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A unified framework for coupled Navier-Stokes/Cahn-Hilliard equations is developed using,
as a basis, a balance law for microforces in conjunction with constitutive equations
consistent with a mechanical version of the second law. As a numerical application of the
theory, we consider the kinetics of coarsening for a binary fluid in two space-dimensions.

1. INTRODUCTION
The Cahn-Hilliard equation (Cahn 1961)

<p' * mA[f'(<p) - otAcp] (1.1)

is central to materials science, as it characterizes important qualitative features
of two-phase systems. This equation is based on a free energy

$(cp,Vcp) * f(cp) + $oc|Vcpl2, (1.2)

with f((p) a double-well potential whose wells define the phases, and leads to an
interfacial layer within which the density cp suffers large variations.

The standard derivation of the Cahn-Hilliard equation begins with the mass
balance
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tp# * -d ivh (1.3)

and the constitutive equation

(1.4)

which relates the mass flux h to the chemical potential UL. The presence of density
gradients renders (1.2) incompatible with the classical definition of n as the par-
tial derivative of ty with respect to cp; instead \i is defined as the variational deri-
vative |i * 8$/6<p of the total free energy

J$(<p,V<p)dv (B * underlying region of space). (1.5)
B

Since

6$/8cp « f (cp) - ocAcp, (1.6)

this yields the Cahn-Hilliard equation.
The major advances in nonlinear continuum mechanics over the past thirty

years are based on the separation of balance laws (such as those for mass and
force), which are general and hold for large classes of materials, from constitutive
equations (such as those for elastic solids and viscous fluids), which delineate
specific classes of material behavior. In the derivation presented above there is no
such separation, and it is not clear whether there is an underlying balance law
that can form a basis for more general theories.

An alternative derivation of the Cahn-Hilliard equation (Gurtin 1995) is based
on a balance law for microforces (Fried & Gurtin 1993), defined operationally as
forces whose working accompanies changes in cp. These forces are described by a
(vector) stress £, which characterizes forces transmitted across surfaces, and a
(scalar) body force TT, which represents internal forces distributed over the
volume of the material. The basic hypothesis is the microforce balance

J^-nda • Jtidv « 0 (1.7)
SR R

for each control volume R, with n the outward unit normal to 9R.
Here we study the isothermal motion of an incompressible binary fluid, with

one of the constituent densities serving as the order parameter. A chief asump-
tion is that the relative momenta and kinetic energies of the constituents are
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negligible when computed relative to the gross motion of the fluid. This allows us
to base the theory on:
• balance of mass for the order parameter;
• the microforce balance (1.7);
• balance of momentum for the macroscopic motion of the fluid;
• a version of the second law in the form of a global free-energy inequality in

which the microscopic working (Fried & Gurtin 1993)

J V f n d a ' (1.8)
9R

joins the working of the macroscopic stresses; and
• constitutive equations presumed compatible with this version of the second law.

In standard theories of diffusion the chemical potential is given, constitu-
tively, as a function of the density, but here we consider systems sufficiently far
from equilibrium that a relation of this type is no longer valid; instead we allow
the chemical potential and its gradient to join the stretching tensor, the density,
and the density gradient as independent constitutive variables. Interestingly, the
second law reduces the free energy to a function 4>* 4>(cp,gradcp) of at most cp and
gradcp, where gradcp denotes the spatial (Eulerian) gradient.

A chief result of our theory is a constitutive equation giving the macroscopic
(Cauchy) stress as a classical Newtonian stress plus a term

oc grad cp ® gradcp, (1.9)

which represents capillarity.1 Our final results consist of the coupled Navier-
Stokes/Cahn-Hilliard equations

p[v t + (gradv)v] * -gradp + vAv - a(Acp)gradcp, divv * 0,

cpt + (gradcp)*v * mA[f'(cp) - ocAcp].

We also develop equations for the motion of immiscible fluids. Here our use of
an order parameter endows the interface with capillarity and yields a theory in
which the free-boundary need not be explicitly tracked; as this theory does not
allow for a phase change, the interface is transported with the material.

