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Abstract: YOUNG measures and their limitations are discussed. Some relations between YOUNG measures
and H-measures are described and used to analyze an example from micromagnetics. The need to improve
H-measures and semi-classical measures is stressed.

At the end of the 70s, I had imagined a new mathematical approach for solving the nonlinear partial
differential equations of Continuum Mechanics. I had first taught this new point of view in my cours PECCOT
at College de Firance in Paris in March 1977, describing some results on what was later called Homogenization
and on the method of Compensated Compactness which I had developed partly in collaboration with Francois
MURAT; I never wrote the corresponding lecture notes, but a few did refer to these lectures, where they had
first learned about some concepts that later became classical. A year later in July 1978, at the invitation
of Robin KNOPS and John M. BALL, I had lectured at HERIOT-WATT University in Edinburgh on some
applications of the Compensated Compactness method ([1]), and the framework was already more complete,
unchanged until recently when I introduced H-measures ([2]). I had learned from J. M. BALL to attribute to
Laurence C. YOUNG ([3]) these parametrized measures which I had first heard about in the one dimensional
setting of Control Theory, and then in a more general setting of Optimization ([4]). My use of YOUNG
measures was definitely different, as no derivatives were involved in previous applications, and I was using
them in a setting of partial differential equations in order to relate the information which I could deduce
from the linear differential balance equations by applying the Compensated Compactness method with the
information which I could deduce from the pointwise nonlinear constitutive relations. My approach for the
particular situation of Elasticity was quite different from the one that J. M. BALL was advocating ([5]),
and instead of studying the class of quasiconvex functional, related to sequential weak lower semicontinuity
and therefore adapted to minimizing energy functionals, I was more interested in identifying which YOUNG
measures were adapted to the system of equilibrium equations, adding of course the information that any
gradient be curl free. Of course, I did not believe so much in minimization of energy which I considered
a too simple approach to Physics or Continuum Mechanics, and I wanted to solve more general evolution
problems ([6]), which give rise to quasilinear hyperbolic systems where shocks may occur and such equations
are unfortunately not so well understood until now, but I had found a way to use "entropy" conditions in my
framework: I was only able to use this new approach for a scalar equation, and it was Ron DlPERNA who
opened the way for the case of systems ([7]) (he was lecturing on another subject during the same period,
but I had told him about my approach before, when I had found the way to apply it to hyperbolic systems
during a visit to the Mathematics Research Center in Madison). From the small amount of references to my
work in articles where YOUNG measures appear to be the main tool, one can deduce that many were not
able to understand the general framework that I had introduced for handling a large class of the problems in
Continuum Mechanics or Physics that I knew at the time. My idea of characterizing the YOUNG measures
associated to a given set of linear differential balance equations together with a nonlinear constitutive relation
was too difficult, and it is still not so well understood now even in the simple case of YOUNG measures related
to gradients which some consider the unique possibility, and I had tried then to create new mathematical
tools for that task and other questions as well, as I knew some problems for which one had to go beyond
YOUNG measures.

The problem that I want to use here to show how to go beyond YOUNG measures is not one of those
where I had first found YOUNG measures to be inadequate, and it is in some way related to ideas of Jerry
ERICKSEN. It was around 1983 that some mathematicians learned about J. ERICKSEN's ideas involving
Elasticity and Crystals, and since then such questions have appeared often in the work of J. M. BALL, Irene
FONSECA and David KlNDERLEHRER, sometimes in collaboration with Dick JAMES.



A precise knowledge of how real materials behave is often useful to a mathematician interested in de-
veloping adequate mathematical tools for handling in a rigourous way equations from Continuum Mechanics
and Physics. In 1985, after a talk where I had explained my general construction of multilayered materials
for computing effective coefficients in Homogenization ([8]), J. ERICKSEN had showed me a book containing
a photograph of a geometry which looked a little like the ones that I had used (for purely mathematical
reasons): it was showing the microstructure of a material which had experienced stress hardening. Of course,
my computations were only valid for a diffusion equation, although F. MURAT and Gilles FRANCFORT were
busy computing the analogous formulas for linearized elasticity at the time ([9]), but on another occasion J.
ERICKSEN had answered one of my questions about the variation of YOUNG's modulus for steel (a much ear-
lier YOUNG, of course) by describing how drastic the stress hardening effect was in the case of a monocrystal
of aluminum. J. ERICKSEN's comments had confirmed my general idea that materials like to optimize their
microstructures, an idea which I had derived from an earlier conjecture of Daniel D. JOSEPH and Michael
RENARDY, conjecture which was actually false because of an effect of apparition of microstructures in op-
timal design problems according to some results that I had obtained with F. MURAT ten years before. I
had also read about this idea of optimality in books by D. JOSEPH ([10]), where he was discussing about
turbulent flows then, and so after J. ERICKSEN's comments I had definitely adopted the idea that real
materials, in any of the various phases that they may exhibit, are trying to optimize something (and the
optimization process should also select in what phase the material should be), an idea which made a perfect
fit with my earlier discovery with F. MURAT that microstructures may appear naturally in some optimal
design problems ([11]). The problem remains to find what materials are really trying to optimize - and
that idea of optimizing something might be only an approximation, of course - but I guessed that better
mathematical tools would be necessary then, as I do not like to imagine that the world is so simple that it
fits into the mathematical framework that I have already understood. I think that mathematicians should
not become too attached to a particular class of problems, even when it is a particularly successful area
like the questions about crystalline materials, where the ideas of J. ERICKSEN have been so helpful: after a
while, mathematicians should look for what lies beyond, and in that case it might mean to understand why
crystals do occur in the first place.

1. YOUNG9s measures
When more than twenty years ago I started working with F. MURAT on an academic problem of

optimal design, it was not clear that what we were doing had anything to do with composite materials or
microstructures. We were looking at a nonclassical problem of Optimization, involving an elliptic equation
in variational form, which required using SOBOLEV's spaces, the classical LAX-MlLGRAM lemma and a few
classical tools of Functional Analysis like weak convergence, but it led us to an improved version of what Sergio
SPAGNOLO had called G-convergence a few years before. Some articles of Enrique SANCHEZ-PALENCIA,
who was working with materials having a periodic microstructure and was deriving effective properties by
asymptotic expansions, led us to the new point of view that weak convergence was a mathematical way to
describe the relations between microscopic and macroscopic levels, a notion which I had only heard before
associated with some awkward probabilistic argument (my use of the term microscopic level corresponds to
what others name a mesoscopic level, as one must be quite above the atomic scale in order to invoke the
modeling on a continuum level using partial differential equations).

