterization of accretivity (cf.e.g. [7]). Let

[,]A : XxX -> R be defined for A # 0 by



[y> * ] A = (II x + A y || - || x || ) / A, V x, y e X,

and get :

fr. *]+ = Jjm [y, x]A = inf [y, x]A,

[y, x]_ = 1 im [y, xk = sup [y, xh .
A t 0 A < 0

(Note that A -»|| x + Ay|| is convex, so that [y, xK is monotonically nondecreasing in A.)

Then A is accretive in X if and only if [y2—y^ *2"" X]J+ - °> V y$ * A Xj, i = 1, 2. Also

recall that the Yosida approximation Ax (A > 0) of an m—accretive operator A is strictly

accretive, i.e. [A^ x — A^y, x—y] > 0, Vx, y e X. Some of the basic properties of [,], are

summarized below.

Propostion 2.1. [7,9] Let x, y, z e X and c e R. Then

0) l[y,*]+ |<||y|| ,

(ii) [cx,x]± = c || x || ,

(iii) hy,x]_ =-^y,x]+,

(iv) [y+z, x]_ < [y,x]_ + [z,x]+ ,

(v) li]+: ^ ^ -» R is upper semicontinuous.

If, in addition u: R -• X is such that u, || u || are differentiate at t > 0, then

(vi) i || n (t) || = [u'(t), u(t)]± (' = d/dt).

We assume throughout that A is an m—accretive operator on X, and consider equation

(VK r) under the following minimal assumptions:

(Hb) b € AC loc (R+; R), b(0) = 1, b' e BV loc (R+; R) ,

(Hg) g e C (R+; R+ ) ,

(Hf) f e k J +



Let A > 0 and A> be the Yosida approximation of A. Since A^: X -> X is Lipschitzian, and

g is continuous, a simple contraction argument shows that the approximating equation
t

uA(t) + J b(t-s)(AAuA(s) + g (s) uA(s)) ds = f(t), 0 < t < CD, (2.1)

has a unique solution uA e wJ^J (R+;X). Moreover (cf. [8]), equation (2.1) is equivalent to

du\ A

W +a t m <k * UA) W + A A U A W + «WuA(t) = k ^ ^ + F(t)'
a.e.on R + (2.2)

nA(0) = f(0),

where * denotes the convolution, k satisfies

b(t) + k * b(t) = 1, 0<t<GD, (2.3)

and f is given by

F(t) = f'(t) + k • f'(t), a.e. t e R + . (2.4)

Note that (2.3) can be rewritten a s k + b • k = - b , s o that, by (Hb), k is uniquely

determined in BV l o c (R+; R). It also follows (see (Hf)) that F e L 1 ^ (R+; X).

The next result is a direct consequence of [8, Theorems 3 and 4] (cf. also

[10, Theorem 5j).

Proposition 2.2 Let (H^), (H ) and (Hf) hold. Then there exists a (unique) function

u e C (R+; X) such that lim ^Q uA = u in C ([0,T]; X) for any 0 < T < CD, where uA is

the solution of (2.1) (equivalently, (2.2)).

Definition 2,1 The limit function u, introduced in Proposition 2.2 is called the generalized



solution of (V, £

To develop an asymptotic theory for generalized solutions of (VK f) we rely on the

concept of completely positive kernel [5,6]. We confine ourselves to kernels satisfying (H^).

Definition 2.2. Let (Hb) hold, and let k be defined by (2.3). Then b is said to be

completely positive if k is nonnegative and nonincreasing on R .

We next collect several important properties of completely positive kernels.

Poposition 2.3. [5,19]. Assume that b is completely positive. Then 0 < b(t) < 1 for all

QD

t > 0, and l im b(t) = b(a>) exists, with b(a>) = (1 + f k(s) ds)"1 if k € L1 (R + ) ,
Um 0

and b(a>) = 0 if k i L1(R+) .

Proposition 2.4. (cf. e.g. [13, 15]). Let b be completely positive, and w e wJQ£ (R+; X).

Then k * w and k * || w || are locally absolutely continuous and differentiable a.e. on R .

Moreover

(k • w) (t), w(t)]+ > ̂  (k * || w || )(t), (2.5)

for almost all t > 0.

