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Abstract

We characterize the limiting behavior of scalar phase-field equations
with infinitely many potential wells as the density of potential wells tends

to infinity. An example of such a family of equations is

1 ,. ut
elta ((l—o )’

uf = Au‘ —

where W is a periodic function. We prove that solutions of the above
equation converge to solutions of the Mean Curvature PDE for a range
of positive values of the parameter o, and we also determine the limiting
equation when o = 0. We show that our techniques can be modified to
apply to fully nonlinear equations and to other classes of infinite-well equa-
tions. We discuss some applications to questions of interaction between

wave fronts in dynamic phase transitions.

1 Introduction

In this paper we examine singular limits of phase field equations corresponding
to potentials with multiple wells. In the limits we consider, we let the number
of potential wells (more precisely, the density of wells) tend to infinity. Thisis a
departure from previous work on the asymptotic behavior of scaled phase field
equations, most of which has considered equations corresponding to double-well
potentials.

Consider the following equation:

€ € 1 u( n
uf = Au‘ — e '(61_0) on R” x [0,00), (1.1)
u(z,0) = uo(z). (1.2)

This is the equation for L2-gradient flow with respect to the functional

B = [ F1Dua)l + We(u(@)iz,



where W¢(z) = e‘sz(x/cl‘°). If o = 1and W is a symmetric double-well
potential, (1.1) becomes the Allen-Cahn equation, solutions of which are known
(see, for example, [8], [2]) to converge to (discontinuous) solutions of the Mean
Curvature PDE . u
Ty VT
U = (6ij - _—IDU»'; )Uz.zj- (13)

. We will instead assume a < 1 and that W is an appropriate periodic function
with one or more wells in each period, so that the potential W¢ oscillates rapidly
as ¢ becomes small.

One expects solutions of (1.1) to have a terraced structure, so that |Du¢| is
very small where u¢/e!~ is approximately equal to one of the minima of the
potential W, and very large otherwise. The scaling is written in such a way
that the transitions between adjacent stable phases have width of order ~ ¢,
whereas adjacent transitions are separated by distances ~ ¢!~¢. Thus adjacent
transitions are widely separated when a > 0. The fact that this does not hold
when a = 0 makes this case more difficult.

The bulk of this paper is given over to a detailed analysis of the asymptotic
behavior of the equation (1.1) for a range of values of the parameter a. We
obtain the following result, under certain loose assumptions on the initial data
and the potential W.

Theorem 1.1 Then there ezists ag € (0, 1] such that ifa € [0, ag), the sequence
of functions u¢ converges locally uniformly to a unique himit u. If a € (0, ao)
then u solves the mean curvature PDE; if o = 0, then u solves the equation

Ur, Ur

T (1.4)

vy = (85 — 6(|Dul?)

where 6(0) =1, and 0 < 8(2) < 1 if 2 > 0.

The result for 0 < a < ag differs from earlier results on singular limits of the
Allen-Cahn equation in that, whereas in the two-well case, the limiting function
takes on only two values a.e. (corresponding to the minima of the potential
wells), in the infinite well limit we can obtain solutions of the mean curvature
PDE with Lipschitz initial data. Also, we do not require the initial data to have
any special form and can take it independent of €. Typically, E¢(ug) blows up
as ¢ tends to zero. ‘

An explicit expression for the function 6, which occurs in the limiting equa-
tion when a = 0, is given in (2.6). In this case, our result does not correspond
to anything in two-well theory.

This undertaking is motivated in part by the work of Rubinstein, Sternberg,
and Keller [20], which examines interactions between different phase boundaries
in the case of three-well potentials modelling materials with both surface tension
effects across the interface and differences in bulk energy between phases. They



consider the equation
uf = A = (Wh(u) + Wi(w),

where W, is a three-well potential and W; is a smooth function. In particular,
they assume Wp is nonnegative with zeros at exactly three points a < b < c.
As ¢ shrinks to zero, one expects to see an interface I'*® separating regions in
which u¢ ~ a and u® ~ b, and likewise an interface I'*°. In this situation, if I'*®
and I'*¢ are sufficiently far apart, each interface should evolve as it would in the
two-well problem, so that as € approaches 0, the velocity V' of I'*® should be
given by
Vet = H 4+ [Wh)8/88, where

22
Wiz = Wi(z2) - Wa(z1), B = / Ao
2

Here H denotes the mean curvature of the interface. A similar formula would
hold for I'*¢. In the two-well case, formal computations are given in [19] and a
full proof of this and more general results in [2].

