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Abstract. The problem of controlling a noisy process so as to prevent it from leaving a pre-
scribed set has a number of interesting applications. In this paper, new criteria for this problem
are considered. First, a risk—sensitive criterion for a stochastic diffusion process model is ex-
amined, and it is shown that the value is a classical solution of a related PDE. The qualitative
properties of this criteria are favorably contrasted with those of existing criteria in the risk-
averse limit. It is proved that in the risk-averse limit the value of the risk—sensitive criterion
converges to a viscosity solution of a first—order PDE. It is then demonstrated that the value
function of a deterministic differential game is also a viscosity solution to the PDE. This game
represents a robust control problem which appears to be analogous to H* control. In particular,
the opposing player attempts to push the process out of the prescribed set, and suffers an L?
cost for his efforts. Lower bounds on the escape time as a function of this cost are obtained.
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1 Introduction

In problems that cover a range of interesting applications, there is a stochastic process model
for a system and the goal is to keep the process in a given fixed open set G. Let X, denote
the stochastic process model under consideration. In some applications there is an a priori fixed
time interval [0,T’] during which one desires X; € G. However, in most cases the length of time
is not precisely specified, and the exact time one needs to maintain X; € G is vague.

In this paper we will consider such problems in the context of optimization and control. Asis
often the case in control theory, the selection of a cost criterion is in a certain sense subjective, i.e.,
the cost is usually selected to force the system to achieve some prescribed qualitative behavior.
For example, in many problems the goal is to keep the controlled process near a desired cperating
point. In this case one may choose a criteria that will lead to controls that “stabilize” the process
about this operating point. For our problem the situation is quite different, in that the goal is
not so much to keep the process near a particular point as it is to keep it away from the “bad”
set G¢, where the c denotes complement. For a problem to fit well into such a framework, it must
be the case that entry into the set G¢ is in a certain sense “catastrophic,” and avoiding such an
event is a high priority. Examples are the failure of a machine, loss of data in a communication
network, loss of “lock” in an adaptive tracking device, and entry of bi-stable adaptive control
algorithms, such as those using ALOHA-type protocols, into the “bad” region.

There are two criteria that are often associated with the problem described above. The first
criterion is the probability of escape over some interval [0,T):

P, {X; ¢ G for some t € [0,T]},

where P, denotes probability conditioned or X¢ = z. If the process is controlled, then obviously
the goal is to choose the control to minimize this probability. The second criterion is the mean
escape time: E,7, where 7 is the first time the process X; escapes from G. Here we maximize
when a control is available. As we discuss in detail in Section 3, both these cost criteria have
some theoretical and computational shortcomings. One of the contributions of the present paper
is the introduction of a new cost criteria for this problem. To have a concrete model for the
purposes of discussion, consider the special case of a Markov process described by the stochastic
differential equation
dXf = f(Xf)dt + €/%6(XF)dB,, X = z,

where the dimensions of the Wiener process By, f and o are compatible. The quantity ¢ > 0 is
a parameter whose role will be explained shortly.
In the simplest setting, the new criteria we consider in this paper takes the form

E_exp[-67¢/¢], (1.1)

where 6 is a positive design parameter and 7° is the first time the process X7 exits G. If the
process is controlled, we choose the control to minimize this quantity.

We will consider the qualitative properties of this cost from two different perspectives. The
first perspective is that of control of “small noise” systems. In this setting, the term small noise
essentially means that escape from G is a relatively rare event. For the particular model under
consideration, and under appropriate conditions on f and o, this corresponds to £ > 0 being
small. Many problems of interest, such as the control of communication devices, fall into this
“small noise” category, since design tolerances are quite strict and a system in which escape was



common would not even be worth considering. As we discuss in Section 3, the quantity (1.1)
has desirable properties when compared to standard criteria for problems of this type.

The second perspective is one in which (1.1) is viewed as a “risk-sensitive” analogue of a
more standard criteria. We are also interested in the connection between this risk-sensitive
problem and a robust control problem that is analogous to H® control. In this setting, we do
not necessarily assume that the true system is “small noise.” Although here we are interested
in the control problem for noise that is not necessarily small, we consider the same limit as in
the small noise perspective: € — 0. The reason for this is discussed in Section 3.

Hence in both cases we are interested in the limit problem obtained when € — 0 in the cost
(1.1). In order to obtain a well defined limit, it is necessary to work with the scaled quantity

—¢elog E.exp [-07¢/€]. (1.2)

Due to the presence of an additional minus sign, in the case with control we will seek to maximize
this quantity. Depending on the means by which the designer may influence the system, we
distinguish three classes of progressively more difficult optimization problems. The first case
is that of “performance analysis.” Here the designer cannot really influence the system at
all. Instead, the designer would be interested in approximating (1.2) or its limit as € — 0 so
that it could be used to compare two or more system designs. The second case is one we call
“parametric optimization.” Here the designer has control over a collection of parameters that
determine the dynamics of the system. In this case the designer might use the limit of (1.2) as
a convenient criteria when optimizing with respect to these parameters. In both of these first
two cases, the limit of (1.2) as € — 0 can be characterized as the solution to a minimal cost
deterministic optimal control problem. The last case is that in which the designer can choose an
active, state-dependent control. In this case the limit of the supremum over the controls of (1.2)
as £¢ — 0 can be characterized as the solution to a deterministic differential game. The control
that seeks to maximize the limit of (1.2) will be opposed by a minimizing control. In order to
distinguish the prelimit control problem of this case from the limit control problem obtained in
the previous two, we refer to it as the case of “maximizing control.” Because the limit problem
is much more involved in the case of maximizing control, in a number of places we will provide a
separate statement of the results for this case, even though it automatically includes the simpler
cases. Examples of all three sorts of problems are given in Section 2.

A summary of the contents of the paper is as follows. In order to illustrate some of the main
issues and also to suggest some of the applications, we describe a number of examples in Section
2. In Section 3 we turn our attention to possible design criteria. We describe shortcomings of the
standard criteria from the small noise perspective, and show how these shortcomings are avoided
by considering the limit of (1.2) as the design criterion. The “risk-sensitive™ interpretation of
(1.2) is also given in this section, and we also discuss generalizations of (1.1). In Section 4
we characterize the limit of (1.2) for the various cases when ¢ — 0, and state the convergence
theorem. Owing to previously established connections between risk-sensitive control, risk-averse
limits, and robust control, one might expect that the limit problem for the case of maximizing
control would define a control that has an interpretation as a robust control. This is in fact the
case, and the precise interpretation is stated in Section 5. We close in Section 6 with proofs of
results that are stated in Sections 4 and 5.

Acknowledgment. WMM would like to thank H. Mete Soner for many helpful discussions.



2 Examples

In this section we describe a number of examples that fit into the framework of the last section.
The examples are intended only to be illustrative and to motivate the criteria we will consider
later. Some of the examples fall outside the class of diffusion processes, and hence indicate
interesting extensions that are not covered by the theory developed in this paper.

Problems for which an escape time criteria is appropriate fit into one of two categories. In
the first category, exit from the region of desired operation essentially causes the system to shut
down, and the system is more or less “off-line” until the state of the system can be steered
back into the good operating region. For example, when an ALOHA-type system exits its stable
operating region the entire system is shut down and then restarted. In Example 1 below exit
from the operating region means that the pair of communicating satellites must suspend data
transmission and initiate the procedure to regain “lock.” In the second category exit from the
domain is not fatal, but still an event to be avoided because of a drastic decline in performance
when outside the good region. An example in this category is the queueing example given below,
in which escape from G corresponds to a non-negligible fraction of incoming customers being
turned away.

For other examples the reader can consult the references in [27].