Remark 2.1. Let b be completely positive. Then, according to Propositon 2.3, b (a>) > 0 iff

k e L^O,*). Also, in this case, b t L1(R+).

3. Statement of Results. Let (Hb) and (H ) hold, and let k be given by (2.3).

For 0 < s < t < OD, se t

a ( t , s ) = k( t - s ) + g(s) . (3.1)



and define the associated resolvent kernel r(t,s) by

t

r(t,s) + j a(t,r) r(r,s)dr = a (t,s). (3.2)
8

Since k € L? (R ) and g is continuous, equation (3.2) has a unique solution r, of class

L2 (R + x R + ) (at least). See [11, chap. 9] or [20, chap. IV]. (We will often extend a and r
loc

by 0 foi t < s.) Define next

t

R(t,s) = 1 - f r(t,r)dr, 0 < s < t < ». (3.3)

8

We need the following generalization of [18, Lemma 1.3].

Lemma. 3.1 Let (H,) and (H ) be satisfied and k,R be given by (2.3) and

(3.1) — (3.3), respectively. If also b is completely positive, then

0 < R(t ,s) < l , V 0 < B < t < c D . (3.4)

Our first important result for solutions of (V, ,) is:

Theorem 3.1. Let (Hb) and (H ) hold. Suppose that f(f) satisfy (Hf)((Hp), and that F

(F) are associated to f(f) by (2.4). Let u and u be the generalized solutions of (V. ,) and

(Vb e P' r e sP e c t i v^y- tf>in addition, b is completely positive, then
t

II u(t) - u(t) || < || u(0) - u(0) || (1 - [ R(t,s)g(s)ds)

° (3-5)

+ ] R(t,s) [F(s) - F(s), u(s)^(s)]+ds,
0

for all t > 0.

As an immediate consequence, we obtain

Corollary 3.1. Suppose that (H.), (H ) and (Hj) hold, and b is completely positive. Let u

be the generalized solution of (Vfe f), and F be given by (2.4). Then



)-y || < || u(O)-y ||(1 - J R(8,r)g(r)dr)
0 (3.6)

+J R(s,r)[F(r)-g(r)y-z,u(r)-y]+dr,
0

for all z e Ay, and all s > 0. In addition, for any B, t > 0,
s
jR(s,r)dr

s
I! *(s) " Jt \ 'I * ( * " ~ ) II uo " Jt uo II + R(s'r)H F(r)» dr

t i
(3.7)

s s
+ \ J R(s,r) ||u(r) —no|| dr + (J R(s,r)g(r)dr) || u j ,

0 0

where u = u(0).

We are now in a position to state our main asymptotic result. Here and in the sequel, u

denotes the generalized solution of (VV X

Theorem 3.2. Let (H,), (H ) and (Hj) be satisfied. Also assume that b is completely

positive with b(oo) > 0, and F verifies

t
£ & - f || F(s)|| ds = 0, (3.8)
*{*) J0

where

t t
h(t) = exp (f g(s)ds), H(t) = f h(s) ds. (3.9)

Jo Jo
Heither

g e LX(R+), (3.10)

or



+), g positive, l im g(t) = 0, (3.11)
t

then there exists an element 0 e S(X ) = {zeX : || z ||* = 1},

such that
t t

l im < u(t), 0 >/[R(t,s)ds = lim|| u(t)|| /[R(t,s)ds = d(O,R(A)), (3.12)

where d(O,R(A)) denotes the distance from 0 to R(A).

A key tool in the proof of theorem 3.2 is

Lemma 3.2. Let the assumptions of Theorem 3.2 be satisfied. Then

t
l im f R(t,r) dr = + », (3.13)l im I R(t,r) dr = + a>,

v

JR(t,r)g(r)dT

2, =0. (3.14).
t->OD

J»(t,r)di
0

The following consequence of Theorem 3.2 can easily be deduced (see[17]).

Corollary 3.2. Let the assumptions of Theorem 3.2 hold.

(i) If X is reflexive and strictly convex, then

t

w - l im u(t)/[ R(t,s)ds = - v,
Urn J

where || v jj = d(0,R(A)) and w-4im stands for weak convergence,

(u) If X has a Frechet differentiable norm, then



t
lim u(t)/fR(t,s)ds = - v,
Urn J

where v is the unique point of least norm in R(A).