After this first step, where weak convergence replaces the average over a period in the periodic case (or
the expectation in those probabilistic schemes that I dislike), one immediately realizes that if a sequence u»
concerges weakly to tioo, then f(un) does not generally converges to /(tioo), except if / is an affine function.
For example a sequence of characteristic functions Xn, taking therefore only the values 0 or 1 (a.e.} i.e. almost
everywhere), may converge weakly (or weakly • in L°°) to a function 0 taking values in the interval [0,1], and
therefore the relation Xn = Xn a e - does n o t imply the same relation 6 = $2 a.e. as 0 may well take values
inside (0,1). If one works on a LEBESGUE measurable set ft and if one considers disjoint measurable subsets
Wi n of ft, i = 1 , . . . ,*, whose characteristic functions Xt.n converge in £°°(ft) weak • to ft for t = 1, . . . , * ,

k k

then one can only deduce that 0 < ft (x) a.e. for s = 1 , . . . , i , and ]̂ P $i(x) < 1 a.e., or ^ ft (a?) = 1 a.e. if
t=i t=i

the u>itn, i = 1 , . . . , k, form a partition of ft for every n. This framework is useful for describing a fine mixture
of k different materials, with material # i occupying the region <*;*,« for s = ! , . . . , & , and it is certainly a



mathematical idealization to let n go to oo and to consider that a fine mixture is described by the weak •
limits Oi;, s = 1 , . . . , t , 0i(x) representing the local proportion of material # t in the mixture around the point
x (which only makes sense a.e.).

All the methods - at least those known to me - which are used for describing the relations between
microscopic and macroscopic levels, contain such an idealization, but the interesting feature of my approach
using various types of weak convergence (as some other types are necessary for Homogenization), is that the
weak or weak • topologies which are used are metrizable on bounded sets and therefore the mathematical
idealization of letting n tend to oo is not really necessary and actually means "if Xi,n is near enough to
6{, then some equations are approximately satisfied91, and the possibility remains to improve this kind of
result by explaining how near enough needs to be, and what the next corrections are. It seems better then
than the probabilistic approach of averaging on an ensemble of realizations, which leaves the possibility that
our universe has not been designed to look like all the others that could have been designed as well. In
a periodic setting with a small characteristic length e, it is equivalent to say "if t is small enough", but I
maintain that the hypothesis of a periodic structure is a restriction that Nature does not really follow, even
in the case of crystals! It remains that some models derived for crystals, like those that J. ERICKSEN has
introduced, may predict in a quite precise manner the behaviour of these crystals in various circumstances,
but my interpretation of the physical reality (reality which some consider to be an illusion, anyway) is that
it is probably described by partial differential equations (at least this is the best mathematical explanation
at the moment), and some partial differential equations may quite well produce an almost perfect piece of
periodic pattern without having themselves any periodic structure, and I would like to understand how this
happens; I agree that this point of view is quite opposite to the physicists' point of view, who are too much
used to put in a model what has been already observed, but I only want to point out that mathematicians
should be more aware of the logical defect of that approach.

A different questionable practice of physicists is that of extending to a general nonperiodic situation
some computations made in a periodic setting, and they forget usually to wonder why this approach works
as it is not the tradition among them to worry about why one obtains "experimentally right" results using
"logically wrong" arguments. Mathematicians are supposed to clarify these matters, and I have obtained
6ome partial successes in that direction in my work on Homogenization, Compensated Compactness and
H-measures, and there are now ways of explaining some of these lucky successes. Of course, a lot remains
to be done, and I will show some limitations of these more or less recently introduced mathematical tools,
but before explaining what these new tools are and why they can be useful on questions intractable with the
sole use of YOUNG measures, I first recall what YOUNG measures are.

If a sequence Un of functions defined on a measurable set fi of RN and taking (a.e.) values in a subset
K of RP converges in L°°(Cl) weak • to !/«>, it is not true in general that Uoo takes its values in A, and
it is almost the best possible result that Uoo takes (a.e.) its values in 7S7n>(Ar), the closed convex hull of
K. What YOUNG measures do is a little more than describing what the weak • limit of Un can be, as they
describe simultaneously the weak * limit of every function of Un, at the expense of extracting a subsequence.

Theorem 1. a) If C/n is a bounded sequence in L°°(fi; JP*), taking (a.e.) its values in AT, then there exists a
subsequence Um and a (weakly measurable) family of probability measures Ug on RP, x £ fi, with support
in Kt the closure of A", such that for every real continuous function F on K, F(Um) converges in L°°(ft)
weak • to the function I? defined by //*(*) = (vx,F) &e. x £ Q. The family i/x, x £ fi, is called the YOUNG
measure associated to the subsequence Um.
b) If A is bounded, then for any (weakly measurable) family of probability measures vx, x £ $2, with support
in 7T, there exists a sequence Un bounded in L°°(Q;RP) and taking its values in AT, 6uch that for every real
continuous function F on K> F(Um) converges in L°°(fi) weak • to IF defined by /F(X) = (i/Xi F) a.e. x £ Q.

In particular if Un converges to Uoo in L°°(Q; Rp) weak •, then Uoo{x) is (a.e.) the center of mass of i/x

and therefore Uoo(x) £ conv(K) C conv(K). In the example of the characteristic functions Xi,n of disjoint
measurable subsets <*/t>n of fi, which converge in L°° weak • to 0, as n tends to oo for s = 1 , . . . , k, then
one defines the function Un from fi into RP by (t/n), = Xi,n, i = l , . . . , t , and one finds that - without

extracting a subsequence - the YOUNG measure vx in that case is vx = ^T*0i(x)6ei + ( l -



where c«, t = 1 , . . . , A, is the canonical basis of RP. If the u>,,n, s = 1 , . . . , k, form a partition of ft for every
k k

n, then one has ]T^Xi,n 00 = 1 a.e. x G ft, and therefore ]£}0i(*) = 1 a.e. x € ft.
•=1 # i=l

If /f is unbounded, the result in part b) can be false, but only because the weak • topology is not
metrizable, and it is true if one uses the language of general topology, replacing sequences by filters (or nets).

For sequences which are not bounded in L°°(Q;RP), one needs to be more careful; in the case of a
sequence bounded in Lr(Q\RP) with 1 < r < oo for example, it is better to use only continuous functions F

such that lim M ,,/ = 0, in order to avoid concentration effects, that YOUNG measures are not designed
|t/Hoo ||t;||r

to take into account, because they are based on the use of TV-dimensional LEBESGUE measure and cannot
therefore see what happens on sets of //-dimensional measure zero. One can easily extend Theorem 1 for
general sequences (i.e. not necessarily bounded in L°°(u; Rp)), in the following way: for p > 0 one defines the

mapping *p from RP into itself by 4,(v) = v if ||v|| < p and *p(v) = JJ-~ if ||v|| > p, and one extracts then

a (diagonal) subsequence Um such that for any integer p the sequence $p(Um) defines a YOUNG measure
vp\ because <bp = $p o $e for a > p, one deduces that for a > p the probability measure i/PtX is the image
by $p of i/fffX, i.e. (*>,*,V>) = ("*,*, V> ° $p) for every continuous function ^> a.e. x £ ft, and as p tends
to infinity the sequence i/PtX converges vaguely to a probability measure v^,* °B the compactification of RP
with a sphere at infinity, which I denote #? = RP U {^S**1}. The function *, can be extended to /2? by
defining $p(°°z) = pz for every z € Sp~1, and the probability measure uPiX is the image by <bp of i/ootX for
almost every x € ft. A real function F is continuous on RP, if and only if its restriction to RP is continuous
and has radial limits at infinity (corresponding to the restriction of F to the sphere at infinity °°Sp~l),

i.e. for any sequence vn converging to °°z at infinity, or equivalently ||t;n|| —• oo and .. w.. —• 2, one has
ll^nll

F(vn) —* F(°°z); a particular example of such a function is any function F which is continuous and tends to
0 at infinity (a situation related to the one point ALEXANDROFF's compactification of RP), which was the
choice made by J. M. BALL ([12]).