EXAMPLE 1 (SATELLITE LASER COMMUNICATION PROBLEM). In space-based laser communi-
cation an essential role is played by the tracking and pointing subsystems of the satellites that
are involved. In particular, data may be transmitted between two satellites by a laser commu-
nication crosslink. In order that the communication links not be broken, the pointing system of
each satellite must keep the laser focused on the ¢-:ector of the other. Since the communication
beams are very narrow, the pointing requirements are rather stringent [25]. In this example the
set G is defined in terms of an angular cone of allowable orientations of the gimbal-mounted
optics used to control the beam duirection. At any given time one of the satellites is allowed
to transmit data at a high rate while the other transmits a “beacon™ signal at a low rate, the
purpose of which is to help maintain the “lock.” Owing to “noises” (such as internal vibrations)
the operating state of the system can be driven from G, at which time there will be a communi-
cation interruption and lock between the transmitter and receiver will have to be re-established
via a separate acquisition algorithm. It is desirable to have the time between losses of lock be
quite large (e.g., several months).

For such a system linear methods automatically make little sense, since the effective state
space in which the system can operate is not itself a linear space. This is true even if the system
dynamics are linear. The criteria we have described in the Introduction are more natural fo- this
problem, since it focuses on the event that is actually of interest, escape from G. For svstems
such as this where reliable behavior is critical, it is important to work with the best design
criteria possible. In this problem one may be interested in parametric optimization or feedback
control. '

EXAMPLE 2 (TRACKING PROBLEM). Many synchronization systems in advanced communica-
tion systems are digital. One might model such a system as

n n l n
1 =X+ ;b(Xi &)

In this equation §; is a random sequence composed of noise and the inputs to the system. The
discrete time parameter i is used because time is “slotted,” and data are communicated only at



discrete times. The factor 1/n reflects the fact that the state X of the system changes slowly
as a function of each new piece of data ¢*, although the data rates are very high. In order that
the system operate properly, it is crucial that the transmitter and receiver both be on the same
“clock,” so that it is clear when a discrete time interval begins and ends. In a synchronization
system, one of the components of X (say (X);) will be the difference between an estimate
of a phase timing indicator and the true value. For accurate communication or tracking one
needs a very good estimate. Here the set G will be of the form {z : —a; < z; < a3}. As
part of the design procedure “stabilizing” dynamics are always built into the system in order
to keep X" in the acceptable region G. However, owing to the presence of noise, the difference
between the estimate of the phase timing indicator and the true value is eventually driven from
G. A risk-sensitive escape criteria is natural in this context. For these problems, one is typically
interested only in performance analysis (for purposes of comparing competing designs), or at
most in parametric optimization.

This example is illustrative of a large class of similar problems from statistics and adaptive
stochastic algorithms [4]. The large deviation analysis, numerical computations, and simulations
for a related analog device known as a phase locked loop appear in [7,9].

ExaMPLE 3 (QUEUEING PROBLEMS). Numerous problems involving the design and optimiza-
tion of queues can be cast in terms of the risk—sensitive criteria. Such criteria will be suitable
whenever the main purpose of the design is to reduce the possibility of very large buffers. A
number of examples and references to additional examples are given in the book [29]. Although
there is at the present time no theory of “robust control” for queueing systems, one would expect
by analogy with the case for diffusions that controls designed on the basis of a risk—sensitive
criteria would enjoy the features one would desire of such a “robust” control.

Escape criteria are suitable whenever buffer overflow constitutes a critical event. Notable
among these are the problems associated with the analysis and design of high-speed data net-
works. These networks carry many types of data in digitized form: e.g., voice, computer, and
video data. Each of these classes has its own requirements and characteristics. In addition,
for some classes of data there may be contractually agreed upon requirements regarding net-
work performance. These requirements will be stringent (e.g., probabilities of data loss in the
10~° range). Data loss occurs when buffer capacities are exceeded, and thus corresponds to an
“escape.” There are numerous difficult and interesting design and control problems that are
associated with such networks.

EXAMPLE 4 (POWER SYSTEM STABILITY). In this example a diffusion model is believed to be
appropriate for describing the time evolution of the system (cf. [6] and the references therein).
The state of the system is a vector whose components consist of various generator frequencies,
voltage phase angles and voltage magnitudes. The set G is defined to be a region in which the
“security” of the system is acceptable. Exit from the region may require substantial intervention
to return the state of the system to the stable region, and hence is an event to be avoided. Coeffi-
cient matrices in the system of equations that describe operation provide the system parameters
over which optimization can be performed. In addition, feedback control in various forms can
also be possible.



3 Comparison and Interpretation of the Cost Criterion
In this section we study the optimization criterion
E;exp[-07° /€] (3.1)

from a qualitative point of view. We first consider the cost in the small noise setting, and compare
its properties with those of more standard cost criteria. After this, we consider (3.1) from the
risk—sensitive point of view. At the end of the section, we comment briefly on generalizations.

3.1 THE SMALL NOISE SETTING

In many of the problems for which a criterion based on escape times is appropriate, it is useful
to assume that the stochastic process model is in some sense a “small noise” model. Indeed, if
this were not the case then (essentially regardless of system design) escapes from the acceptable
operating region would be common, and for many problems the models might not be worth
considering.

As remarked in the introduction, there are two criteria that are often associated with such
problems, namely, the probability of escape over some interval [0, T):

P, {X{ ¢ G for some t € [0,T]},

and the mean escape time: E,7¢, where 7¢ = inf{t : X{ ¢ G}. The parameter ¢ > 0 indicates
the “strength” of the noise, with zero noise in the limit ¢ — 0.

As we now discuss, both of these criteria have shortcomings. We begin with the escape prob-
ability. While the escape probability might be acceptable for problems for which the duration T
is fixed and known, it is probably not appropriate otherwise. In many problems one has a rough
idea of the interval of interest, but not much more than that. The escape probability criterion
can be inconvenient to work with even when the interval of interest is known. For example, in
the control setting it typically results in controls that are not stationary. A second difficulty is
of a computational nature. In cases where the control space is large, there can be numerical
difficulties due to the fact that the controls become somewhat singular near the final time 7.
A final problem is greater sensitivity (relative to more well-behaved functionals) with regard to
the parameter that measures the strength of the noise. Hence escape probabilities can be more
difficult to approximate than smoother functionals of a process (such as an expectation of a
smooth function of the process). Because of tl..:. the behavior of systems designed on such a
criterion is less reliably predicted by the asymptotic theory.

While the mean escape time criterion has the advantage of yielding time independent feed-
back controls, it too can be problematic, especially in the desired situation where the probability
of escape over O(1) time intervals is rare. In this setting, computation and approximation of
the mean escape time, even for the case of a fixed control, can be difficult. In order to make
this statement precise, we return to the small noise diffusion model

dXt = f(X£)dt + €Yo (X{)dB,, X =z, (3.2)
It is well known (under some assumptions) that W¢(z) = E.7° satisfies a second order PDE

LWE(z) = -1,z € G°, W(z) =0,z € G, (3.3)



where €
Lig(z) = Strlgzs(z)a(z)] + {f(2),9:(2)), a(z) = o(z)o” (z),

and trB denotes the trace of the square matrix B. The case with control involves obvious
modifications of this equation. The smallness of the noise translates into the small ¢ coefficient
in front of the second derivative term. This produces a solution that is essentially flat over
much of G° but with steep gradients close to G. Because of these properties, it is very difficult
to accurately approximate the solution numerically. This is rather unsatisfactory, since the
very conditions that are required for escapes to be a rare event lead to difficult computational
problems.