Remark 3.1. It is easily verified (see(3.1)-(3.3)) that R(t,s) = b(t,s) if g = 0, and

R(t,s) = j4 | j if b = 1 ( with h defined by (3.9)). Consequently, our Theorems 3.1, 3.2 and

Corollaries 3.1, 3.2 are natural generalizations of [13, Theorem 5.3], [16, Theorems 2.1, 2.4 and

Corollaries 2.2, 2.5], as well as of [14, Corollary 5], [17, Theorem 2.1 and Corollaries 2.2, 2.3],

corresponding to equations (VK n f) and (V.. f) respectively.
D,U,I -Ijgj1

Remark 3.2. Necessary or sufficient conditions for the boundedness of u on R can readily

be derived from Theorem 3.2. or Corollary 3.1. If the assumptions of Theorem 3.2 hold, the

boundedness of u necessarily implies 0 e R(A). On the other hand, if in addition to the

assumptions of Corollary 3.1,0 e A 0 and F e L (0, © ; X), then u is bounded on R . When

g e L (R ), the condition 0 e A 0 can be weakened to 0 e R(A).

4. Proofs.

t
Proof of Lemma 3.1. Denote r(t,u) = |r(t,s)ds, V 0 < u < t < a > . Integrating (3.2) over (u,t)

u
and using Fubini's theorem, we get:

t
r (t,u) + Ja(t,r)r(r,u)dr = r(t,u).

0
In view of (3.3), this yields

t
R(t+u,u) + [a(t+r)R(r+u)dr = 1. (4.1)
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Replacing t by t + u in (4.1) leads to
t
a(t+u, £+u)R(£+u, u)d£ « 1. (4-2)J

Suppose u > 0 is fixed and denote R(t) = R(t+u,u), t > 0. Then (4.2) can be rewritten as

t
R(t) + J[k(t-s)+g(s+u)] R(s)ds = 1. (4.3)

0

Clearly, (3.4) is equivalent to

0 < R(t) < 1, V t e [O,OD). (4.4)

Using the same approximation argument as Levin [18, Lemma 1.3], we see that it is sufficient

to prove (4.4) for smooth k. Recalling (cf. Definition 2.2) that k is nonnegative and

nonincreasing, we confine ourselves to the case when:

k e C^O,*) ; k > 0, k' < 0 (0 < t < a>). (4.5)

Then, from (4.3) it follows that R e C^O.CD). We are going to show that

0 < R(t) < 1, V t e (0,oo). Assume that

0 < R ( t ) ( 0 < t < a O (4.6)

does not hold. Then, since R(0) = 1, there exists a unique tg> 0 such that

R(tQ) = 0, 0 < R(t) for 0 < t < tQ. (4.7)

This implies

R'(tQ) < 0. (4.8)

Differentiating (4.3) and setting t = tQ, yields

By (4.5), (4.7), (4.9), we conclude that R (t0) > 0, which contradicts (4.8), unless

k(t) = k(0) (0 < t < tQ). (4.10)
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But (4.3) and (4.10) lead to

R'(t) + (k(0) + g(t+u)) R(t) = 0 (0 < t < tQ), R(0) = 1.
t

It follows that R(t) = exp(-{k(0)t + Jg(s+u)ds)), t e[0,t0], so that R(tQ) > 0. This

contradicts (4.7), and consequently (4.6) is established. Since k > 0 and (H ) holds, we have

0 < R(t) < 1 on [0, + ©). The proof is complete.

Proof of Theorem 3.1. Let u* be the solution of (2.1), and let u* satisfy the same equation

where f is replaced by f. In view of Proposition 2.1(v) and Proposition 2.2, it clearly suffices

to show that (3.5) holds with Uv, u, in place of u, u, respectively. Using the equivalent form

(2.2) of (2.1), we deduce that u% — u, satisfies

= k(t) (uQ - u0) + F(t) - F(t), 0 < t < «,, (4.11)

where uQ = uA(0) = f(0), uQ = uA(0) = f (0).