Theorem 2. a) If Un is a sequence of measurable functions from fi into RP taking (a.e.) its values in K,
then there exists a subsequence Um and a (weakly measurable) family of probability measures VQQJX on RP,
x € ft, with support in 7f~, which denotes the closure of K in RP, such that for every real continuous function
F on i? (or on 7T"), F(Um) converges in L°°(ft) weak • to the function lp defined by /F(X) = {1/^ x,F) a.e.
x € f t .
b) If lim (limsupmeas{x € ft : ||t/^(x)|| > p]) = 0, then i/^,* does not charge O 0 5 p - 1 , a.e. x € ft, and one

obtains a YOUNG measure in ft. If Un —fc t/00 in i l ( f t ) weak and defines a family of probability measure
"oo,* on /#>, then j/00,* does not charge the sphere at infinity, the function U •-* \\U\\ is i/oo>r integrable and
the center of mass of 1/00,* is Uoo(x), a.e. x € ft. If G is a continuous mapping from RP to Ri and the
sequence Un defines a family of probability measures i/oo>r on RP, then G(Un) defines a family of probability
measures *«>,* on Rfi, and Xoo,r is the image by G of *>«>,*, a.e. x € ft.

Of course, one can also introduce some variants that can take care of concentration effects: for example
if a sequence Un is bounded in Lr{il\RP), then for a subsequence Um one can describe all the weak • limits
of functions G(Um) with G(U) = \\U\\rF(U) for U € RP and F is continuous on RP, and these limits are
described by a nonnegative measure on ft x OOSP~1, which sees concentration effects, the choice made by R.
DlPERNA k Andrew MAJDA ([13]).

2. H-Measures
YOUNG measures cannot notice that the set ft on which our functions are defined is an open set of RN

(or a manifold) and therefore has a differential structure, as the main property needed to define them is that
the LEBESGUE measure dx has no atoms. Of great importance in Continuum Mechanics are the constitutive
relations and the balance equations, and YOUNG measures can handle the constitutive relations which might



be nonlinear but are pointwise relations, while they are inadequate for handling linear balance equations
because they are given by partial differential equations. I have designed H-measures as an extension of the
Compensated Compactness method which I had partly developed with F. MURAT, and they can handle some
linear "pseudo-differential" equations and predict the weak * limit of some quadratic quantities, but they are
not designed to handle general nonlinear relations. One expects then that by using both YOUNG measures
and H-measures one can obtain a better understanding of the equation of Continuum Mechanics, and indeed
I will describe a problem where both these measures are needed, although it should be emphasized that the
relations between these two objects are not completely understood yet, and that more general objects should
certainly be developed.

If fi is an open subset of RN and Un is a sequence converging to 0 in L2(Q\RP) weak, then after
extraction of a subsequence Um one can define the H-measure associated to the subsequence Um, which is a
nonnegative Hermitian p x p matrix of RADON measures \i in (x, £) with x € Tl and £ € S**"1, the unit sphere
in RN. It permits to compute the weak • limits (in the space of RADON measures) of products of the type
Li(Umti)L2(Umj) where Um has been extended by 0 outside fi and L\ and L2 are some "pseudo-differential"
operators of order 0.

The ^pseudo-differential" operators that I chose to use in the theory are not the ones with smooth
symbols which are classical in some circles, as smoothness would preclude many applications to a Continuum
Mechanics framework. These operators have the property to map L2(RN) into itself (which is why I call
them operators of order zero) and their symbols are of the form

with at € C(SN"1)i the space of continuous functions on the unit sphere and 6* G Co(J2N), the space of
continuous functions converging to 0 at infinity, Jb > 1, and one imposes that

Defining the FOURIER transform F by

one associates to an admissible symbol s the standard operator 5 (that one can denote $(a:,——)) by

00 p

F(5u)(0 = £ > (X)F(6Jktx)(0, a.e. I € RN, for u e L\R»).

To a symbol 6 £ Co(RN) is associated the operator Mb of multiplication by 6, while to a symbol a € C(Ss~l)
extended to be homogeneous of degree zero in RN is associated the operator F^MoF. A linear continuous
operator L from I?(RN) into itself is said to have symbol s if L — 5 is a compact operator from L2(RN)
into itself.

Theorem 3. If the subsequence Um defines a H-measure ji and Li>Li are operators with symbols sx and
«2, then

Li(Umti)L2(Umj) — v in the weak * convergence of measures,

and one has
(". V>) = 0 ^ , ^ 1 * 2 ) for every <p € CC(J7),

the space of continuous functions with compact support in Q.



An important remark, which I called the Localization Principle, expresses how H-measure are con-
strained by any linear "pseudo-differential" information on the subsequence Um.

Theorem 4. If the subsequence Um defines a H-measure /i and satisfies

N p 8
£ £ F^^mj) - 0 strongly in #£(0),

where Aij are continuous functions in 0, one has

N p

£ X > ' M « ) M ' * = 0 in fi for k = l , . . . ,p .
•si ; = 1

Actually these two conditions are equivalent: if for <p € CC(Q) one defines Kn by

where /Jj denotes the RiESZ transform (the operator of symbol £,), then the first condition means that Vn —• 0
N p

in L2(RN) strong for every >̂ € Cc(f2), and the limit of VmVm i s £ £ ^'*» IvH^t&'Aj^t'*) = 0 and

p N 75
therefore the first condition is equivalent to ^ / i J * ( £ & ^ i ; ) (E^*^ f i k) = ®» which by the Hermitian

;,t=l tsl 1=1

nonnegative character of H-measures is equivalent to the second condition. The Localization Principle
improves the results given by the Compensated Compactness method, which could only handle the case of
constant coefficients and discuss the possible weak * limits of quadratic quantities, and H-measures also give
new results in other directions.

As an example, which is used in the following problem, let a sequence Mn converge to 0 in L2(Q;R3)
weak and correspond to a H-measure ji, which is a 3 x 3 Hermitian nonnegative matrix whose entries are
scalar (eventually complex) RADON measures in R3 x S2. If one solves the equation div(grad(un) + Mn) = 0
in J?3, then the mapping M •-• grad(u) where u is the solution of div(grad(u) + M) = 0 (which is a
3 x 3 matrix of admissible operators from L2(R3) into itself) has symbol — £ ® £, and the weak • limit of

3
||yracf(un)||

2 is the measure * defined by (*,¥>) = ^ (A*I;,^>® &£j) for every <p € Ce(H
3). The condition

IJBl
3

E !***&£* = ° " equwafe11* to div(Mn) —> 0 in -H^(H) strong.
tjssl

3. A problem in Micromagnetics, involving YOUNG measures and H-measures
The solutions of many important problems seem to require the use of a mathematical object, yet to be

developed, which will encompass both YOUNG measures and H-measures. Partial results about the relations
between YOUNG measures and H-measures have already been obtained with F. MURAT and I will show how
they can be used on the following example.