Rubinstein et al. in [20] address the more subtle question of what happens
when the interfaces are close together, so that they interact with each other.
They show that under certain circumstances, stable two-stepped fronts can exist,
and they present formal computations which characterize the motion of these
composite fronts. Their calculations suggest that, as ¢ — 0, a two-stepped front
I'*¢ should move according to the rule

Ve = H+ ([Wilh + [Wil5)/(BS + Bs) = H + [Wh]S/B;. (1.5)

The first equality above characterizes the motion of the two-stepped front in
terms of the two single-stepped fronts out of which it is formed.

In a much earlier paper, Fife and MacLeod [10] looked at similar questions
in a 1-dimensional setting, and with different scaling. They show the existence
of multi-stepped travelling front solutions to certain reaction-diffusion equations
from population biology, and they also prove that, under weak assumptions on
the initial data, general solutions converge to these travelling fronts solutions.
The velocity of the composite fronts is given by essentially the same formula
as above (although of course the mean curvature is zero in the 1-dimensional
case.) Similar problems were addressed at about the same time by Aronson and
Weinberger in [1].

In the context of rapidly oscillating potentials, we can consider the same
question from a somewhat different perspective. We can look at the equation

€ A € 1 W/ u‘ W’ u‘
up = Au’ = = o(cl—..c,)'i'c (7)) (1.6)



where Wy and W, are appropriate periodic extensions of the functions above.
The techniques presented in this paper could be used to show that for appro-
priate a > 0 the solutions u¢ converge to solutions of the PDE

Uz, Uz, WS
- -I—Dlel)u,,,j + [—ﬂ:€]—°|Du|.
Formally, this equation specifies that every level set moves as in (1.5); this
equation can also be used to define a generalized evolution of hypersurfaces via
the rule given in (1.5). We interpret the term involving [W!]S /B¢ as reflecting
averaging of the normal velocities associated with the two different pairs of
potential wells in each repetition of the period.

In this way we can use phase field equations with rapidly oscillating poten-
tials to study averaging effects that arise from interaction between wavefronts
with different kinetic properties.

We also note that a one-dimensional, hyperbolic version of (1.1) has been
used by material scientists to model the propagation of dislocations along a row
of atoms resting upon a rigid, oscillating substrate. For a discussion of this, see
Sections 3.2 and 7.1.1.2 of Nabarro, [16).

In addition to the papers mentioned above, other work related to ours in-
cludes [14], which looks at singular limit problems with two different length
scales in the context of turbulent diffusion; [3] and [18] examine different as-
pects of problems with multiple-well potentials.

The proof of Theorem 1.1 uses a moderately elaborate version of Evans’
perturbed test function method, cf [7]. It relies on an asymptotic expansion
of (1.1), as well as on explicit sub- and supersolutions of (1.1) which provide
rough, qualitative bounds on limiting behavior of sequences {u‘},s0. We start
in Section 2 by presenting the asymptotic expansion of (1.1). This expansion
contains a number of error terms, which we estimate in Section 3. In Section 4
we construct sub- and supersolutions of (1.1) for 0 < a < ag. The construction
of a supersolution for the case a = 0 is more delicate and is given in Section 5.
In Section 6 we finally prove Theorem 1.1.

In Section 7 we examine applications to questions of front interaction, as
discussed above. We indicate how one could prove the above assertion on the
asymptotic behavior of (1.6), and we examine a related example in greater detail.

Our results are not sharp in that, although Theorem 1.1 is almost certainly
true for ag = 1, for technical reasons our proof is only valid for ag = 1/6. In the
case a > 0, one could give an alternate proof of Theorem 1.1 by constructing
explicit families of sub- and supersolutions of (1.1) which converge to solutions
of the Mean Curvature PDE as ¢ — 0. This could be done by modifying, scaling,
and superposing the supersolutions for the Allen-Cahn equation constructed in
[8). Such a proof could be expected to yield a sharper estimate of ao, and it
would probably also be simpler than the argument presented here. However,
our proof has the advantage that it extends easily to the case a = 0 as well as
to the slightly more exotic phase field equations discussed in Section 7.

ug = (6;;



Notation and Preliminaries
We assume about the potential W(-) that W is C2, W > 0, and that

W(z+1) = W(z),

It is important for the applications in Section 7 that we allow W to have multiple
wells with different structures in each repetition of the period. We therefore as-

sume that W(-) has finitely many zeros in [-1/2,1/2), which we denote 23, ..., z;,
and that

W"(z)>0
fori = 1,...,J. It is convenient to assume that 0 = 2; for some i, so that
W(0) = 0.