A problem that may be even more important than the one just discussed is that in the small
noise setting the mean escape time (and by extension any controls that are designed using it as
the performance criterion) may focus on events that are not of any practical interest, since the
dominant contribution to this criterion comes from paths that take a very long time to escape.
Under certain technical conditions on f, o, and their relation to G, one can show [19] there
exists a constant C* > 0 such that the limit

lin(:)elog E.r*=C"

holds uniformly for z in compact subsets of G. For any 6 € (0,C*), the scaling in € of this
quantity implies that when & > 0 is sufficiently small the dominant contribution to E.7¢ is due
to sample paths that take at least exp ([C* — é]/e) units of time to escape. While this may be a
moot point if one is absolutely certain that the mean escape time is the criterion of interest, it
is an important point if this is not the case. Consider for example a telecommunication problem
involving routing of data through a network. For obvious reasons, the true process representing
loading of the network is nonstationary, with cyclical variations (e.g., periods of 1 day). For
this problem the mean escape criterion, even if it were computable, would be an inappropriate
basis on which to design controls if the dominant contribution is due to sample paths that take
longer than 1 day to escape. Such a criterion is clearly not desirable, since controls designed
on it may allow a large number of escapes over a short time interval as long this is balanced by
relatively few sample paths which take the very long time exp([C~ — é]/¢) to escape. Moreover,
these paths would not even contribute to the overall performance of the true system, owing to
its nonstationarity.

As we will see, the escape time criteria (3.1) and controls based on its asymptotic behavior
avoid these difficulties. The controls will automatically be independent of time, and by appro-
priately choosing the design parameter 6, one can “tune” the system to focus on escapes over
different O(1) time intervals. By working with the logarithmic transform of (3.1), we obtain a
Hamilton-Jacobi equation that is much more well behaved than (3.3), especially with regard to
computational approximations. Finally, we note that in comparison with the escape probability,
the relative smoothness of the functional mapping X* — 7¢ under the distribution of X*¢ sug-
gests that (3.1) [or rather the logarithmic transform of (3.1)] should be more reliably predicted
by the asymptotic theory when ¢ — 0. Although a proof of such a result is lacking, numerical
evidence suggests that this is indeed the case.

3.2 THE RISK-SENSITIVE INTERPRETATION

The theory of risk—sensitive control investigates the effect of modifications of the cost structures
upon the associated optimal policies. For example, one might be interested in the effect of so-
called “risk—sensitizing transformations.” At an intuitive level, the goal of such a transformation



is to amplify the effect that certain outcomes have in determining the overall cost, and thereby
force the optimal control (or any nearly optimal control) to “pay more attention” to these more
heavily weighted outcomes. In particular, in the risk-averse case, “bad” events are weighed
more heavily, and the control becomes more conservative with regard to allowing these events
to occur.

From this perspective, for each fixed ¢ > 0 one may view the criterion (3.1) as a risk-
sensitive version of the mean escape time criterion E;7¢. The effect of the nonlinear mapping
T — exp —07 /¢ is to shift the attention towards paths that escape in a relatively short time, at
the expense of optimizing the mean escape time. As noted in the previous section, this makes
sense for many problems, especially those that may involve some type of non-stationarity. The
design parameter § > 0 controls the degree to which these short time escapes are emphasized,
with larger values of 6 focusing attention more heavily on such escapes. On the other hand,
if we fix £¢ > 0 and take the limit § — 0, one can show (under suitable uniform integrability
conditions) that the design criterion (3.1) becomes equivalent in this limit to the mean escape
time.

For various reasons, including computational simplicity, model simplification, and because
of the connection with robust control design, one may also be interested in taking limits with
respect to a family of risk-sensitizing transformations. This is in fact the second motivation
for the asymptotic analysis to be carried out in the next few sections. The interpretation of
the limit in terms of robust control will be discussed further in Section 5. As the reader can
easily check, unless the dynamics of the process model are modified in an e-dependent way
such as that of (3.2), then it will be difficult to normalize the quantity (3.1) so as to obtain a
well-defined limit as € — 0. Because of this dependence, it is not guaranteed that controls that
are optimal or nearly optimal for the limit problem will be useful for the risk-sensitive problem
for a given value of €. The issue is roughly the same as determining the range of validity of
the large deviation approximations described in the last subsection. In any case, the robust
interpretation of the limit control has a meaning that is independent of the asymptotic analysis.

It should be noted that the connection between risk-sensitive control and robust control in
the nonlinear case has been examined before in different contexts. It was shown in [13,14,22]
that the values of certain risk-sensitive infinite time horizon control problems converge to the
values of H* disturbance attenuation problems. In [13,26] the connection between finite time
horizon risk-sensitive control and robust finite time horizon control was made. Finally, in [28],
the connection was examined in the Markov chain case.

3.3 GENERALIZATIONS OF THE CoOST
Depending on the problem, one might consider various generalizations of the cost criterion
E;exp[-0r°/e].

For example, one can measure “time until escape” in a state-dependent way by considering a
cost of the form

E.exp [- /o i O(Xf)ds/e] ,

where 6(-) is a continuous function on G. As long as inf, ¢ 6(z) > 0, the analysis for this case
-is essentially the same as for the case 6(:) = 6 that is considered in Sections 4-6.



For maximizing control problems where the control space is potentially unbounded, one
might consider a cost of the form

E.exp [- /o " (0= (u, Au,)] ds/e] :

where A is a positive definite matrix of appropriate dimensions. Because of the lack of com-
pactness in the control variable, the analysis in this case is more complicated than that given in
Sections 4-6.



4 Asymptotic Analysis

In this section, the results for the small noise/risk-sensitive escape problem are developed. Since
the proofs for the case with a maximizing control are not significantly more complex than those
for the case without control, all the results in this section will be stated only for the case with
control. For the case without control, the modifications are obvious.

For the remainder of the paper we will restrict our attention to controlled and uncontrolled
diffusion processes, and further assume that the control only affects the drift. Hence the dy-
namics of the controlled process are given by

dX{ = f(XE,u)dt + €2 o(X{) dBy, (4.1)

with the obvious modification for the uncontrolled case. B. is a Brownian motion with sample
space , filtration F;, and measure P. It will be assumed that u. will be Fy—progressively
measurable (see [17]) and take values in a compact set U.

The following assumptions will hold throughout the remainder of the paper; no additional
assumptions will appear. Recall that G C R" denotes the set one wishes to keep the process in,
where G is open and G is compact.

Condition 4.1 The set G satisfies a uniform ezterior sphere condition. That is, there ezists
r > 0 such tha: for any zo on the boundary of G, 8G, there ezists y € G such that

Br(y) n a = {30}
where |29 — y| = 7.

Condition 4.2 _
feC(G,U)

and furthermore f is uniformly Lipschitz in z in the sense that there ezists Ky < oo such that

If(z,u) - f(v,u)| < Kylz—y] Vz,y€G, Vuel.

Condition 4.3
o € CY(G),

(which in particular implies that it is Lipschitz on G with a constant K,). In addition, there
ezists u > 0 such that

tTo(z)oT(z)E > plE]> Vz €T, VEER".

Let U, be the set of Fy—progressively measurable control processes with values in U with
respect to the reference probability system v = (Q,{F;}, P, B.) (see [17]). Although X¢ and 7¢
depend on u € U, , we omit this dependence from the notation. Define the function

®°(z) = JEnL{, E exp[-07¢/¢]

10



where 0 is a positive constant, 7¢ is the exit time for the above diffusion process, and E, indicates
expectation conditioned on an initial state z. As is well known (and easy to prove using a large
deviation calculation), for each fixed control the quantity

E. exp[-07° /€]

scales exponentially in € as ¢ — 0, in the sense that for each z € G there exists ¢(z) € IR such
that
Vé(z) = —elog °(z) = —¢clog E  exp [-07°/e] — ¢(z)

ase — 0.
Thus it is natural to consider the logarithmic transform (see, for instance, [17,12]); that is,
we consider a criterion of the form

Vé(z) = —elog$*(z) = sup —¢clog E;exp [-07¢/¢]. (4.2)
u€U,
(As noted in Section 3, the cost in (4.2) is similar to E.{67} but with the insertion of a risk-
sensitizing transformation.)