The motivation for this example is the model of micromagnetics of William BROWN [14], for a crystal
occupying a bounded open domain Q of .R3, a problem studied by R. JAMES k D. KiNDERLEHRER [15], using
only the tool of YOUNG measures, so they could only obtain partial results. In their work, they considered
the equation

—div (grad(u) + mxn) = 0 in Ji3,



where Xn is the characteristic function of ft and m satisfies the constraint

||m(x)|| = 1 a.e. in ft,

and they sought m minimizing the quantity Jo(ro) defined by

J 0 ( m ) = / \\grad(u)\\7dx + f (ip{m) - (H0.mj) dx.
JR* J n v '

In that model, where a few physical parameters have been suppressed, m corresponds to a macroscopic spin
variable, the function (p corresponds to an anisotropic energy due to the crystalline nature of the body and
Ho is an applied magnetic field, the magnetic field H being grad(u) and the magnetic induction field B
being H + m. An exchange energy Et(m)> of a form similar to

involving a small length scale £, has been neglected, and an initial question is to minimize the total energy
Je(m) defined as

Mm) = Jo(m) + Et(m).

By a classical argument of compactness, the functional Jc certainly attains its global minimum for at least
one configuration mc under the minimal assumption that <p is a continuous function on the sphere S2 and
Ho € L2(ft; J?3). It might well be that Jt(m) has numerous local minima, but the physical intuition behind
the modeling corresponds to a competition between three tendencies for making the various parts of the total
energy small: the first tendency is to minimize the magnetostatic energy JR9 ||prad(u)||2da: by annuling the
magnetic field, which happens if div(m) = 0 in ft and the normal component (m.n) of m is zero on 5ft;
the second tendency is to minimize the anisotropic energy /n(^(ni) — (Ho.rn)) dx\ the third tendency is to
minimize the exchange energy by having m constant. In the case where e = 0 and H0 = 0 one can sometimes
satisfy the first two tendencies by having m oriented along an easy axis which minimizes <p - which is chosen
as an even function on S 2 - the orientation along the easy axis being chosen so that the conditions div(m) = 0
in ft and (m.n) = 0 on dQ can be satisfied; R. JAMES & D. KlNDERLEHRER studied when such classical
solutions do exist, and noticed that when they do not exist one can use instead a sequence mn creating a
YOUNG measure charging the two directions of an easy axis with equal weights and having a weak • limit
moo = 0 annuling therefore the magnetic field in the limit, a scheme which is the mathematical expression
of classical arguments on how to create a piecewise constant divergence free field m. Unfortunately, the case
of a nonzero applied field Ho could not be handled as easily by the same argument, which is the reason why
I solved the problem using both YOUNG measures and H-measures, although it was shown afterwards by
Antonio DE SlMONE how one could extend the classical argument ([16]).

When e is small the physical intuition is that some magnetic domains are formed where the orientation
of m is almost uniform, the variation of m being confined to walls between these domains, the only places
where the exchange energy must be taken into account; the walls have a thickness of the order of e. I was
made aware of contributions of physicists like BLOCH, LANDAU and N£EL on the question of the structure
of these walls, and I decided to attack the mathematical problem of describing in a mathematical way the
apparition of magnetic domains and walls in the sequence rnt of minimizers of Je(m), in order to predict the
typical size of the domains, the orientations of the walls and the energy attached to them, hoping to derive a
precise understanding of the microstructures exhibited. I only suceeded in understanding what happened in
the limit £ —• 0 and identified what the relaxed functional of Jo was, characterizing Urn Je(Tne)i by using a

combination of YOUNG measures and H-measures and a partial result obtained with F. MURAT concerning
the relations between YOUNG measures and H-measures ([17]).

The mathematical difficulty arises from the fact that the functional Jo is not lower semicontinuous
for the natural topology for m, the L°°(ft;/?3) weak * topology. Minimizing sequences might then develop
oscillations, and this is in qualitative agreement with the experimentally observed formation of small magnetic
domains, although the model has been considered dubious because of quantitative discrepancies between



the theoretical predictions and the experimental measurements. As pointed out to me by R. JAMBS, the
measurements can be rather different if one uses a polycrystal instead of a monocrystal for which the theory
was derived, and therefore I want to mention that the computations which I will show can be extended to
the case of polycrystals; there might actually be some questions of Homogenization to be considered in the
case of heterogeneous materials.

If a sequence me converges to m° in L°°(Q\ R3) weak •, the computation of the limit of <p(me) requires
more than the weak • limit of me (as (p is not affine in general) and can be derived from the YOUNG measure
v associated to a subsequence. On the other hand the limit of ||^racf(tie)||2 cannot be computed in general by
using only the YOUNG measure i/, but it can be derived from the H-measure /i associated to a subsequence
of m* — m°, the reason being that the mapping m >-• grad(u) is given by an admissible "pseudo-differential"
operator of order zero. One has

/ (m'M*) dx - / (uXi V)t(x) dx

and

\\grad(u<)\?tl>(x)dx-+ f \\9rad(u°)\\^(x) dx

for every bounded continuous function V>> where u° denotes the solution corresponding to m0, which only
satisfies ||m°(x)|| < 1 a.e. x £ Q, as m°(x) is the center of mass of the probability vx which lives on the
sphere S2. The crucial question is then to understand what relations link the YOUNG measure v and the
H-measure fi. Without answering this question, one can describe an abstract relaxation problem where one
seeks to minimize the functional J\ defined in the following way: let X be the space of all pairs (v,n) for
which there exists a sequence mc satisfying the constraint ||mr|| = 1 a.e. x € ft, and such that me defines a
YOUNG measure v and such that me — m° defines a H-measure /x, m°(x) being the center of mass of vx a.e.
x € ft; one defines the functional J\ on X by the formula

J r 3 t

r \\grad(u°)\\2dx+ j > ' M ® 6 & ) + / (<*,*) - (#o.m0)) dx,
where u° is the solution of

-div(grad(u°) -f m°xn) = 0 in iZ3.

By following the construction of v and /i, one can put a topology on X that makes it compact and renders
J\ continuous, so that J\ does attain its minimum on X. The initial problem is imbedded into this new one
and corresponds to ux being the DlRAC mass at m°(x), a.e. x € ft, and /i being 0. Of course, the preceding
result is only a change of language for recasting the problem, and nothing important has been done yet at
this level.

A precise description of X is not yet available, but a partial result obtained with F. MURAT shows that
3

for a given YOUNG measure */, there is a pair (f,/i) belonging to X such that ^ {/***, 1 ® &{;) = 0. This

gives rise to a second relaxed problem defined on the set Y of all YOUNG measures, where one defines the
functional J2 by the formula

= / \\9rad(u°)\fdx+ /
JR* Ja

with m° and «° defined as before. If Y is equipped with the weak • topology, then Y is compact and 32 is
lower semicontinuous and does attain its minimum. The initial problem is imbedded into this new one and
corresponds to each vx being the DlRAC mass at m°(x), a.e. x € ft.