These assumptions imply that there are numbers —=1/2 =@y < ... < ay =
1/2 and a constant M > 0 such that a;_; < 2; < a; and

MYz - 2)2 <W(z) < M(z - z)? 1.7)

for all ¢ € [@i-1,a;] In fact, for any z; as above, the upper bound may be
assumed to hold for all z € R. In particular, we have

W(z)< Mz? (1.8)
for all z € R. Since W is C? and nonnegative, elementary calculus gives

wfl
— < C. 19
v S (1.9)

As a final consequence of the above assumptions, we note that there exists some
small number p such that

W' u)>C'>0 whenever |u—z;| <2y (mod 1) forsomei=1,...,J,
(1.10)

and

W) >C1>0 whenever |u—z;| > p (mod1) foralli=1,...,J,
(1.11)
We will frequently appeal to the theory of viscosity solutions of nonlinear
PDE. In particular, when we refer to solutions of the Mean Curvature PDE (1.3)
or equation (1.4), we always mean solutions in the viscosity sense. Uniqueness
and existence theorems for viscosity solutions of wide classes of degenerate, dis-
continuous parabolic equations, including these examples, have been established
in [5] and [9]. We will use the following comparison theorem, which is proven

under considerably weaker hypotheses and in much greater generality in [11].



Theorem 1.2 Suppose that u is an u.s.c subsolution and v a Ls.c supersolution
of (1.3) or (1.4) on R™ x [0,00), and that u(z,0) < v(z,0) for all z € R™.
Suppose also that

sup ||Du(-,1)||z=, sup||Dv(-,1)||z= < +o0.
120 120

Then
u<sv

in R” x [0, 00).

For a comprehensive introduction to the theory of viscosity solutions, see
the User’s Guide of Crandall, Ishii, and Lions [6].

We employ the usual analysts’ convention of letting C denote a large constant
which may change from line to line but which could in principle be computed.
Similarly, C~! will denote a small constant. When we want to be more careful
about constants, we use other letters such as K and M.

We will work throughout this paper with auxilliary functions of two variables,
& and A. When f(£, M) is such a function, the notation

/abfda'

/ab f(o,N)do.

Thus an integral of the above form is always a function of the variable A.

will always mean
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2 Asymptotic Expansion

We start by introducing auxilliary functions g and h. Both of these are functions
of two dummy variables, which we call £ € R and ) € (0,00). They are defined
by families of ODEs in the variable £, in which the variable A appears as a
parameter. Thus, for every A > 0 we stipulate that g(-, A) satisfies

W'(g) — Agee = 0, (2.1)
9(0,2) =0, (2.2)
g€ +1,2)=g( ) +1. (2.3)
The auxilliary function k is given by the family of ODEs
@)
W"(g)h — Ahee = 4g¢x + —S\—)gs (2.4)
h(€+1,X) = h(§, N), h(0,2) = 0. (2.5)
Here 6()) is defined by the condition
4 [ d
o) = 2o 9019cdo (2.6)
0 ggdo

if A > 0. This is just a solvability condition for the ODE defining h. We also
define #(0) = 1; we will see in Lemma 2.3 that this choice makes 6 continuous
at A =0.

We will later need some estimates of the derivatives of these functions, and in
the course of obtaining these estimates we integrate the ODEs, obtaining fairly
explicit formulas for ¢ and h. Thus existence of solutions of these equations is
not a problem.

The reason for defining these functions as above is clear from the proof of
the following

Lemma 2.1 Suppose ¢ : Q — R is smooth. On the set where D¢ # 0, define
L4

el-a’

(20|D¢|2).

vt = =09t POIDGP) + 6. b, b1, h(

Then vt is smooth where 1l is defined, and on this set we have

1 €
‘U: - Av + mw((:ﬁ) =
2 o $z.9z,
96(61_0,52 |D¢|?) [¢t —(6;; — 6(? ID¢I2)___|D¢2I )¢,.-z,] +E



where the error term E has the form

E = O(€1+ag,\+€1+3ag,\)‘+61+30h€+€l+5°h€,\
+€2+4°h,\ + €2+6°hAA +€2+2°h+ €l+5°h2).