By starting with the quasilinear PDE satisfied by ®¢, taking the log transform, and then
multiplying by —¢, one formally obtains the PDE

o=o+§up@n;@n+ﬂuﬁqn)zec

V(z)=0 z € 0G (43)

where 1
H(z,p) = max(f(z,v),p) - 5{p,a(z)p), (4.4)

and where a(z) = o(z)o7 (z). Criterion (4.2) is, of course, analogous to the risk—sensitive crite-
rion being applied in many stochastic control problems (see [13,14,15,22,26,28], among others).
The following results support this interpretation.

The first lemma is standard (see, for instance, {17, Theorem 15.18]).

Lemma 4.1 There ezists a solution V¢ € C¥G) N C%G) to (4.3).
Define the cost for a fixed control u € U, by
J(z,u) = —¢clog E; exp [-07¢ [€].
Theorem 4.2 For all z € G and all u. € U,, we have the inequality
Ve(z) 2 J(z, ),

where X¢ is given by (4.1) with initial condition X§ = z.
Let @ be a Borel measurable function such that

u(z) € argmaz,ey(f(z,v), Vi (2))-
Let X¢ be a solution of (4.1) with u = @(Xf) [31]. Then u, = @(X§) is inl,, and
Ve(z) = J(z, ).

Conseguently V¢ = Ve,

11

-



Although the proof of this assertion is delayed until Section 6, we note here that Theorem
4.2 follows from Girsanov’s Theorem and an application of Ito’s rule.

As discussed in Section 3, in the context of the small noise problem it is useful to determine
the limit as £ | O for this problem. Two common techniques for proving convergence are based
on large deviations ideas (see 8], among others) and viscosity solutions (see [18], among others).
The first is a probabilistic method, while the second is a PDE approach. The viscosity solution
approach is used here. Since it is being assumed that the prelimit (¢ > 0) problem is uniformly
non—degenerate, the viscosity solution approach is relatively easy to apply. First, it is necessary
to obtain bounds on the behavior of V¢ which are uniform in £ > 0. These are svpplied by the
following two lemmas. Their proofs, which are given in Section 6, are standard.

Lemma 4.3 There erists M; < 0o such that 0 < V¢(z) < M, for allz € G and jor alle > 0.

Lemma 4.4 Given any €9 < 00, there erists My < oo such that |V¢(z) — V¢(y); £ Mz|z — y|
forallz € 8G, all y € G, and all € € (0,¢0).

As € | 0, one formally obtains from (4.3) the limit PDE problem

0=-6-H(z,Vz(z)) z€G

V(z) =0 z € 3G, (4-5)

where H is given by (4.4). (The choice of sign in (4.5) is a consequence of the definition of
viscosity solutions that will be used in Section 5.)
It will be shown in Section 5 that there exists a unique continuous viscosity solution to (4.5)
(meeting the boundary condition pointwise). Let this solution be denoted by W. The method
of Barles and Perthame [2,17] will be used to show that

1%1 Ve(z)=W(z) VzeG.
€
This method eliminates the need to obtain gradient bounds which are uniform in ¢ > 0 and
z € G, and here such bounds are only needed on the boundary (Lemma 4.4). Define
V*(z) = limsup{V*(y): y—z, €10, y€G}

— (4.6)
Vu(z) = liminf{V*(y): y—z,€10, y € G}.
Note that by Lemma 4.4
V(z)=0=V.(z) Vze€aG,
and since W(z) = 0 for all z € 9G, one has
Vi(z)=V.(z)=W(z) Vze€adG. (4.7)

By construction one automatically has
Vi(z)2V.(z) VzegG.
Therefore, all one needs to prove is that
V'(z)<W(z)<V.(z) VzegG.

The proof of this last statement is delayed to Section 6. However it immediately implies the
following.
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Theorem 4.5 V¢(z) = W(z) uniformly on G.

Thus one has the characterization of the limit of the value function as a continuous viscosity
solution to (4.5). Further, the comparison result at the heart of the proof of Theorem 4.5 also
implies uniqueness of the solution of (4.5) among the class of continuous viscosity solutions. In
Section 5 it will be shown that W is the value of a deterministic game corresponding to the
associated robust control problem. (In the case where there is no control in the risk-sensitive
problem, W is simply the value of a deterministic minimizing control problem rather than a
game.) This game serves two roles. In the small noise problem it provides a convenient starting
point for the analysis and construction of controls for the prelimit problem. It will also serve
as the starting point for the interpretation of the maximizing control in the game as a robust
control.

13



5 The Robust Limit Problem

In this section we consider the robust problem corresponding to the limit ¢ — 0. The term robust
is being used here to denote a system where the effect on the system output of a disturbance
is bounded by a function of the power of that disturbance. This notion may take different
forms in different contexts. The most well-known example is H* control. In the state-space
formulation, a system is said to satisfy an H*® bound if there exists a bound on the L? norm
of an output in the form of a product of a disturbance attenuation constant and the L? norm
of the disturbance. This H® disturbance attenuation control problem may be formulated as a
deterministic differential game. The robust (maximizing) control escape time problem will also
be formulated as a game. In particular, the maximizing player in the game will correspond to the
original maximizing control, and an opposing player will be introduced who will be attempting
to minimize the same payoff. In a sense, now the noise will be a process chosen by this new
antagonistic player as opposed to being a stochastic process. The noise will attempt to drive
the process from the set G, but will pay a quadratic cost.

For the case without maximizing control (i.e. the performance evaluation or parameter
optimization problems discussed earlier), the robust formulation will be a control problem rather
than a game. The controller in the problem will be a minimizing controller corresponding to
the player that represented the noise in the game.

In this section, the case with no control is significantly easier to analyze than the case with a
maximizing controller due to the fact that the latter results in a game. Therefore, two separate
and independent analyses will be provided so that the reader who is interested in only one of
these two problems will be able to skip the irrelevant material.

5.1 THE Case WITHOUT CONTROL
Consider the following deterministic dynamics

4%,

i fY)+oe(Y)w, Yo=12= (5.1)

for t € [0,7], where T is the time of the first exit from G. The functions f and o are those

introduced in Section 4. Note that the disturbance, w., is now a deterministic process. Assume
w € L?([0,T);R™) for all T € (0,00), and denote this set of controls by W°.
Consider also a cost criterion of the form

T 1
J(z,w) = /0 [o+ 5|w,|2] dt (5.2)
where again > 0 is a constant. The control problem which will yield the robust value, W, is
W(z)= inf J .
(e) = inf J(z,w) (53)
The HJB equation corresponding to control problem (5.1)}-(5.3) is

0 = -0 — Hpne(z,We(2)), z € G, W(z)=0,z € 0G, (5.4)

where 1
Huc(z,p) = (f().p) + mip, [(o(a)w,p) + 3lu]

14



Evaluation of the minimum yields

Hac(z,8) = (/(2),) = 5(p,a(z)p).

~ Hence (5.4) is the same as (4.5) for the case with no (maximizing) control. For easy reference,
the definition of a continuous viscosity solution follows. W € C(G) is a continuous viscosity
subsolution of (5.4) if

~0 — Hnc(zo, ¢2(20)) <0

provided ¢ € C*(G) and W — ¢ attains a maximum at zo € G. W € C(G) is a continuous
viscosity supersolution of (5.4) if

~6 — Hye(zo, ¢2(20)) 2 0

provided ¢ € C(G) and W — ¢ attains a minimum at zo € G. If W is both a subsolution
and a supersolution, then it is a solution. Due to the nondegeneracy (Condition 4.3), it is not
necessary to formulate the boundary conditions in the viscosity framework here; only solutions
satisfying the boundary conditions pointwise will be considered. In particular, all assertions
of uniqueness are within the class of continuous viscosity solutions satisfving the boundary
conditions pointwise. (For modifications relevant to extending the comparison approach used
in the proof of Theorem 4.5 to viscosity solutions satisfying the weaker viscosity form of the
boundary conditions, see [17, Section 7.8].)