Finally one defines Z to be the convex set of functions m° satisfying

|m°(x)| < 1 a.e. in f2,
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and one defines the functional J3 by

J3(m°)= f \\grad{u°)\\7dx + f (v>"(m°) - (Ho-m0)) dx,
JR* Jny '

where u° is defined as before and where (p** is the convex function defined on the unit ball by

9**(m) = inf(i/,p) for all probability measures v on S2 with center of mass m.

[<p*m is the convex envelope of the function equal to (p on S2 and +00 elsewhere]. If one equips Z with the
weak • topology, then Z is compact and J3 is lower semicontinuous and does attain its minimum. The initial
problem is imbedded into this new one and corresponds to m° taking its values on the unit sphere (a.e.).

If no solution of this last problem satisfies ||rn°(x)|| = 1 a.e. x € fi, then there is no classical solution
mimimizing Jo, and minimizing sequences tend to create somewhere in fi some tiny magnetic domains, the
statistics of orientations for m being described by some YOUNG measure v appearing in the definition of
V?**; the H-measure /i, sees another kind of information, like the orientations of the walls of these magnetic
domains, and the purpose of the result with F. MURAT has been to assert that one can construct a sequence
satisfying div{m€) —• div(m°) in Hfo](i^) strong. Of course, having neglected the exchange energy, there is
nothing that limits the size of the magnetic domains in this simplified model. The preceding analysis also
shows that for any minimizing sequence me, any subsequence mv converging in L°°(Q\R3) weak • to m°
must be such that m° minimizes J3 and that one has divfa*) —• div(m°) in H~l(R3) strong.

I have therefore used H-measures in a way which might not seem so crucial as they did appear in the
problem of minimizing J\ but not in that of minimizing J2, and the same remark can be applied to YOUNG
measures as they did appear in the problem of minimizing 32 but not in that of minimizing J3, but this is the
result of the analysis, which used YOUNG measures and H-measures as an internal tool, to have discovered
what is really important in the situation considered. There seems to be realistic problems, however, like
a similar question involving magnetostriction, where the role of the interaction of H-measures and YOUNG
measures is not yet completely clarified.

It is worth repeating my opinion expressed so many years ago that another usefulness of studying
oscillations at the theoretical level which I have chosen is also to avoid computing these oscillations, which is
a time/money consuming task and might not even show clearly what is hapening. In the preceding problem,
it would be useless to invent a numerical approach to approximate H-measures, or to use one of the numerical
approaches to YOUNG-measures which have been devised already, as the preceding analysis tells that once
the function <p** has been computed - which might be an interesting numerical question if no closed form
formula is available - one has to solve a convex problem for which efficient methods have been derived some
time ago (actually there is another difficulty in the numerical solution of the problem at hand, as it is set in
the entire space .R3).

4. Relations between YOUNG measures and H-measures
The more important piece of information used in the analysis of the preceding model was a result

obtained with F. MURAT that some pairs (i/t /1) of a YOUNG measure and a H-measure could be obtained
for a sequence satisfying some constraints. Of course, we had not been working in view of the preceding
example, and we had in mind a more general question, corresponding to the program that I had devised
many years ago for the Compensated Compactness method, program built around trying to understand
more about the structure of the partial differential equations of Continuum Mechanics. On an open set Q of
RN one considers a sequence Un € £°°(f2; #*) satisfying two types of constraints: the first one, related to
constitutive relations is of the form

Un(x) € K a.e. x € n,

where if is a nonempty subset of RP, and the second one, related to balance equations is of the form

p N 8
E E ^ N * ) ) € comPact of B£



where the functions Aijt are continuous (the Compensated Compactness method could only handle constant
coefficients). One then looks at a subsequence Um converging to Uoo in L°°(ft; JP*) weak • and defining a
YOUNG measure 1/, and such that Um — Uoo defines a H-measure /i, and the problem is to characterize which
pairs (f, fi) can be obtained in this way. Of course, for some applications where sequences are not necessarily
bounded, one should then relax the hypothesis of boundedness in L°°(Q\RF).

Due to the fact that H-measures can see the balance equations in a quite transparent way, the natural
problem was then to take only into account the constitutive relations, because if one could characterize the
admissible pairs (^o,/io) that could be obtained by taking only into account the constitutive relations, one
would obtain a solution of the complete problem by considering the pairs (ft*,/Jo) satisfying also

V N

%6rf = 0S»i=l I, and/=l,...,p.

For a given YOUNG measure i/& compatible with the constitutive relations, i.e. having support in T(, we
looked then for the H-measures /io which are such that the pair (i/o, A*o) is admissible, and we first proved that
the set of such /io is convex (closed for the weak * topology, of course). There are some obvious necessary
conditions that the admissible pairs (^o^o) must satisfy: as both YOUNG measures and H-measures can
predict the weak • limit of real quadratic quantities (or sesquilinear quantities), these predictions must be the
same, and this gives the foUowing relations, where f/oo(x) is the center of mass of UQX and Q is an arbitrary

p

sesquilinear form given by Q(U) =

\ for every <p € Cc(fi).

It is an open question to derive other general necessary conditions. We focused our attention then on
improving our understanding of which pairs we could construct, and we tried to construct as many pairs as

r
possible for which the YOUNG measure is a finite combination of DlRAC masses *>o = J^ft^v'CO in an open

t=i
r

set u;, with V ^ G K, Oi > 0, i = 1 , . . . , r and 2 ^ ,̂ = 1. In that case, denoting by VG the center of mass of

i/0, i.e.

the compatibility condition becomes

where Proji is the first projection transforming a measure in ( x , 0 into a measure in x, i.e. integration in
(. Then by a limiting process one can construct admissible pairs where I/Q is a general probability measure
with support in a bounded set of K.

Our method of construction was based on the result of small amplitude Homogenization for which I had
first introduced H-measures. Let w be a bounded open set of RN, let Ao € C°(u>;C(RN, RN)) be uniformly
elliptic (i.e. there exists a > 0 such that (A0(x)X.X) > a||A||2 for all A € R" a.e. z € u>), l e t Bn —• 0 in
i°°(u;;£(/ZN,iJN)) weak • and corresponding to a H-measure /i, then for 7 small the operator An defined
by

Anv = -dtt;((Ao + yBn)9rad(vf) for t; € H%(u>),
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is an isomorphism from HQ(W) onto H ~l(u) and, after extracting a subsequence Amy the sequence of inverse
operators . 4 ^ converge weakly to the inverse A~}* of an effective operator Aejj of the form

Aejjv = —div{(Aijj(x;i)grad(y)) for v € HQ(U>),

where Aejf(x\j) = Ao(x) + 72C2(*) + - •. is analytic in 7 and the first corrector C2 can be computed using
Ao and /1. For example if Bn = t n / with tn -* 0 in L°°(u)) weak • and corresponding to a scalar nonnegative
H-measure /i, then the formula is