The model defined by (1.10), which is referred to as "Model HH in the literature
on critical phenomena (cf. Hohenber & Halperin 1977), was used by Siggia,

*A term of this type appears in Korteweg's theory of gradient fluids (cf. Truesdell & Noll

1965, S124).
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Halperin, & Hohenberg (1976) to study behavior at the critical points of single and
binary fluids. Later extensions of the model were used to analyze the superfluid
transition of 4He (Pankert & Dohm 1981) as well as the decay of critical fluctua-
tions in simple fluids (Onuki & Kawasaki 1979) and polymer solutions (Helfand &
Fredrickson 1989) under an imposed shear flow. A chief purpose of these studies
was to analyze the effect of reversible modes (i.e., those corresponding to the
coupling terms (gradcp)-v and oc(Acp)gradcp) on the dynamical critical behavior of
otherwise purely dissipative models, with emphasis placed on the behavior of
hydrodynamic transport coefficients near the critical point. More recently, (1.10)
was used to study other nonequilibrium phenomena below the critical point; for
example, Kawasaki & Ohta (1983) and Koga & Kawasaki (1991) use (1.10) to study
hydrodynamic effects during spinodal decomposition.

The applicability of (1.10) to studies of the type discussed above is generally
based, not on first principles, but instead on the observation that a convective
term (gradcp)«v in the Cahn-Hilliard equation should be accompanied by a term
a(Acp)grad(p in the Navier-Stokes equation to ensure that the asymptotic
probability-distribution functions obtained as t-> ©o coincide with those given by
standard equilibrium calculations. In view of the phenomenological nature of this
formalism, it seems natural to ask whether there is a derivation of (1.10) within
the framework of nonlinear continuum mechanics. Here we provide such a
derivation.

In addition, we present computational results appropriate to a range of para-
meters in which sharp interfaces (large, localized changes in cp) exist.

From a computational standpoint our approach is similar to VOF (volume-of-
fluid) methods (Hirt & Nichols 1981). There a color function, which plays a role
similar to that of cp, is passively advected by the flow. More recently the VOF
method has been extended to include capillary effects (Univerdi & Trygvasson
1992; Haj-Hariri, Shi & Borhan 1994) leading to a modified Navier-Stokes equation
equivalent to the first of (1.10). These models, however, do not endow the color
function with any physical significance, and dissipative relaxation as in the
equation for cp in (1.10) is absent. In comparison, not only does the model based on
(1.10) include capillary effects in the modified Navier-Stokes equation, it also
explicitly includes other dissipative processes up to the length scale of the
smeared interface; it can therefore describe events such as break-up and
coalescence, with the proviso that the physical behavior at those length scales is
determined by the choice of free energy +.

Notation. Tensors are linear transformations of R3 into R3 and are denoted by
upper-case boldface letters. Vectors may be viewed as 3*1 column vectors and
tensors as 3*3 matrices. 1 denotes the unit tensor; a®b, the tensor product of
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vectors a and b, is the tensor defined by (a ®b)u «(b-u)a for all vectors u; AT is
the transpose of a tensor A; trA is the trace of A; the inner product of tensors A
and B is defined by A-B«tr(ATB).

The divergence, gradient, and Laplacian of a field ip«<p(x,t) are denoted by
gradcp, div(p, and A<p. For a vector field u(x ) , gradu(x) is the tensor with compo-
nents dUj/dXj (i « row index, j « column index). The divergence of a tensor field
A(x) is the vector field with components Zj dAjj/dXj (i • row index).

The derivative of a function f of a scalar variable (not time) is denoted by a
prime: f. The partial derivative of a function $(a,b,c, ...,d) (of n scalar, vector, or
tensor variables) with respect to b, say, is written db$(a,b,c, . . . ,d).

2. BASIC LAWS
We consider the isothermal motion of an incompressible binary fluid whose

total density is constant. A basic asumption of our theory is that the momenta
and kinetic energies of the constituents are negligible when computed relative to
the gross motion of the fluid.

a. Kinematics
We write grad and div the spatial gradient and spatial divergence. Incom-

pressibility then requires that v, the gross velocity of the fluid, satisfy

divv = tr (gradv) « 0, (2.1)

a constraint that renders the stretching,

D = \ (gradv + gradvT), (2.2)

traceless.

We will use both the spatial time derivative (...)t and the material time deri-
vative (...)'; these are related through

(...)• « U) t • [gradUlv. (2.3)

We will also use the following identity for scalar fields cp:

grad(cp-) * (gradcp)' • (grad v)T grad cp. (2.4)

b. Balance of mass
We write pb for the density and hb for the mass flux of constituent b (« 1,2),
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with hb measured relative to the gross motion of the fluid. Then

Pi + p2 « p (2.5)

with p, the total density of the fluid, constant; consistent with this constraint, we
assume that

^ + h2 « 0. (2.6)

Throughout the paper R denotes an arbitrary control volume (fixed region of
space), with n the outward unit normal to 9R. Given a field 3>,

{J$dv}- * Ji'dv (2.7)
R R

where the dot signifies the time derivative following the nnaterial currently in R,
and where the integral and time derivative commute by virtue of balance of
mass, since the total density of the fluid is constant.