Theorem 5.1 W is the unique continuous viscosity solution of (5.4).

Proof. Since Theorem 5.1 is just a variant of what are now standard results. only an outline of
the proof will be provided. The argument is as follows.
First note that there exists M3 < oo such that

0< wienva" J(z,w) < M;s.

The proof of this statement is nearly identical to the proof of Lemma 5.2 which appears in
Section 6, and simply involves constructing a piece~wise constant control v which guarantees
exit prior to some fixed time T, where T is independent of z and ¢. By the nature of the cost
criterion (5.2), this implies that there exists C < oo such that [ |w,|?ds < C for all w such that
J(z,w) < W(z) + 1. Thus, _

W(z)= w’envag J(z,w)

where

Wy = {w eW®: Jlwllz20,00) £ C}‘

Further, one sees that given § > 0, there exists n > 0 such that
IYt-z’_<.6 Vtelo»ﬂ], Vwewl?s (55)

and that for all w € W, 7 = 7(z,w) is bounded from below by some function h(z) which is
strictly positive on G.

15



Dynamic programming principles for W are easily obtained, and in fact are contained as
special cases of the corresponding results in the next subsection. In particular, one has

W(z)= inf [ /: M (9+ %m,ﬁ) di + W(Y,M)]

wEWo
for all z € G and o € [0,00), and

—_ oAT —~
W) < inf [ i (o+ 1|w,|2) dt + W(Y,A,)]
weWg, LJo 2
for all z € G, 0 € [0,00) and m > 0 where

W,?,:{wewo:lw¢|5m‘v’t}.

The last two paragraphs provide all that is needed for the proof of Theorem 5.1. The
continuity of W follows from the nondegeneracy of o and the boundedness of f. These properties
imply that given § > 0 there exists ¢ > 0 such that given any point y within € of z, one can
construct a control that moves Y; from z to y with cost less than § and in time less than §. This
in turn implies the continuity. Uniqueness (among the class of continuous viscosity solutions
satisfying the boundary conditions pointwise) follows from the comparison principle used in the
proof of Theorem 4.5. The proof of the theorem is completed by showing that W is both a
viscosity subsolution and supersolution of (5.4).

We first prove that W is a viscosity supersolution to (5.4). Suppose there exists g € C\(G)
and that W — g has a local minimum at zg € G. To prove that Wisa viscosity supersolution,
it must be shown that

—6 — Hnc(2o,92(20)) 2 0.
If this inequality is not valid, then there exists @ > 0 such that
6 + Hnc(zo,9:(z0)) > .
By (5.5) and the uniform (in w) bound from below on 7 = 7(z,w), it can be seen that there
exists ng € (0,7) such that for all € (0,79) and w € W°
K LT no
/0 8+ Slwd® + (f(Y) + o(Y)wi, (Vo)) f dt 2 2 > 0, (5.6)

where Y, is given by (5.1) with initial condition zo. However, because W — g has a local minimum
at zg, for sufficiently small € (0,7)

W(zo) - g(zo) < W(Ys) - g(Y:) Vi€ [0,1).

By the first dynamic programming principle above, this implies

inf { [o+-|w,|2] dt + o(Y,) - g(zo)} (5.7)

wE.

But (5.6) and (5.7) form a contradiction, and consequently Wisa viscosity supersolution.
The proof that W is a viscosity subsolution is analogous and employs the second dynamic
programming principle above. Therefore W is a continuous viscosity solution.

The reader uninterested in the case with maximizing control may wish to skip to Subsection
5.3.
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5.2 Case WiTH CONTROL
Consider the following deterministic differential game. For t € [0, 7] the dynamics are given by

e fw) + oV Yo =< (5.8)
where 7 is the time of first escape from G. The function u. is the (deterministic) measurable
control for the maximizing player, which takes values in U. Let this set of controls be denoted
by U°. The new term, w., is the deterministic control for the minimizing player, and we assume
w € L?([0,T}); R™) for all T € (0,00). Let this set of controls be denoted by W°.

The Elliott-Kalton [10] definition of the game will be used, and consequently the set of
strategies for each player must be defined. A strategy for the maximizing player is a mapping,
¢, from WP into U° which is non-anticipating in the following sense. For each ¢t > 0 and
w, w € WO such that w, = @, for a.e. 7 € [0,1], one has ¢[w], = ¢[w], for a.e. r € [0,¢]. Let this
set of strategies be denoted by ®. Similarly, a strategy for the minimizing player is a mapping,
A, from U° into WP which is non-anticipating in the analogous sense. Let A denote the set of
strategies for the minimizing player. The payoff for the game will be

1
J(z,u,w) = f [0 + ~2-|w,|2] dt. (5.9)
0
The upper and lower values in the Elliott-Kalton sense are given by

W(z)= :ggwien&o J(z,¢[w),w) and W(z)= J{Ielg\f:go J(z,u, A[u]). (5.10)

KW= W, then we say the game has value.
The Isaacs equation corresponding to this game is given by

0=-60- H(z,W,(z)), z € G, W(z)=0, z € 0G, (5.11)

where : 1
A(z,p) = max(f(z,v),) + min, [(o(z)w.p) + Glul?] .

Evaluation of the minimum gives
1
H(z,p) = max(f(z,v),p) - 5(p,a(z)p)-
veU 2

It will now be shown that the upper value, W, is a continuous viscosity solution of (5.11).
The same result holds for the lower value. For a fixed finite time horizon problem under stronger
assumptions, Evans-Souganidis [11] showed that a class of deterministic differential games had
value and that this common value function was a viscosity solution of the corresponding Isaacs
equations. The method of proof was to first obtain the dynamic programming principle, and
then combine this relation with some arguments regarding the continuity of the state trajectories
to prove that the value was the viscosity solution. In adapting this approach, some technical
difficulties arise due to the unbounded controls for the minimizing player, the weaker assumptions
on the dynamics and payoff, and the fact that this is not a fixed finite time horizon problem.
Thus, some preliminary lemmas are necessary as well as some variations on the method of proof.
In the statement and proofs of these lemmas, ¥; will denote the solution to (5.6) for the given
controls and 7 will be inf{t: Y; ¢ G}.
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Lemma 5.2 There ezxists M3 < oo such that

0< inf J(z,¢[w],w)< M3 Voed, Vz€G.
weEW?

The proof of Lemma 5.2 will be delayed until Section 6. The method is relatively standard,
and involves constructing a piece-wise constant control w. which guarantees exit prior to some
fixed time, T, independent of z and ¢. Since the control so constructed will also be bounded,
the result will follow. We note that a similar approach is used in [5).

Lemma 5.3 Let €p > 0 be fized, and let M satisfy the conclusion of Lemma 5.2. Then for all
z €G, ¢ €, and any v that satisfies

J(z,¢[w], w) < wiEnvt;o J(z,¢[w],w) + €0, (5.12)

we have the bound ,
/ |2 dt < 2(Ms + <o).
(

Proof. By (5.12) and Lemma 5.2
J(z,[w], W) < M3 + €0

which implies the result. g

Now let
We = {weW: flullsoe) < 2Ms + <)},

and note that _
W(z)=sup inf J(z,q[w],w).
€D WEW]
Lemma 5.4 Let w € WP, u € U. Then, there ezist By, B, < 0o such that
[Y: - z| < Bit + Bovt Yt e|o,7).