For each microgeometry for which one can compute an effective conductivity, one can deduce a corresponding
H-measure; on the other hand, in order to find optimal bounds for effective conductivity I had been led to
derive a method for computing the effective conductivity of multilayered materials, and this method gives
then a way to compute the H-measure corresponding to a multilayered geometry. Of course, the main
difficulty for the method of deriving bounds for the effective conductivity is that the reiteration of the
method gives rise to inextricable computations; however it is not so for the case of H-measures because
one is only interested in a TAYLOR expansion at order two and the computations become somewhat more
tractable, although quite intricate so that we have not been able to derive yet a simple characterization of all
the H-measures that one can construct by following our algorithm. Nevertheless we had encountered early a
particular geometry giving rise to a relatively symmetric formula, and this is the particular case that I used

r r
for the model of micromagnetics: for V& € A\ 0 , > 0, i = 1 , . . . ,r and ^ 0 , = 1, let VG = ]jT6iV{i) and

»=i t=i
let 7T,, i = 1 , . . . ,r, be (independent) probabilities on the unit sphere SN~l, then there exists a sequence Un

of the form

where the \nti are characteristic functions of disjoint measurable subsets u>n,i of w, with

Xnti — 0i in L°°(u>) weak *,

and such that the sequence corresponds to the YOUNG measure

I/O =

and Un — VG corresponds to the H-measure /*0 defined by

1*0=J2 6< {<vli) - v ° ) ® (yW - v°)) (»< ®dx) •
i

p

One can see on this formula then how in the example (where N = p = 3), po can satisfy Y^ f4>k£jtk = 0,

as the left hand 6ide is

2(^ \i.e. ^2^i(^(^(t) - VG)jtj\ \Vi ® dx), and this can be made 0 by choosing the probability *, such that

p

£ ) W - VG)jtj = 0 on the support of v, (if 6i > 0, of course), i.e. by taking xt supported by the equator
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perpendicular to V ( t ) - VG (or anywhere if V w = VG). Of course, one must extend this argument to a
general YOUNG measure i/, and this is done by noticing that if one has constructed admissible pairs (i4,/ij)
in disjoint open sets a/,, i = 1 , . . . , / , whose union is fi up to a set of measure 0, then one can glue the
sequences together and obtain an admissible pair (f,/i) on fi, because the functions used are bounded in
L°° and therefore no concentration effect in x can occur, and nothing happens then on the set of measure
zero which is missing. Then using the fact that the set of admissible pairs corresponding to a bounded K is
(sequentially) dosed for the natural weak • topology, one can extend the result to a more general v.

Actually the same argument works, without even needing the points V& to be in any special position,
when the balance equations are such that

p N

for every A e RP there exists £ € SN~l : ] T ] T AijkZk*j = 0 for s = 1 , . . . , q,

i.e. A = RP in the notations of the Compensated Compactness method, where

In the case A ^ RP, the argument works if VW — VG € A for * = l , . . . , r . Indeed, in order to have
P N p N

I Z X ^ O * ^ ' = 0 for i = 1,...,?, and / = l,...,p, one needs to have £ £ ^ i * 6 ( f ( # ) " V°^ = ° o n

the support of nt (if 6, > 0), and therefore as A = V^ — VG € A, there is a £ associated with A in the
definition of A, and one can take *# = 6^.

Actually the result obtained with F. MURAT tells a little more as it also describes the H-measures of
functions of t/n: if F is a function from RP to a finite dimensional vector space 2?, and FG denotes the center
of mass of the points F(V^)} i.e.

then the H-measure /ij* associated to F(Un) is

J - F<s)) (*< ® d x ) >
t=i

and this formula shows more clearly the nature of a H-measure associated to a sequence taking its values in
E: it maps continuous functions with compact support in (x,£) into C(E\E).

5. Generalizations
In the preceding problem, one could change the pointwise constraint on m into m £ Ky where K is

any bounded set of R3 (and even into m(x) € K(x) with K(x) varying in a reasonable way at the expense
of invoking a few more classical results of approximation from Measure theory), and of course the YOUNG
measures in that case are supported by IT. One can also consider an heterogeneous material, like a polycrystal
instead of a monocrystal, using then an anisotropic energy ^(x,m) (satisfying CARATH60D0RY conditions),
and a more general relation B(x) = M(x)(H(x) -f m(x)) with a symmetric positive definite matrix M(x),
the change being minor if M is continuous, and a little more technical if M is only bounded measurable as
one must then use the fact that m is bounded in L°°(R?) so the projection Projifi of the corresponding
H-measures have a L°°(Q) density with respect to the LEBESGUE measure dx, and one can therefore use
operators of multiplication by functions of x with symbols in L°°(fl).

For reasons that may seem purely mathematical, i.e. for testing the tools that I have successfully used
on the preceding example, suppose now that one is interested in maximizing the functional Jo instead of
minimizing it.

12



This problem is actually not so academic, as a similar situation occurs when one wants to extend the
preceding analysis to questions involving magnetostrictive effects, which also involve an elastic energy, but
the albegraic manipulations in that case are not so dear, and it is therefore useful to analyze a similar
question on a model analog to the one already used.

One first notices that Jo is bounded above because m is bounded in L°°(Q) and the mapping m i-+
grad(u) is linear continuous from L2(Q;R3) into L2(R3\R?), although J, is not bounded above for t > 0
as one can create oscillations in m and obtain arbitrarily large norms for the gradient of m. Taking a
maximizing sequence and analyzing the situation as before, one finds a first relaxed problem where one must
maximize the same functional J\ already encountered, on the same set X of admissible pairs (f,/i), which
has not been characterized yet. The next question, however, is different because among all the H-measures
p that can be associated with a given YOUNG measure v (set which we know to be convex and weak •

3
closed), one must now maximize the quantity ^ (/iiJ, 1 ® «̂€j>> and the situation is not as simple as when

•'jssl

I was minimizing it because the minimization problem is completely solved once one has constructed an
admissible /i for which that quantity is 0, while it is not clear a priori if the maximization problem will have
one of its solutions inside the special subset of admissible /i that we already know how to construct. We are

s 3
actually lucky: as /i is Hermitian nonnegative and £ € S^"1, one has ]jP (/i t ; ,l ® &£>) < ^ ( ^ " ^ ® *)>

tjssl »=1
, 3

which is the limit of / Y^ |mc ,- — mo 112 dxt which itself can be expressed in terms of the YOUNG measure

"» i e - /n(^*»II' II2) "" HmolP) dx, and this bound can be obtained in the case already described where v is
y(0 — vG

a finite combination of DlRAC masses by taking for ^ the DlRAC mass at . . .— (if VW ^ VG, and

any probability measure if V^1) = VG)> for s = 1 , . . . ,r. A similar choice of an optimal \x can be done for a
more general v, and this analysis leads to a second variational problem on the_set Y of all YOUNG measures,
where instead of minimizing the functional 3i one maximizes the functional J? defined as

%{v) = / \\grad(u°)\\>dx+ f (<i/r,y>+ || • ||2) - | |mo | |2 - (^o .m0)) dx,
JR* -/n V '

with m° and u° defined as before. The initial problem is imbedded into this new one and corresponds to each
vT being a DlRAC mass. If Y is equipped with the weak • topology, then Y is compact and Ji is indeed upper
semicontinuous and attains its maximum, but proving this property of upper semicontinuity for J2 without
using H-measures is not as straightforward as proving the lower semicontinuity for J2 which is convex. The
map m •-• fR* \\grad(u)\\7 dx — / n ||m||2dz is actually concave because it is quadratic and nonpositive as

3 I2 3

can be seen by FOURIER transform, using the inequality I^P Fmt({)£, < ^ |Fmj(£)|2, which is of course
•=1 $=i

a disguised analog of the same inequality used for H-measures, but if one is dealing with an heterogeneous
material, this quick proof by FOURIER transform is not available because one has to localize in x and in (
and that is exactly what the H-measures have been designed for (in that case the corresponding functional
is a compact perturbation of a concave function).