Balance of mass requires that

{Jpb<*v}# * -Jhb-nda (2.8)
R 3R

for each constituent b. Because of (2.5) and (2.6), one of the two relations (2.8) is
redundant; we therefore let

<p * plf h « hi, (2.9)

and restrict attention to the local balance

cp- « -divh (2.10)

for the first constituent.

c. Balance of momentum
We write T for the stress tensor associated with the macroscopic motion of

the fluid. Then, since we neglect the relative momenta of the constituents, the
balance laws for linear and angular momentum have the standard form
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jTnda « { J p v d v } \ JxxTnda « {J(xxpv)dv}* (2.11)
3R R SR R

for each R, or equivalently,

divT « p v , T « TT. (2.12)

It is convenient to introduce the extra stress S and the pressure p defined by

S « T * p l , p«-i(trT)l. (2.13)

As a consequence of incompressibility, p is indeterminate.

d. Order parameter. Microforce balance

We assume that the microscopic behavior of the fluid, as manifested in the

diffusion of its constituents, is described by a scalar order-parameter co and

concomitant microforces whose working accompanies changes in co. Since working

is characterized by terms of the form {microforce times to*), microforces are here

scalar quantities. Precisely, we assume that the microforces are described by a

(vector) stress t —whose traction £*n characterizes forces transmitted across

oriented surfaces of unit normal n —in conjunction with a (scalar) body force TT,

which represents internal forces distributed over the volume of the fluid; these

forces are presumed consistent with the microforce balance (Fried & Gurtin 1993)

J f n d a + Jndv « 0 (2.14)

SR R

for each control volume R, or equivalently

dive + TT « 0. (2.15)

A basic hypothesis of the theory is an identification of the order parameter co

with the constituent density cp:

co « (p. (2.16)

e. Second law in the form of a dissipation inequality
We restrict attention to isothermal behavior and therefore consider a mecha-

nical version of the second law: for each control volume R, the rate at which the
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energy of R increases cannot exceed the working on R plus the rate at which
energy is transported to R by diffusion. Let |ib denote the chemical potential of
constituent b, and let

U « U! - U2. (2.17)

Then

- I Jubhb-nda « - Juth-nda (2.18)
b-1.2 9R

represents energy carried into R across 3R by diffusion, while

JTn-vda, JVfnda (2.19)
dR 9R

gives the working of the macroscopic and microscopic stresses. Thus, since we
neglect the relative kinetic energy of the constituents, the appropriate form of
the second law is the dissipation inequality

# < JTn-vda + JVft«nda - Juh-nda, (2.20)
R SR dR dR

where k= Jpv2. The body force TT does not contribute, since it acts internally to R.
By (2.6), (2.10). (2.12), and (2.15), (2.20) has the local form

vp* - T-gradv + (IT - u)cp* + t-grad(cp') • h-gradu < 0. (2.21)

Combining (2.21) with (2.4), (2.11), and (2.13), we are led to a local dissipation
inequality

v|T - [S + (gradcp)®£]-gradv • (TT - \i)y - ft-(gradcp)* • h-gradu < 0 (2.22)

that will form a basis for our discussion of constitutive equations.
The negative of the left side of (2.22) represents the dissipation JDf as its

integral over R is the right side of (2.20) minus the left. Thus, for motion in a
container B with v * 0 and cp*£«n * 0 on 9B,
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k)dv)# « - jDdv < 0 if h-n=O on 3B,
B B (2.23)

k)dv}' * - jDdv < 0 if u=|J0« const, on SB.
B B

The thermodynamic development therefore yields natural Lyapunov functions for
certain classes of flows.