Proof. By (5.8)
. t t

|);-z|5/ |f(Y,,u,)|dr+/ lo (- o, | dr.
0 (1]

By Conditions 4.1 and 4.2, there exist Cy,C, < oo such that the right hand side of ths inequality
is less than or equal to

t
Cjt+C, / || dr.
0
According to Lemma 5.3 this can be bounded above by
Cst+ Co[2(M3 + Eo)]%\/i.n

From Lemma 5.4, one immediately obtains the following result.
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Lemma 5.5 Letz € G, w € WY and u € U°. Then
Byt + By/T 2 d(z,G°).

The Lemmas 5.2-5.5 serve to bound the controls for the minimizing player, and demonstrate
continuity of the state with respect to time. Next, dynamic programming principles will be
obtained.

Theorem 5.6

— AT —_
W(z) = sup inf [/a (0 + -I-Iw,P) dt + W(Y,M)]
écdweWw? Lo 2

for allz € G and o € [0,00).

The proof of this theorem is standard but tedious; it will be delayed until Section 6. The
proof of the following variation on this theorem involves only simple modifications of proof of
Theorem 5.6.

Theorem 5.7

—_ AT —
W(z) < sup inf [f (0 + llw,l’) dt + W(Y,M)]
s€d wewe, LJo 2

for allz € G, o € [0,00) and m > 0 where
W&:{wGWO:IwASth}.

Given the validity of these dynamic programming principles, one can prove that the upper
value W is a continuous viscosity solution of the Isaacs equation (5.11). The next two lemmas
imply certain semicontinuity properties of W(Y.).

Lemma 5.8 Let g € C1(G) satisfy
0> —a> -0 - H(zo, g:(zo))

for some zg € G and a > 0. Then there ezists ¢ € $ and 1o > 0 such that for all w € WE and
all neE (Oy ’70)

L7 {4 Sl + (500 b1l + o0y, 0o (i) e 2 2

where Y; is given by (5.8) with initial condition z,.

Proof. Define ]
F(z,u,w) =60+ 5‘“"2 + (f(z,u) + o(z)w, g-(z)), (5.13)

and let ug € argmax F(zo, u, w). Note that

0+ H(z,9:(z)) = max min F(z,u,w),
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and that ug is independent of w since the Isaacs condition is satisfied. Then, by the assumption

of the lemma,
F(z()vu(law) 2 6+ H(zng:(IO)) 2 a Vw € R™.

Let w € WP and ¢[w]; = uo. Then by Lemma 5.4 there exists n > 0 such that
a
F(},h¢[w]hwt) 2 _2'

for all ¢t € [0,n) and w € WY. Integrating and using Lemma 5.5 to assert that n A7 = g for 9
sufficiently small yields the result. g

Lemma 5.9 Let g € C'(G) satisfy
0 < a<—6- H(zo,9:(20))

for some zo € G and a > 0. Then there ezists n > 0 and a bounded w € WP such that for all

oed
na

/on/\" {0 + %ltmlz + (f(Y1, ¢[w]e) + U(Yz)wt,g,(}’,))} dt < - >

where Y; is given by (5.8) with initial condition zo.

The proof of Lemma 5.9 is very similar to that of Lemma 5.8. In particular, here one lets
wy = w* where w* € argmin F(zo,u,w), with F is given by (5.13). (Again note that w* is
independent of u.)

Now the way is clear for the main theorem of this subsection. The proof will be delayed
until Section 6.

Theorem 5.10 W is the unique continuous viscosity solution of (5.11).

5.3 RoOBUST INTERPRETATION

First we review the nonlinear H* disturbance attenuation problem, and then the analogous
robust interpretation for the limit problem considered here will be presented. For the nonlinear
H* disturbance attenuation problem, one typically considers games with payoffs of the form

T
[ 2t w) = ] a

where X is the state, u is the (true) control for the minimizing player, and w is the disturbance
which becomes the control for the maximizing player. L is the running cost, and is often taken
to be a quadratic function. Further, one assumes an initial value for the state, Xo = zq, such
that L(zo,0) = 0. If there exists a strategy for the minimizing player (ideally a feedback control
leading to well-defined dynamics) such that the value of the game is zero for all T, then this
implies
T 3
[/0 L(Xy, u,)dt] < llwliLz.r) VT < .

That is, there is a bound for the cost in the form of a product of the disturbance attenuation

constant, v, and the L? norm of the disturbance for all time horizons and disturbances. See, for
instance, (3,30,21,1,23] among others.
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For the escape time problem, large time averages do not make any sense, since it is the
transient behavior that is of primary importance. Since we cannot eliminate escape entirely, the
best one should hope for in the robust problem is a bound on the escape time in terms of the
energy of the player representing the disturbance. Clearly, this bound will depend on the initial
position of the controlled process. For the case without maximizing control, let

W(z)=W(z) = wienvi;)o J(z,w) VzeQG.

(This new notation is being introduced so that both cases can be treated together in this section.)
For the case with maximizing control, choose some (optimal or su_b_optimal) strategy ¢o given
in a feedback form such that the dynamics are well-defined. Let W be the value of the game

with this control, i.e. _
W(z) = ien,};o J(z,¢olw),w) VzeQG.

Then by (5.1) and (5.2) in the case without control, or by (5.8) and (5.11) in the case with
maximizing control,

W(z) < [o+ -217/'|w,|2dt]r VweI?, Vz €G,
0

or —
W(z)

> Vwe L? Vz€G. 5.14
T‘0+.%,f0’|wtl2dt we z€ (5.14)

Let
T

WP={wEL2[0,oo): %/ |we|?dt < P VO$T<oo}.
0

Then (5.14) has the interpretation

W(z)

Vwe WP, vz eG.
o+1p V€ z€

T2

This is a lower bound on the escape time as a function of the energy of the input noise. It is
analogous to the attenuation bound of H* control.
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6 Proofs

This section contains proofs for results which appeared in Sections 4 and 5.

6.1 PROOFS FOR SECTION 4
6.1.1 Proof of Theorem 4.2

Let v € U, and z € G. By (4.1), for any bounded, Fi—progressively measurable process w., one
has

X; =z + [ f(X5,u)dr + VE [yo(X£)dB,
=z + [[f(X?,ur) + o(X?)w,)dr + VE [y 0(X[)dB, — [5 o(X;)w, dr (6.1)
=z + [[f(XE,u,) + o(XF)w,]dr + V& f5 o(X£) dBY

which defines BO.

Fix any T < co. We would like a probability measure, P°, under which B° is a Brownian
motion. By Girsanov’s Theorem, [24, p. 191] such a measure exists on (9, Fr). For any set A
in Fr, this measure satisfies

Po(A) = /Aexp [\/-ELT(w,, dB?)+:—Zl;/OT|w,|2dr] P(dw).

In terms of this measure, we can write

[4

o 1 AT 1 AT
B.exp{~6(r° AT)/e) = Eexp |- /' (o+ 5|w,|2) dr — £1/? / (wr, dBY| . (6.2)
0 0

By applying Ito’s rule with the new dynamics (6.1) and using the PDE (4.3), one obtains

Ve xs) - 7¥(2) = / gt [a(x:)V;,(x:)]+<f(x:,ur),V;(x:»+<a(x:)w,,ff:(x:)>] dr
+ e/t [(TE(xE),0(X0)dBD)

[ [0+ 5Pz ax T + (oK, P2(X2)) dr

467 [(T2(X0),0(X)dBY).

IN

_ (63)
If we let the disturbance process be given by w, = —a7(XF)VE(X¢), then for this choice (6.3)
implies

V(X5 - V() < —IJ§0+%Ier’; drt el QUKD o(XaBY)

= -f(6+ 3lwe?) dr - /2 [{(w,, dBY).