Finally one defines Z to be the convex set of functions m° satisfying

\m°(x)\ < 1 a.e. in f2,

and one defines the functional J3 by

Mm0) = / ||ffra</(uo)||2d:r + / fern0) - ||mo||2 - (/?om0)) dx,

where it0 is defined as before and where <p is the concave function defined on the unit ball by

<p(rn) = sup(i/, tp + || • ||2) for all probability measures v on S 2 with center of mass m.
y

13



The initial problem is imbedded into this new one and corresponds to m° taking its values on the unit sphere
(a.e.). If one equips Z with the weak • topology, then Z is compact and J$ is upper semi continuous and
does attain its maximum. Notice that the choice of keeping separate the terms Ip and || • ||2 instead of giving
a name to the function £> — || • ||2 comes from the desire to show clearly what is the way to decompose the
functional in order to prove directly the weak upper semicontinuity property.

6. H-measures and characteristic lengths
As e tends to 0, the minimum I( of Jc(m) under the constraint ||m(x)|| = 1 a.e. x € 0 converges to

Jo, the infimum of Jo(™) under the same constraint. Jo has been shown to be equal to the minimum of
J3(rn°) for m° satisfying the constraint ||m°(x)|| < 1 a.e. z € 0. The question is then to estimate the
difference Ie - 7o in term of the characteristic length e. Physical intuition tells that the width of the walls
between magnetic domains is of the order of e, but what could be a mathematical statement proving that
there are indeed magnetic domains in the minimizers of Jc? A mathematician cannot mistake the precise
mathematical properties of a model with the experimental measurements of some physical effect, even when
the introduction of this particular mathematical model has been motivated by this special effect. If one finds
a mathematical way for asserting the existence of magnetic domains and thin walls between them (in this
particular model with a small exchange energy), can one then account for the excess energy between the case
e > 0 and e = 0, and how much will be located inside the walls and how much will be located elsewhere?

H-measures are obviously in adapted for solving this kind of questions, as they are defined without any
use of characteristic lengths and perform an analysis in direction but not in frequency, adding the quadratic
contributions corresponding to oscillations or concentration effects at various characteristic lengths: they were
natural for the small amplitude Homogenization question for which I had introduced them (Homogenization
problems do not need to have only one characteristic length as those who have only been able to understand
the method of asymptotic expansion wrongly believe), and even for describing the propagation of energy in
the limit of Geometrical Optics, which H-measures can also do, a characteristic length is not necessary as
the phase only plays a secondary role when the frequency tends to infinity (but a primary one in order to
study the corrections to Geometrical Optics like the Geometric Theory of Diffraction of Joe KELLER, which
has not been completely analyzed from a mathematical point of view yet).

Patrick G&RARD, who had introduced H-measures independently and called them microlocal defect
measures ([18]), introduced a variant of H-measures using one characteristic length in their definition, which
he called semiclassical measures ([19]). Localization in x is done exactly like for H-measures, but for what
concerns localization in £, H-measures are defined' by using the limits of quantities of the form

I
with V € C(SN~l)> while P. G&RARD defined semiclassical measures by using the limits of quantities of the
form

with %l> € S(RN). In that way H-measures are measures in (z,£) € (H x SN~l) while semiclassical measures
are measures in (*,£) € H x RN) (in order to avoid losing too much information about oscillations using
characteristic lengths far too different from £n, I have extended the definition to functions %p which behave

like ^(TJTJT) near 0 and are bounded uniformly continuous away from 0, which corresponds to £ belonging

to a compactification of RN \ 0 obtained by adding a sphere at 0 and something more subtle than a sphere
at infinity).

The idea behind the definition of semiclassical measures is that if Un(z) = v(—J, with V periodic,
U n / i

then for (p € V(Q) the FOURIER transform of tpUn is only important for ||£|| of the order of —, and one
performs then a rescaling to look at the shape of ||F(^?7n)(£)|| • It is not clear however if semiclassical
measures are adequate for discussing the problem of micromagnetics with a small exchange energy, at it
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seems to involve at least two characteristic lengths: the width of the walls, which is expected to be of the
order of e, and the characteristic size of the magnetic domains, for which I have not heard of any particular
conjecture (most technological applications seem to be done with very small crystals, so that only one domain
appears, and the question of estimating the size of magnetic domains for large monocrystals has probably
not been considered important by physicists).

Semiclassical measures require the choice of a characteristic length en and it is an important restriction
that they can only work at one characteristic scale and may lose information about oscillations and concen-
tration effects that use a smaller characteristic scale than en (and the corresponding information is lost at
infinity) or a larger scale than en (and the corresponding information is accumulated at 0), and that is why
I had worked out the extension already mentioned. As will be shown later on, some variants are needed in
order to analyze situations where only two scales occur.

Contrary to what I once heard a physicist mumble, the tool of H-measures is not just the same set of ideas
which are attributed to WIGNER, and it is quite surprising that Pierre-Louis LIONS & Thierry PAUL could
have written that one can recover H-measures from semiclassical measures (which they renamed WiGNER
measures) ([20]), a statement which is not only false as they could have noticed if they had tried to prove it
(or if they had understood what P. G&RARD had done before them), but stupid: when a mathematician has
obviously read so many articles written by physicists that he insists in making his constructions obscure to
almost all mathematicians by following lengthy considerations of no interest except to physicists instead of
giving a quick mathematical proof of the main statement (like the one that I derived easily in a discussion
with P. G&RARD), how can one explain that he understands so little about Physics after all that reading
that he could think of a world with only one characteristic length?

I had been told a long time ago by George PAPANICOLAOU about WiGNER transform, but it was only
after discussing with P. G&RARD and deriving a simplified proof of the main result obtained by P.-L. LIONS
& T. PAUL that I understood the idea behind it. If YOUNG measures are but a mathematical way to
discuss about one point statistics, H-measures do not exactly see the two-point correlation statistics but
the part of it which is invariant by scaling, as was pointed out to me by Graeme MILTON. Actually one
cannot even define correlations without using a characteristic length (except for the probabilistic schemes
which I have decided to avoid): the intuitive idea is to use a characteristic length en and to consider (for a
subsequence) the weak • limits of quantities of the form (Un)i(x + eny)(Un)j(x + £n*)> which actually only
depend upon y — z so that one denotes them Cij(x;y — z)\ one notices then that the FOURIER transform
in y of C(x;y) is a nonnegative Hermitian matrix /i of RADON measures in (x,£) by applying BOCHNER's
theorem (and one must use the generalization by Laurent SCHWARTZ ([21]), of course, as what I describe
here is just the idea and ideas must often be supplemented by classical technical details), and that /i is
indeed the semiclassical/WlGNER measure associated to the subsequence. In discussion with P. GERARD,
we have looked at a similar approach for n-point correlations, but we have not been able to identify what
kind of microlocal object was hiding behind the formulas that we had proved, and we do not know in that
situation what should replace FOURIER transform and BOCHNER's theorem.