Moreover, E is uniform on sels on which ¢ and its derivatives up to fourth order
are uniformly bounded.

Remark. The credulous reader can see this as constituting a formal proof of
Theorem 1.1. Indeed, if v* has the given form and is a solution of (1.1), then v*
converges uniformly to ¢ (if h is well-behaved) and, at least formally, ¢ satisfies

¢$.¢tj
|D¢?|

& — (6 — !1_5% 6(¢2%|D¢|?) )bz.z; = 0.
We will see that the limit in the above equation equals 1 if a > 0.

Moreover, one can check that limy_ 6(A) = 0. For this reason, we expect
that the limiting equation in the case a < 0 is the heat equation. It is not
clear whether the methods developed in this paper can be modified to establish
this result, since we rely in a couple of places on the degeneracy of the limiting
equation when a > 0.

Proof.  Let N(@) = ¢z,¢z,6z,z;. It is clear from the definitions of g and h
that they are smooth as long as A > 0. The definition of v¢ and the chain rule
thus give us

1 ,, U
v:—Av‘+€l+a (Cl_a)=
1 a 2a
37 (W + €PN (@)h) - €71D¢l gee]

+ [9¢(dt + Ag) — 4€°° N(¢)gen — €*°N(8)| Dg|*hee] + E1,
where the error term E'1 has the form

El - 0(€l+ag,\+fl+3°g)\,\+€1+3°h€ +€1+5ah51\
+€2+4°h)\ + 62+6°h,\A +€2+2°h).

It is clear that the terms in E1 depend on derivatives of ¢ of no higher than
fourth order, so that the error is uniform on sets on which these derivatives
are uniformly bounded. We now simplify the leading-order term using Taylor’s
theorem and the ODE (2.1) evaluated at the point (£¢,A¢) = (=25, €2°| Dg|?).

Wl(g + €l+3ON(¢)h) _ CzalD¢|2gff
W'(g) - 2 D8[g¢ + +3W" (g)N($)h + O(¢++52)h?
= €1+3aunl(g)N(¢)h + 0(€2+6a)h2.



Substituting this into the above expression now yields
1 v¢
lta i 61-a) =
9e(@: + Ag) + €2°N(¢)(W"(g)h — €2°| D@\’ hee — 4g¢x) + E.

The lemma now follows from evaluating the ODE (2.4) at the point (£¢, A¢) and
substituting into the above identity. O

vy — AvE +

In order to make use of Lemma 2.1 we need to know how the function 6()
behaves as A — 0 for the case a > 0. We will study the asymptotic behavior of
# in the remainder of this section.

We also need to estimate the error term E. We defer this task to the next
section.

We start our computations by noting that (2.1) can be integrated to give

ge = A2 (2W(g) + c(V)V?, (2.7)
where the constant ¢(A) is chosen to satisfy condition (2.3). Integrating once
more, we see that

9(€2,2) 21/2
£2-6 = /g(e,,x) OF T du (2.8)

In particular, (2.3) is equivalent to

1 A1/2
1:/0 T T O (2.9)

Differentiating (2.7) with respect to A yields

ge 1, Jee9a
= - — — A —_— .
gx¢ 2’\+2/\g€c( )+ o (2.10)

We rewrite (2.10) in the form

gx 1 1 /
Y S
(g<)£ gz

It follows from (2.2) that g,(0,A) = 0, so the previous equation can be integrated
to find

9 € 1, /f do
26N ==+ =) —— .
ge(E’ )=t o 9¢(0,2)? @1)
Since g(1,A) = 1, we may evaluate the above equation at £ = 1 to derive a
formula for ¢’(A):
' de !
d(A) = / —————) 2.12
0= ([, e @12

Our next lemma will be used in our analysis of the function 6(-).

10



Lemma 2.2 There ezist positive numbers C, Ay such that for all 0 < A < Ag
we have

¢(}) < Cexp(—1/CV),
c(A) < CA~3/%¢()).

Proof.  Using (1.10) and (2.9), we have

_ ! du
= /o CIOETORE

as du
< . )
< I /m_l (M=1(u— )2 + c(N)1/2

The above integrals can be evaluated explicitly; in fact, the ith integral equals

equals
msinh'l(‘ /%(a; - z))+ \/Jl?sinh'l(‘ / %(Zg —ai-1)).