Combining (6.2) and (6.4), one obtains

0(rc AT 1ce e _ 1- _
Eeexp [- A28 2 Boexp {17 (Xtunr) - 7)) = exp [~ 17(2)] Bfexp 1<(X5up).
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Sending T — oo and applying the dominated convergence theorem gives
€ -~
Fuess [ 3 eup [ 170,
€ €
which yields the first assertion of the theorem.
To obtain the second assertion, simply note that such a @ exists (see, for example, [16]), and
employ u; = %(X7) to obtain equality in the argument above.q
6.1.2 Proof of Lemma 4.3:

This is obtained by standard applications of the Comparison Principle. In particular, for the
lower bound, one compares with Z(z) = 0. For the upper bound, one compares V¢ with
Z(z) = A+ g-z where A and g are constants independent of e. By uniform ellipticity, it is easy
to show that for |g| sufficiently large there exists § > 0 such that

0>-6>60+ gu [a(2)Z22(z)] + H(z, Z:(z)) Vz€G, Ve > 0.

Further, for A sufficiently large, Z(z) 2 0 = V¢(z) for all z € 8G. From the Comparison
Principle and the compactness of G, one has the result. g
6.1.3 Proof of Lemma 4.4:

The barrier method (see, for instance, [20]) will be used. Fix zo € G and note that by Lemma
4.3
V¥(z)20=V%z0) VzeQG. (6.5)

Recall Condition 4.1, which states that the uniform exterior sphere condition holds. This implies
there exists r independent of zo and y € G- such that

B.(y)n G= {zo}
and |zg — y| = r. Fix this value of y, and define
Z(z)=allz-y|-1] VzeG. (6.6)

where o is a positive constant to be chosen independent of € € (0,60) and zo € dG. By (6.5)
and (6.6), it is sufficient to prove that

Vé(z)< Z(z) VzeG, Vee€(0,60). (6.7)

On the boundary of course,
Ve(z) = 0 < Z(a). (6.8)

If we set vy = ::y , then

0+ -;—tr la(z)Z:-(z)]) + H(z,Z:(z))
a?
= 0+ S lir(a(z) - (oe,0()es)] + cmax(f(e,9),04) = 5 (vesala)os)
i 1Ca— (se,a(@)osl] + Cy = Gloms0(zea) |

S0+a{2|1:
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where
C. = max|tr(a(z))|
z€G

and

Cy;= max |f(z,v)]
(z,v)eGxU

By the uniform ellipticity of a, this yields

Cat
2r

+C - g“} <0 (6.9)

0+ £tr(a(z)Zex(2)] + H(z, Z:(z) S O+ { :

for a sufficiently large independent of € € (0,¢0) and zo € 8G.
By (6.8), (6.9) and the Comparison Principle, one has (6.7). g
6.1.4 Proof of Theorem 4.5:

We recall the definitions of V* and V, given in equation (4.6). As noted in Section 4, it is
sufficient to prove that .
Vi (z) < W(z)<Vu.(z) VzeG. (6.10)

By a simple modification of [17], Prop. 7.6.1, one finds that V* is a subsolution of (4.5) and
V. is a supersolution. Further, by (4.6), the boundary conditions are achieved pointwise. It will
be shown that W < V. on G| the proof that V* < W is similar.

Let § > 0 and suppose

a=min((1+6)V.(z) - W(z)] <0. (6.11)
z€G

By (4.7) and the semicontinuity and continuity properties of V. and VT’, the minimum occurs at
some point Z € G. Let

$"(z,9) = (14 6)Vi(z) - W(y) + é%lz —yp? (6.12)

and
(z",y") € argmin ¢"(z,y)
where 1 will be a small parameter. It is easy to see that

|g" - y"| =0 as ] 0. (6.13)

Further, since (z",y") minimizes ¢",

¢"(z",y") < ¢"(z",2") (6.14)
which by (6.12) implies
|In - yn|2 "
— <2mw(|z" - y"|) (6.15)

(where myy(-) is the modulus of continuity of W over G). Thus by (6.13),

|z — y"|?
2 Y1 L0asplo. (6.16)
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By the compactness of G, there exists a sequence 7 | 0 and an z° € G such that
z™ — z°% and y™ — 2° (6.17)

as k — oo. To simplify the notation, we retain 5 as the index of this convergent sequence. By
the choice of (z”,y"), (6.12) and (6.11)

¢"(z",y")<a<0 vn>0. (6.18)
Then by (6.16), the lower semicontinuity of V, and the continuity of W,
(14 6)Vu(2%) - W(z° < 0. (6.19)

If z° were in 8G, then (6.19) would contradict (4.6) and (4.7). Therefore z° € G, which implies
that for 7 sufficiently large (in our re-indexed subsequence)

z",y" € G. (6.20)
Now let
Wz) 2 g [Wam - 5ole - 977
1+6 29
and note that V, — ¢ has a minimum at z". Therefore, since V, is a supersolution, one has

—6 ~ H(z",%-(z")) > 0
which implies
— (1468 2 Zmax(—f(",0) (2" = 1) - G (@~ Ve - V). (62)
Also, let ]
V(y) = (1+6)Vu(z") + py i v?

which implies that W — ¥ has a maximum at y".
Therefore, since W is a subsolution (as well as a supersolution), one has

-0- H(",¥:(4")) <0
which implies

02 ~Lmax(- 1470, (2" -V 4 5@ - )W) =) (622)

Adding (6.21) and (6.22) yields

—66 Z % maxvev(‘f(z"s v)’ (2'7 - yﬂ)) = Jr; ma'vaU(_f(yna v), (x") - y“))

+2—:,7((::'7 -y"), [a(yn) - '1'-}'3“("’")] (z" - y")). (6.23)

Recall that by Conditions 4.2 and 4.3 f and a are Lipschitz continuous with constants K; and
K, on G, respectively.

25



Consequently (6.23) implies

|z — y"[?

- >
502 —5

[~20K, - KJz" - 4[] + ;f;,—«x"— i, (1- 1) 8= = "),

1446

and since a is uniformly elliptic with constant g,
o (-3
60> —= 1 | _9pK, - K, lz" - ¢" - . 6.24
&0 > pre 2nKy - Ko|z" - y"| + (1 T35/ (6.24)
But, by (6.13), for 5 sufficiently small

1
-2nKy - Kal|z" - y"| + (1 - m) p>0.

This implies that for i sufficiently small the right hand side of (6.24) is nonnegative, which is a
contradiction. Therefore, (6.11) is false, and consequently

min(1 + §)Vu(z) - W(z) 2 0.
z€G
Since this is true for all § > 0, one has W < V, for all z € G. 0

6.2 PROOFS FOR SECTION 5
6.2.1 Proof of Lemma 5.2:

Since the lower bound is obvious, only the upper bound will be considered. It is sufficient to
prove that for each ¢ € ®, there exists a w € W° (depending on ) such that J(z, ¢[w],w) < Ms.
The control w. will be constructed in a feedback fashion; the existence of an open-loop w. with
the same values will be clear.

Let b € R" be any vector with |b] = 1. Let ¢, = nA for all nonnegative integer n where the
value of A is yet to be specified. The control w. will be constant over each interval [t,,t,41).
Let Cy be a bound for f over G, and fix a ¢ € ®. Define

w,:w0 VtE[to,tl)

where w® = 2C;0~1(z)b and z is the initial state. Let the dynamics over [to,t;) be given by
(5.8) with controls w and ¢{w]. Then for t € [to,],

(Yr—z,b) > =Cyst+2Cst+2Cs [o(b,[0(Yr)o~ (2) - I] b)dr

> Cyt—2C; [, [o(Y,) - o(z)] o=} (z)b) dr. (6.25)

But by Condition 4.3, there exists T, < 0o such that [lo=2(z)|| £ W, for all z € G. Further,
since o € C!(G), it is Lipschitz on G with constant K,. Employing these in (6.25) yields

t
(Y —z,b) 2 Cyt 2c,m,K,/ Y, - z| dr.
0

Since there exists C (depending on the bounds on f, o and ¢~!) such that |Y; — z| < Ct, one
has

(Y; —z,b) > Cyt — C;, K,Ct?
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which implies that there exists A > 0 (independent of z) such that
Y- z,8) > 921: Vi e [0,A].