In order to see the limitations of these different tools, and suggest that one might need an object
seeing many different scales together with their interactions, it seems useful to replace the three-dimensional
problem of micromagnetics that one would like to understand by a simpler one dimensional model.

For u £ Wo>4(0,I), define Ko(u) by the formula

where o > 0 is a characteristic length. The problem of minimizing the functional Ko is usually taken as an
example for showing the need to introduce YOUNG measures, as the infimum of Ko is equal to 0 but is not
attained, and minimizing sequences un converge uniformly to 0 and have the property that u'n converges
weakly to 0 in L4(0, L) while |tiJJ2 converges strongly to 1 in L2(0,1), so that u'n defines the YOUNG measure

- £ - i -f - $ i . There is no small characteristic length in this problem and minimizing sequences may exhibit

sawtooth patterns (as un mostly wants to have derivative ±1), on many different scales. If for t > 0 one
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considers the regularized functional Ke defined on W^O, L) H W2'2(0, L) by

) + e* I
Jo

it was conjectured by J. M. BALL, as Nick OWEN had told me, that the minimizers would be periodic and
therefore select a small length scale. I suppose that J. M. BALL had selected that question as a model for
understanding why one observes regularly spaced twins in martensitic transitions of some crystals, while the
model of minimization of energy following the ideas of J. ERICKSEN correctly predicts oscillations in some
precise directions but cannot propose a length scale (as no small parameter appears in the formulation),
and therefore it was natural to investigate the effect of a small surface energy term or of a penalization on
higher order derivatives. The intuition tells that the characteristic scale to use in a transition layer where
v! changes between ±1 will be £, but it was not obvious to me what the characteristic scale between two
of these transitions would be; I had introduced the characteristic length a (which most mathematicians like
to take equal to 1), and therefore there was a variety of candidates of the form e*al~9 for some 6 £ (0,1)
and I was surprised to discover after a simple but formal computation that the characteristic scale for the
domains was c1/3a2/3 and that the minimum of K€ was of the order of Ct^a1'3 for a precise constant C.
The conjecture was later proved by Stefan MULLER ([22]).

In the three-dimensional problem, one expects e to be the characteristic scale for the walls but the
characteristic scale for the domains is not clear, assuming that it does not even depend upon how far one
is from the boundary 5Q, as was pointed out to me by R JAMES. Should one use semiclassical/WlGNER
measures with the characteristic length £, or with the characteristic length conjectured for the size of the
domains, or even some other scaling, or should one simply invent a different mathematical tool that would
be more adapted to that precise purpose? I certainly would prefer to derive a mathematical method where
one would not have to guess what scales appear in a problem and where it would be the method that would
determine which scales do appear in the problem, but I am still searching for such a method.

My final point will be to present a simple computation done with P. G&RARD: it shows that some of the
preceding ideas are too crude, and that there might be a large class of variants that should be developed.
Let (f € T>(R) and for any integer n define the function un € £2(0,1) by

with A > 0. The sequence u« converges weakly to 0, while |un|2 converges weakly • to the constant function

C = JR \tp\7dx (in the sense of RADON measures). As un is obtained by placing at distances — rescaled

versions of <p with the scaling factor n1 + A , one is easily convinced that the sequence un exhibits the two

scales — and t.x. However, if one computes the semiclassical/WlGNER measure associated to the sequence
n n»+* 1 x

Un when one uses the characteristic length en = —, one has the surprise to find 0: the scale — seems to be
n n

absent. Of course, there is some information lost at infinity because of the smaller scale . . . , but if one
n

computes the semiclassical/WlGNER measure associated to the sequence un when one uses the characteristic

length en = A , one finds a nonzero contribution, but no information is crushed at 0, as one would expect
n 1 1 .

for oscillations at much coarser scales like —: the scale — still seems to be absent. We were indeed puzzled
n ." i

for a few minutes before discovering where the information was hidden, as the scale — is indeed present but
is not showing at the place where, quite naively, we expected to find it.

The intuition behind the definition of semiclassical measures is that a periodic pattern with period e

will show after FOURIER transform for | |(| | of the order of - , so that the FOURIER transform shows the

scale —; if one adds two functions which have periodic patterns of periods e and rj much smaller than e, the
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FOURIER transform does show some effects at two different places, one for ||£|| of the order of - and the

other for ||£|| of the order of - , but if the two scales e and 17 interact, as in our example, it may happen that

the FOURIER transform only shows something happening for ||£|| of the order of —, but what it shows there

1 *
may contain oscillations on the missing scale - .

Much before doing this computation, P. G&RARD had proposed to introduce a variant of microlocal
quadratic measures, where to symbols a(£) and 6(x) one associates the operators At,Bt given by

and

and for other reasons, I had advanced another idea which appeared quite similar.

7. Conclusion
Whatever it is that one knows, one must certainly go beyond it, but once one has succeeded in attaining

a higher level of understanding, one must try to analyze what has been gained and explain it as much as
one can in the simpler framework that is possible.

If one is interested in understanding the partial differential equations of Continuum Mechanics or
Physics, one quickly finds that one must go beyond YOUNG measures as they can only handle constitutive
relations, and that balance equations must be treated with another tool adapted to differential structures,
and the Compensated Compactness method was such a complementary approach, improved recently by the
introduction of H-measures. However, the information given by the Compensated Compactness method can
be translated into properties of YOUNG measures, and I have shown an example where one needed to use
both YOUNG measures and H-measures, but that after a slightly improved understanding of the relations
between these two types of measures, one could then deduce the correct result, mentioning only YOUNG
measures. Other tools must be developed to take into account a variety of different scales, and it might
happen that in each case where such improved tools will permit to describe the solution of a problem, one
will also deduce how to state a correct result in terms of the sole YOUNG measures.

In some way, the reason why after going beyond YOUNG measures one tries to state the results that one
has obtained using only YOUNG measures, is linked to the traditional point of view in Continuum Mechanics:
when dealing with some materials like fine mixtures, one does not try to use a mathematical object that
can describe all possible microstructures and their evolution (object which has not been defined yet), but
one tries to use a limited number of variables and one invokes some general principles to select a class of
constitutive relations and balance equations that will describe the effective behaviour of these materials.
In order to test the validity of some of these general principles (like Thermodynamics, which I hope to
understand some day), one needs to develop better mathematical tools, which should show the limits of
validity of these methods, but returning to YOUNG measures will always be necessary: after all, YOUNG
measures is but a mathematical way of talking about statistics, without a probabilistic framework!

As a mathematician interested in improving the understanding of the partial differential equations of
Continuum Mechanics and Physics, I am grateful to Jerry ERICKSEN for having shared his deep understand-
ing of the structure of materials and expressed his results in a way that I could understand. I hope to be
able in the future to improve the mathematical tools which are needed to go beyond the actual knowledge
in some of the many directions for which he has opened the way.
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