Recalling that AA is strictly accretive, and invoking Proposition 2.1, we infer from (4.11) that

uQ - uo|| + [F(t) - F(t), uA(t) - i

Applying Proposition 2.4 (the inequality (2.5)) then yields

^ i (k *H UA " " A I D W + ^ H "A^AMW ( 4 1 2 )i t (k *H U A

Q - uo|| + [F(t) - F(t), uA(t) -

Let (for a fixed A > 0)

(F(t) - F(t),

Then (4.12) can be rewritten as

i£ | • x) (t) + g(t) x(t) < <f{t)> a.e. t > 0,

x(0) = 0.
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If we denote
t

x(t) + k * x(t) + Jg(s) x(s)ds = #t ) , t > 0, (4.15)

we see that (4.14) implies rfi{0) = 0 and

^ (t) < (pit), a.e. t > 0 . (4.16)

Using (3.1), (3.2) we can solve (4.15) by means of the "variation of constants" formula [11, 20]:

t
x(t) = V(t) - fr(t,s) V<s)ds, 0 < t < OD. (4.17)

0
An integration by parts shows that (4.17) is equivalent to

t
x(t) = fR(t,s) / ( s )ds , t > 0. (4.18)

where R is defined by (3.3). Since R(t,s) > 0 by Lemma 3.1, we deduce from (4.16) and

(4.18) that
t

x(t) < [R(t,s) tp(s)dsy t > 0.

On account of (4.13) this yields
t

|| uA(t)-uA(t)|| - || uo-uo | | (1 - jR(t,s)g(s)ds)

t

< I R(t,s)[F(s) - F(s), uA(s) - uA(s)]+ds,

and (3.5) follows.

Proof of Corollary 3.1. If z e Ay, we obviously have
d

z

Applying (3.15) with u(t) = y, F(t) = g(t)y + z, we get (3.6). Next take

y = J t uQ, z = At uQ (uQ = u(0)) in (3.6) and notice that
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J* U^J u ( r ) - 1 u 1 . < g(r)\\ J, u —u II + R(T)\\ U II.
t O v ' t O J+ " & V ' " t O O11 oV'/H **QII

The inequality (3.7) now follows easily.

t
Proof of Lemma 3.2. Let p(t)= |R(t,s)ds, t > 0. Integrating (4.1) over (0,t) yields

t

p(t) + J(k(t-*)+g(s))p(s)ds = t. (4.19)

From (4.19) we conclude (cf.e.g. [10, Lemma 3.4]) that p e A C l o c (R+; R); hence

af(t) + g(t) p(t) + gj(k*p)(t) = 1, a.e. t > 0. (4.20)

Recall now (see(3.9)) that h = hg > 0; also, k is nonincreasing and p > 0. Consequently,
t

= h(t)(k(O)P(t) + Jp(t-B)dk(B))

), a.e. t > 0. (4.21)

Multiplying (4.20) by h(t) and invoking (4.21) gives

<hP)(t) + §(k*Oip))(t) > h(t), a.e. on (0,+.). (4.22)

Since p(0) = 0 and h(0) = 1, we may rewrite (4.22) as

(hp)' (t) + k*(hp)'(t) > h(t), t > 0. (4.23)

Take the convolution of (4.23) with b, and use (2.3) and b > 0 to obtain

h(t) p(t) > b * h(t), 0 < t < co. (4.24)

On the other hand, we notice that b*h is nondecreasing (since (b*h)'(t) =

t

b(t) h(0) + [h'(t-6)b(s)ds > 0); this implies (k > 0)

0

t

(b*h) * k(t) < (b*h)(t) fk(s)ds, t > 0. (4.25)

0
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If we now take the convolution of (2.3) with h(t), we get on account of (4.25),
t

(b*h)(t) (1 + fk(s)ds) > H(t). (4.26)

Inasmuch as b(a>) > 0 by hypothesis, we deduce from (4.26) (in view of Remark 2.1 and

Proposition 2.3) that

b*h(t) > b(d>) H(t), 0 < t < » . (4.27)

From (4.24) and (4.27) it follows that

P(t) >- b(«) S ( | ) > 0, 0 < t < . , (4-28)

which implies (3.13). (In case when (3.10) is satisfied, h(a>) < +a>

andH(t)>t; if (3.11) holds, then l im !&]=+<.>.) To prove (3.14) when (3.10) is fulfilled,
t-»a> * '

we simply remark (cf.(3.4)) that

t o

JR(t,s)g(s)ds |g(s)ds
0<

jR(t,s)ds
P(t)

0

In case when (3.11) holds, it is easily verified that (3.14) is a consequence of (3.4), (3.13) and

g(co) = 0.