3. CONSTITUTIVE EQUATIONS. RESTRICTIONS IMPOSED BY THE SECOND LAW
In standard theories of diffusion the chemical potential is given, constitu-

tively, as a function of the density, but here we consider systems sufficiently far
from equilibrium that a relation of this type is no longer valid; instead we allow
the chemical potential and its gradient to join the stretching, the density, and the
density gradient in the list of constitutive variables. Precisely, we consider consti-
tutive equations of the form

\\> = 4>(D,cp,gradcp,u,gradli),

S = S(D,(p,gradcp,u,grad|i),

5 - 8(D,cp,gradcp,u,gradu), (3.1)

TT « Tr(D,cp,gradcp,u,gradu),

h * h(D,cp,grad(p,u,gradji),

with each of the constitutive functions isotropic, since the material is a fluid. To
avoid notation such as 9grad(p^(D,cp,gradcp,ii,gradii) for the partial derivative with
respect to gradcp, we write

b * gradcp, s « gradu. (3.2)

Not all constitutive relations of the form (3.1) are admissible, as without fur-
ther restrictions (3.1) will violate the dissipation inequality (2.22). To determine
the requisite restrictions we choose arbitrary fields v, cp, and \i for the velocity,
order parameter, and chemical potential, and use (3.1) to compute a constitutive
process consisting of v, cp, |i and the fields vj;, S, 5, TT, and h; such a constitutive
process will satisfy (2.22) if and only if
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[§(...) + b® £(...)]• gradv •

[9U$(...)]|T + [a,$(...)]•$" • h(...)-s < 0, (3.3)

where we have written (...) as shorthand for the list of independent constitutive
variables:

(...) * (D,cp,gradcp,u,gradu). ' (3.4)

It is possible to find fields v(x,t), cp(x,t), and |i(x,t) such that v, gradv, (gradv)#,
<p, <P** b«gradcp, b°«(grad<p)°, n, u \ s«grad|i, and s#«(grad|i)# have arbitrarily
prescribed values at some chosen point and time.2 Thus, since the terms D\ (p#,
b \ n \ and s* appear linearly in (3.3), it follows that 9 D $«0 f 3^$* li-rr, S u $« 0,
3 S $« 0, and c^ $ « ft. We are therefore led to the following constitutive restric-
tions:

(i) the free energy and microstress are independent of D, |i, and grad|i, and are
related through

|((p,grad(p) « 9b$(<p,gradq>); (3.5)

(ii) the internal microforce is independent of D and grad u and represents a
nonequilibrium contribution to the chemical potential:

Tr(cp,gradcp,ti) * \i - S?$((p,grad<p); (3.6)

(iii) the following inequality must be satisfied for all values of the arguments:

h(...)-grad|i - [§(...) + b® E(cp,grad<p)]« gradv < 0. (3.7)

Since the skew part of gradv can be chosen arbitrarily and independently of
2It is tacit that there are external mass supplies and forces available to ensure satisfac-
tion of the balance laws for arbitrary choices of the fields v , <p, and u. We chose not to
introduce external fields (source terms) since they tend to complicate the discussion and
since it is only here that they are required. Specifically, we need an external mass supply r
and external body forces b and r such that (2.10), (2.12), and (2.15) become <p°*-divh + r,
divT+b»pv# , and div£+n+r « 0, and such that the dissipation inequality (2.20) contains the
additional term J R {b *v* (p'JT+|ir}dv on the right side. Allowing an external supply for each
balance law is an assumption now standard in continuum mechanics; such assumptions
are, of course, tacit in derivations dependent upon arbitrary variations of a field.
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D, and since S is symmetric, $ = E(<p,b) satisfies

(3.8)

and is hence parallel to b. Further, the isotropy of £ = £(<p,b) implies that 5 = 0
when b«0; hence there is a scalar function oc(<p,b) such that

t - oc(cp,b)b. . (3.9)

Let

P « P C ) « S(...) • oc(cp,b)[b®b - \\b\2l)t (3.10)

then, since trD- 0, (3.7) reduces to

h(. . . ) .s- P(...)-D < 0. (3.11)

P, in (3.11), represents a thermodynamic stress, as it is conjugate to the stret-
ching D.

Any set of constitutive equations consistent with the restrictions (3.5), (3.6),
(3.9), and (3.11) will be consistent with the dissipation inequality (2.22). Our
purpose here is not to develop the most general theory possible, but rather to
develop a theory that couples the essential features of the Cahn-Hilliard and
Navier-Stokes equations. Newtonian fluids have stress linear in D, while Cahn-
Hilliard diffusion has mass flux linear in gradji and free energy quadratic in
gradcp. Guided by these theories and by (3.11), we now assume that the thermo-
dynamic stress P, and the mass flux h have the specific forms

P * 2v(cp)D, h « -m(cp)grad|i, (3.12)

with mobility m(cp) and viscosity v(cp) nonnegative, and, appealing to (3.9), that
the free energy t|/ has the form

i|> * f(cp) • $oc(cp)lgradtpl2 (3.13)

with oc(cp) nonnegative. Then
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T = - p i • 2v((p)D - oc(cp)grad<p®gradcp,

£ c oc(cp)gradcp, (3.14)

- Joc'(<p)lgradtpl2,

where, for convenience, the pressure p has been replaced by p + (oc/3)lgrad<pl2. If
we assume, in addition, that a, m, and v are constants, then

4> * f(cp) + Jalgradcpl2,

T « - p i + 2vD - ocgradcp®grad<p,

£ « agrad(p, (3.15)

TT « u - f'(cp),

h - - m grad|i.