This is the desired choice for A.
Turning now to the second segment, let

wy=w =2C;07 (Y, )b Vi€ [, t2).

Proceeding as for the first segment, one finds

Y- Yaby2 Li-1)  vielnn)

Combining (6.26) and (6.27) yields

(Ytz - zab) 2 2%A~

Continuing this process, one has
we = 2Cf0'_l(}’¢“)b Vte (tn,tﬂ+1]

and

Vo ~2,) 2 (a4 DELA Vi
Therefore, _
,< 2dja.m(G)’

and consequently

J(z, dlw], w) < 3‘?%“;—(9) [o + %[20@,12] = My.g

6.2.2 Proof of Theorem 5.6:

(6.26)

(6.27)

(6.28)

The proof follows the standard form. The equality in the dynamic programming principle is
obtained by proving inequalities in both directions. Let 7, indicate the time to escape given the

initial state z.
Let

TATs —_
R(z) = sup inf [/o (0 4+ %thlz) dt + W(Yranr, )] .

$€d wewy

Let £ € (0,1]). Then there exists & € & such that
R i
when ¢[w] is used in the dynamics (5.8). Now, for any y € G,

—_— T 1
o= 5 [0+ o
(v) :telgwlen Lo Lo +2|w¢I
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TATs 1 3 —_
/ (o+ 2w ) dt + W (Yrar,)| +¢

(6.29)

(6.30)

(6.31)



which implies there exists ¢ € @ such that
W(y) < inf [ / K (0+ l|w,|2) dt] +€ (6.32)
- wenw? LJo 2

when ¢'[w] is used in the dynamics (5.8).
Define ¢ as follows. For each w € WP, let

2+ _ | dlw) ift<T
9lw)e = { a’[‘w.‘..Tlg_T ift>T

where the choice of ¢’ depends on Yr. Note that ¢ € @. Then (6.30) and (6.32) imply

. . TAT: l 12 TYT 1 2 2
R(z)< inf  inf / (o+ 2wl ) dt +I(T < ‘r,)/T 0+ Sluf_ol?) di| +2¢
0

wl eW) w2EW)

where

Y=o+ [ [1%,88)) +o%)a,] dr

and
B = {w} ift<T
T lw? ift>T.
This implies

R(z) £ xnf [/ (0+ —Iw;IQ) dt| +2¢ < sup inf J(z,¢[w], w) + 2¢
¢€d wEW 5

which, since £ € (0,1] was arbitrary, implies
R(z) < W(z).
Now the reverse inequality is proved. Given £ > 0, there exists & € ® such that
W(z) < mf [/ (0+ —thlz) dt] +e€ (6.33)
when @[w) is used in the dynamics. On the other hand, by (6.29)
TATs
R(z) > inf [ / o + —[w,|2) dt + W(YTM,)}
w€W

where again @[w) is being used in the dynamics. This implies there exists @ € W such that
TATs 1 _ 2 —
R(z) > ‘[) (0+ -2-|w,| ) dt + W(Yras,) —c. (6.34)
From (6.31), if T < 7, then

W()’TAT‘) = W(YT) > inf / T (0 + -1-|{[),|2) dt
wew Jo 2
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where the dynamics over [T, 7y,.] are governed by the controls é and B,

_ [ @& iftgT ~ | lw) ift<T
we= { wer ift>T 2dvl= { Flw_rl—r ift>T.

(Note that a;' depends on YT and that $ € ®.) Therefore, there exists @' € W such that (if
T<7:)

— Y3
W(Yras) 2 f; T (0+ %hm’) dt—¢ (6.35)
where the other control is given by strategy é. Now specifically let

(@ ift<T
V=@ ift>T

Then (6.34) and (6.35) imply
R(z)> / ™ (o + 1@12) dt — 2%
(i 2
which, by (6.33), yields R(z) 2 W’(z) — 3¢. Since € > 0 was arbitrary, the proof is complete. g

6.2.3 Proof of Theorem 5.10:

First note that continuity of W follows from Lemma 5.4 and constructions similar to those
used in the proof of Lemma 5.2. Once it has been proved that W is a viscosity solution, the
uniqueness will then follow from the comparison principle used in the proof of Theorem 4.5.
Thus, it is sufficient to prove that W is a viscosity solution. This will be achieved by proving
that it is both a supersolution and a subsolution.

Suppose there exists g € C!(G) such that W — g has a local minimum at some zo € G. To
prove that W is a viscosity supersolution, it must be shown that

-6 - H(zo,9:(z0)) 2 0.
If the last inequality is not valid, then there exists a > 0 such that
—a > —0 — H(zo,9:(%0))-

Then, by Lemmas 5.5 and 5.8, there exist ¢ € $ and 7 > 0 such that for all w € W)

[ {o+ 3wl + U dlul) + oo, go(x) } a2

where Y; is given by (5.8) with initial condition zo and controls w and ¢[w]. This implies

. 1 na
sup w'envag [ /;‘ {0 + §|sz2 + ([f(}’z,¢[w]:)+a(Y‘)w:],gz(Y,))} dt] > 5 (6.36)

On the other hand, since 77 g has a local minimum at zo, Lemma 5.4 implies

W(z0) - 9(z0) S W(Y:) —g(Y;) Vt<n, V€&, Vue W] (6.37)
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where 7 may have to be reduced in size. Also, from Theorem 5.6,

W(zo) = sup inf [ /0" (a+ %|w,12) dt + W(y,,)]. (6.38)

d€d weW]

Substituting (6.37) into (6.38) yields

4 §o+ Hwd?) dt + g(¥,) - 9(zo)]

0 2> supgeqinfemp
13 1(0 + Hd®) + (LYo $lle) + o(¥eJwi 90D } ]

. (6.39)
= Supgeo inf ewo

But (6.36) and (6.39) form a contradiction. Therefore W is a supersolution.

The analogous proof that W is a subsolution is as follows. Suppose there exists g € C 1(G)
such that W — g has a local maximum at some zo € G. To prove that W is a subsolution, it
must be shown that

—6 — H(zo,9-(20)) £ 0.

If this inequality is not true then there exists a > 0 such that
a < -0 — H(zo, 9-(%0))-

Then, by Lemmas 5.5 and 5.9, there exist a bounded w € W° and n > 0 such that for all ¢ € @

/On {a + ‘;-lwd? + ([ (Ye, 8[w):) + a(y,)w,],g,(m)} dt < _%

where Y; is given by (5.8) with initial condition zo and controls w and @[w]. This implies

sup inf [ [ 0+llw:|2+([f(Y:,¢[w]z)+a(Yt)w:],gz(Yt)) ét| < - (6.40)
2 2

oed weW?

where W0 = {w € W° : |w,| < M. Vt} and M., is the bound on the function w whose existence
is asserted in Lemma 5.9.
On the other hand, since W — g has a local maximum at zg, Lemma 5.4 implies

W(zo) - g(zo) > W(Y:)-g(Ys) Vi<n Voed, Yuen? (6.41)

where 1 may have to be reduced ir. size. Also, from Theorem 5.7,

W(zo) < sup inf [f (0 + -—|wt|2) dt + W(Y, )] (6.42)

ded wEW?

Combining (6.41) and (6.42) yields

12 (6+ Hwd?) dt +g(¥a) - g(z0)]
15 { (84 Jlwd?) + ([(Ye, dlwle) + o(Ye)wi]. 9:(¥:) } d] .

But (6.40) and (6.43) form a contradiction. Therefore W is a subsolution. 0

0 < supgeginf,epe

—

(6.43)

SuPgeo infwew‘.’
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