Proof of Theorem 3.2. By (3.6) and Proposition 2.1(i), we have

t t

llu(t) -y||<||u(0) -y | | + jR(t,r)|| F(r)||dr+ (jR(t,r)g(r)dr)||y|| (4.29)
0 f 0

+(JR(t,T)dr)|| z ||,

for any [y,z]e A. Taking into account (3.4), (3.13), (3.14), (4.28) and assumption (3.8), we

infer from (4.29) that
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[R(t,s)ds <lim sup || u(t)|| / [R(t,s)ds < d(O,R(A)). (4.30)
t J

If d(O,R(A)) = o, then (3.12) holds for any © e S(X ), so that we consider the case when

d(0,R(A)) > 0. Following [16, Theorem 2.4] (cf. also [17, Theorem 2.1]), we choose for each

t > 0, an element © t e S(X ) with the property that < J tu0-uQ, © t > = II Jt
 u

o""u
oll'

 T h i s

s
together with (3.7) implies (recall that p(s) = [R(s,r)dr > 0, V s > 0, cf. (4.28))

s s

< u(s)-u0, 0 t > / |R(s,r)dr > \ || uQ - Jt uQ || - - 1 JR(S,T)| | F(r)|| dr
0 p 0

jR(s,r)dr
0

u 6 6

_ \\ "o|| (jR(s>T)g(r)dr) - i — 2 ^jR(s,r)||u(r)-uo||dr (0<s<t< „),

jR(s,r)dr° tjR(s,r)dr
0 0

which, by (3.4), (4.28) leads to

t s
< u(s)-u0, 0 t > / |R(s,r)dr > \ || uQ-Jt uQ || - ^ ^[f| J || F(r) || dr

(4.31)

r U t bfco) HfS) 0
jR(s,r)dr
0

On the other hand, for 0 < s < t, we have

< J n - urt, e 4 > Is > II J4 urt - u,; || / t • (
8 O O % " t O O

Also recall [22, Lemma 2.1] that

l im |1 J t uQ || / t = d(0,R(A)) . (4.33)
t-»CD

Let 0 e X be a weak-star cluster point of {©t>, ast -* «D. Then from (4.31) - (4.33), we

obtain
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< u (s) - uQ, e > / fR(s,T)dr > d(O(R(A)) - 4^r . ]j[§} [|| F(r)|| dr
0 0

(4.34)

6

- i (jR(s,r)g(r)dr)|| uo||,

l(s,r)dr °
D

< Jg uo-uQ) 0 > / s > d(O,R(A)). (4.35)

Letting S-H» in (4.34) yields ( in view of (3.8), (3.13), (3.14))

s
Urn inf < u(s), 0 >/[R(s,r)dr > d(0,R(A)), (4.36)

s ^ Q

while (4.35) implies

lim inf < Jg uQ, 0 > /s > d(0,R(A)). (4.37)

The conclusion of Theorem 3.2 now follows from (4.30), (4.33), (4.36) and (4.37).

5. An Example. In this section we suggest a special heat flow model to which our previous

theory applies. Consider a homogeneous bar of unit length of a material with memory. Let

u(t,x), e(t,x), q(t,x) and u{t,x) denote, respectively, the temperature, internal energy, heat

flux, and external heat supply at time t and position x (—» < t < » , 0 < x < 1). Let the ends

of the bar at x = 0 and x = 1 be maintained at zero temperature, and for simplicity, let the

history of u be prescribed as zero when t < 0 and 0 < x < 1. According to the theory

developed by e.g. Gurtin and Pipkin [12] and Nunziato [21] for heat flow in materials of fading

memory type, we may assume that

t t
e(t,x) = u(t,x) + Jfi(t-s) u(s,x)ds + Ja(t-s)g(s) u(s,x)ds, (5.1)