The term ocgradcp®gradcp in the stress gives rise to normal stresses in the ab-
sence of flow; this term should represent surface tension and could effect boun-
dary conditions at a free surface in a nonstandard manner.

Further, and what is most important, the microbalance (2.15) and the
constitutive relation for TT yield Cahn's formula for the chemical potential

U = f(cp) - ocAcp. (3.16)

The basic PDEs of the theory follow upon substituting (3.15) and (3.16) into
(2.10) and (2.12); the results, after replacing the original pressure p by
p - (oc/6)lgradtpl2, consist of generalized Navier-Stokes equations

pV * -gradp + vAv - a(Acp)grad(p, divv « 0, (3.17)

coupled to the Cahn-Hilliard equation

(p- « mA[f'(cp) - ocAcp]. (3.18)

The latter equation depends explicitly on the flow velocity, since the material
time derivatives have spatial forms:

V • cpt + (gradcp)-v, v# « v t + (gradv)v. (3.19)

An interesting alternative form for these PDEs mentions the chemical poten-
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tial explicitly:

pV * -gradp + vAv + jigradcp, divv « 0,

cp- « mA|J, (3.20)

U « f (cp) - ocAcp,

where the original pressure p has now been replaced by p - (oc/6)lgradcpl2 + f(<p).

4. IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER
With but minor modifications the theory presented above can be applied to

immiscible fluids. Here the order parameter cp has a given value in each fluid,
with the fluid interface defined by the variation in cp between values. Since the
fluids are immiscible, the interface should be transported with the fluid; we
therefore require that

cp- = 0, (4.28)

so that cp is constant on streamlines. Further, we let p= p(cp), allowing the fluids to
have different densities; this dependence on cp is consistent with incompressibility,
since, by (4.28), p(cp)# = 0.

The microforce balance is no longer relevant; the basic equations are the
classical balances (2.6) and the dissipation inequality

{J(+ + k)dv}' < jTn-vda, k « £p(cp)v2, (4.29)

R 8R

and this leads to the local dissipation inequality

+• - S-gradv < 0. (4.30)

As constitutive equations we assume that
4> * $(D,cp,gradcp), S « S(D,cp,gradcp), (4.31)

and proceding as before, consistency with (4.30) leads, by virtue of (2.4) and
(4.28), to the inequality
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D D - - [S(D,cp,b) + b®3b$(D,cp,b)]-gradv < 0, (4.32)

rendering the free energy independent of D. Finally, restricting attention to ener-
gies that are independent of cp and quadratic in gradcp, we are led to the constitu-
tive equations

\\> • $oc|gradcp|2,

T « - p i + 2v(cp)D - a {gradcp® gradcp - \ Igradcp!2!}.

(A dependence of \\> on cp does not alter the resulting PDEs.)
The basic equations, after replacing p by p - (oc/6)lgradcpl2, therefore have the

form

p(cp)v* « -gradp + v(cp)Av + 2v*(cp)Dgradcp - oc(A<p)gradcp,
,. . (4.34)

divv * 0, cp * 0.

These equations may be useful in the study of the interface between immiscible
fluids; the order parameter automatically tracks the interface, here a layer, and
provides a capillarity term oc(Acp)gradcp that hopefully models surface tension.

5. A NUMERICAL EXAMPLE: COARSENING
As a numerical application of the theory, we consider the kinetics of coarse-

ning following a quench into the coexistence region of a binary fluid in two space-
dimensions (see Mullins & Viflals 1989 for a review of coarsening). Numerical solu-
tions of the Cahn-Hilliard equation without hydrodynamic effects have been ob-
tained by a number of authors, for both critical (Gawlinski, Vifials & Gunton 1989)
and off-critical (Toral, Chakraborti & Gunton 1989) quenches, while hydrodyna-
mic effects on spinodal decomposition have been discussed by Koga & Kawasaki
(1991). We consider here the off-critical region of the phase diagram in which the
decay of the original state involves the formation and coarsening of localized
droplets.

Our starting point is (3.17) and (3.18) with

f(cp) « -(r/2)cp2 + (u/4)cp4, (5.1)

as the homogeneous part of the free energy density. For incompressible flows in
two dimensions, it is convenient to introduce the stream function $ such that,
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* v « Oy$)i - Ox$)j, (5.2)

where i and j , respectively, are the unit vectors in the x and y directions. We
next scale the order parameter by (r/u)$, lengths by the the mean field
correlation length £*(oc/r)l, and time by the diffusion time T = oc/mr2. In what
follows, all variables are assumed to be dimensionless. Taking the curl of (3.17),
and restricting attention to small Reynolds number (Re*$2p/fT), so that the
inertial term in (3.17) is negligible, we obtain

• C[grad(Acp)xgradcp] * 0, (5.3)

where OCTT/SV plays the role of a capillary number, with a=ocr/u£ the mean
field value of the surface tension in this model. The fluid is enclosed in a square
cavity of side L, with the fluid velocity satisfying no-slip boundary conditions on
the walls of the cavity. Hence, the boundary conditions appropriate to (5.3) are
that $ and its normal derivative d$/dn vanish on the boundary.

The dimensionless Cahn-Hilliard equation reads

<pt • v-gradcp * - A[cp - cpS + Acp] (5.4)

and is supplemented by the boundary conditions dy/dn « d[i/dn * 0, where

The equations (5.3) and (5.4) are solved numerically in a square, two dimen-
sional grid with a backward implicit method, and a fast biharmonic solver (details
are given by Chella & Vinals 1994). We take O10 and use the same parameters
for the simulation as those of Toral, Chakrabarti & Gunton (1989) for a solution of
the Cahn-Hilliard equation at an off-critical value of the order parameter: L«256,
a grid spacing 8x-1.0, and an initial configuration in which tp is random,
gaussianly distributed with mean <<p>«l/V3 and unit variance. We choose a vari-
able integration-step 6t=0.01 for 0<t<4.0, 8t*0.1 for 4.0<t<664 and 8t*0.5 for
384<t<3700.

Our results are summarized in Figures 1-3. At short times, drops of the
minority phase are seen to nucleate, grow, and coarsen so as to decrease the free
energy of the system. Figure 1 shows the distribution of phases—as defined by the
dimensionless order-parameter—as a function of time; Figure 2 displays the
corresponding distribution for the stream function. The main qualitative diffe-
rence between our results and those for the uncoupled Cahn-Hilliard equation is
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the flow-induced coalescence of neighboring droplets. The times in Figure 1 are
chosen to illustrate coalescence. Figure 2 shows large and localized variations of
the stream function in the regions in which coalescence is occuring. Coalescence is
not observed in the purely relaxational Cahn-Hilliard equation; there coarsening
can proceed only by diffusion.

Figure 3 graphs the total droplet-perimeter, per unit area (with the droplet
boundaries defined as the level set cp«O). At sufficiently long times growth is faster
than the classical Lifshitz-Slyozov law (growth of the form t*) for coarsening in
the absence of hydrodynamic effects. Siggia (1979) predicted that hydrodynamic
effects would affect coarsening, and San Miguel, Grant & Gunton (1985) adapted
Siggia's argument to a two-dimensional system to obtain a growth law for the
average droplet size proportional to t$. The physical mechanism responsible for
this growth law is droplet coalescence. Finally, molecular-dynamics simulations of
coarsening in binary fluids (Leptoukh, Strickland & Roland 1994) have shown that
the coalescence of droplets is the primary mechanism for growth.
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(e) t = 1309 (f) t = 1884

Figure 1, Gurtin et al.
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(b) t = 109

(d) t = 1034

(e) t = 1309 (f) t = 1884

Figure 2, Gurtin et al.
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FIGURE CAPTIONS

Figure 1. Order-parameter values (in grey scale) as a function of time showing
nucleation and coarsening of the structure. Times have been chosen to
highlight the coalescence of droplets.

Figure 2. Stream function $ in grey scale at the times shown in Figure 1. For the
values of the parameters used, $ lies approximately between -0.5 and 0.5. The
regions of largest variation in the stream function are located in the regions
where coalescence take place.

Figure 3. Inverse perimeter-density as a function of time for O10. The three
solid lines indicate power laws with the value of the exponent shown.
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