0 0



17

t
q(t,x) = -^(ux(t,x)) -I- J-Kt-*) (r(ux(s,x))ds, (5.2)

for t > 0 and 0 < x < 1. Here fi, 7: [0,a)) -»R are sufficiently smooth functions,
t

a(t) = 1 — 7(s)ds, g e C(R , R ), and a is a real function satisfying

0

o e CX(R), a(0) = 0, </(£) > cQ > 0 {( e R), for some cQ > 0. (5.3)

The balance of heat requires that the equation e. = - q + \i should hold. If also

u(0,x) = u (x) (0 < x < 1) is the initial temperature distribution, we obtain in view of (5.1),

(5.2) and the assumption that the temperature at the ends of the rod is zero:

|f[u(t,x)+(fi*u)(t,x)+(a*gu)(t,x)]=a(ux(t,x))x-<7*«T(ux) x)( t ,x)+p.( t ,x),

0 < t < • , 0 < x < 1,

(5.4)

u(t,0) = u(t,l) = 0, t > 0,

u(0,x) = uo(x), 0 < x < 1.

Following [5, Section 4] we transform the initial—boundary value problem (5.4) to a Volterra

integral equation in the space X=L (0,1). Let

t
G(t,x) = u (x) + L(6,x)ds, 0 < t < » , 0 < x < l (5.5)o

0
and remark that

Then (5.4) leads to the equation

u + fi*u + a * ( A u + gu) = G, 0 < t < » , 0 < x < l , (5.6)

where A: D(A) C X -• X is defined by Au = — ff(ux)x, with

D(A) = {u e H J (0,1): ff(ux)x € X }. By (5.3), it is easily verified that A is maximal

monotone (equivalently, m-accretive, cf[3]) in X, with OtR(A). If r(fi) denotes the resolvent
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kernel of fi (i.e. fi satisfies r(fi) + fi * r (fi) = fi; r(fi) e L}QC [0, . ) if fi e LJ Q C [0,*)), and

b = a - r ( f i )*a , (5.7)

f = G - r ( f i ) * G , (5.8)

then the variation of constants formula shows that (5.6) is equivalent to

u + b*(Au+gu) = f, (5.9)

i.e. an equation of the standard form (V* J) in X. The next result is essentially

[5, Lemma 4.2]:

Lemma 5.1. Let fi be bounded, nonnegative, nonincreasing and convex on [O,QD). Let 7 be

positive, nonincreasing, log convex, and bounded on [0,©]. Suppose that
CD

a (OD) = 1 - [7(s)ds > 0, and fi'(t) + 7(0) fi(t) < 0, a.e. t > 0.
0

Then b (given by (5.7)) satisfies (H,) and is completely positive, with b(co) > 0.

We can now apply the theory developed in § § 3 and 4 to discuss the asymptotic behavior of

the generalized solution of equation (5.9) (equivalent to the heat flow problem (5.4)). We
<\ 1 0

assume that uQ e L (0,1) and the forcing function \i e LjQC ([0,©); L (0,1)). Then, by (5.5),

(5.8) and r(fi) e LJ Q C [O,OD) (at least) it is easily seen that f e w}^J ([0,a>); L2(0,l)). Also

remark that D(A) is dense in X, so that all of (Hr) is satisfied. As soon as (H,), (H ) hold,

Proposition 2.2 implies that (5.9) has a unique generalized solution u on [O,OD). A direct

application of Corollary 3.2, combined with Lemma 5.1 now yields

Theorem 5.1. Let the assumptions of Lemma 5.1 be satisfied. Let u e L (0,1),

|i e L J ^ ([0,<D); L2(0,l)), and b,k,f,F be defined by (5.7), (2.3), (5.8), (2.4), respectively. If

also g satisfies (H ) and (3.11), R(t,s) is given by (3.1)-(3.3), and (3.8), (3.9) hold (|| • ||
o

stands for the norm in L (0,1)), then equation (5.9) has a unique generalized solution u, such

that:
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lim u(t) /[R(t,s)ds = 0, strongly in L2(0,l).
t -» J
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