Since —1/2 < a;—; < z; < a; < 1/2, we have

M
-1/2 /37 <inh=1
A < 2JVMsinh™ ( c(A))

Thus C(c(A))~Y/? > sinh((CA)~'/2). Observe that sinh(z) > e*/4 if z is suffi-
ciently large. Thus if A is sufficiently small,

c(A)"Y2 > Ctexp(1/CVA).

This implies the first conclusion of the lemma.

To estimate ¢’()\) we start by rewriting (2.12) using (2.7) and the change
of variables u = g(o, ). (We will make this change of variables a number of
times.) This gives
,\3/2/1 du

o (@W(u)+c(2))*2
A32(3¢(X))"* *meas{u € [0, 1]|W (u) < ¢(A)}
A3/2(3¢(X)) "% ?meas{u € [0, 1}|Mu® < c(A)}
CI3%¢())1,

C'(A)_l

IV IV IV

which is the stated estimate of ¢/(A). The constant M is the one from (1.8).
The final inequality holds only if A is small enough that, say, ¢(A) < M/4. D

We now prove a lemma which characterizes the function 6.

11



Lemma 2.3 The definition of 6 is equivalent to

B0 =1 (/01922("’ »\)do/ol 6o, ,\)da)-l. (2.13)

Moreover, 6()) € (0,1) for all A > 0. Finally, for every positive integer n there
erists a constant C = C(n) such that

1-6()) < CA".
In particular, 6 is continuous on [0, 00).

Proof. From (2.6) we have

1 1 1
(1-00) [ gonde = 4 [ go(eNaetondo+ [ giordo

1
= 2)1/2% ()\1/2/ g?(o)\)da)
0

1
= 2»/26% </0 (2W(u)+c(,\))1/2du)
1 A1/2
o CWG) + N7

= )
c'(N),

where we have used (2.9). Now (2.13) follows from the above identity and (2.12)
From (2.13) we immediately deduce that < 1 and (using Holder’s inequal-
ity) that 6(A) > 0, with equality iff g¢(-, X) is constant. From (2.7) it is evident
that g¢(-, A) cannot be constant, so 6 > 0.
To study the behavior of (-) as A — 0, first note that

1 1 2
/ g?da > (/ geda) =1
0 0

by Jensen’s inequality and (2.3). Thus, from (2.13), to finish the proof it suffices
to show that given any n we can find C such that

1 -1
d) = (/ g{zdo) <Ccx\t
0

as A — 0. This follows directly from the estimate of ¢/(A) in Lemma 2.2. O

12



3 Controlling the error

In this section we estimate the error terms which arises in the asymptotic expan-
sion carried out in Lemma 2.1. In our estimates we will seek to bound various
derivatives of g and h in terms of g¢, since we ultimately need to show that
E = o(ge).

The restrictions on the range of values of the parameter a for which Theo-
rem 1.1 holds stem from the fact that our estimates, although rather lengthy,
are quite far from sharp. Refining them would apparently require delicate argu-
ments involving cancellation between different terms in the ODEs below. Thus
the main point here may be that, since the moderately elaborate estimates we
present in this section end up giving a result which is very far from optimal, we
are justified in relying on quick and rough estimates. We will do this in Section
7, when further estimates are required.

We start our estimates with the following

Lemma 3.1 For all 81,82 > 0 such that 1 < B; + B2 < 3, we have
80165 = g OO} F %)
as A — 0, uniformly for £ € R,

Remark. 1. In fact, if W € C* then the above formula remains valid for all
B1+ 82 < k+1. We need third derivatives of g to estimate the second derivatives
of h which appear in the error term in Lemma 2.1; hence our assumption that
W e C2.

Proof. 1. It is clear from its definition that ¢(A) > 0, so equations (2.1),
(2.7), and (1.9) imply that

gﬁ - /\—1/2 W’(g)
9 (2W(g) + ¢(X))'/?
= O3
Next, differentiating (2.1) with respect to £, we find that ge¢ee = AW (g)ge =

O(A~")ge-
2. It is obvious from (2.11) and (2.12) that g = O(A~1)g.
From equation (2.10) and the estimates of g¢¢ and g\ above we see that

1

ger = gelO(A¥?)+ 2)g? €]
= g0 )1+ 20—%%) by Lemma 2.2
A
= g0 (1+ ZV—V—G%(QQ—C(A)) by (2.7)

= g O3,

13



Next we differentiate (2.1) to find that

1 1 -
geer = :\'W"(g)gx ~ 39 = O(A~?)g¢ (3.1)

by our earlier estimates of g) and g¢,.
3. To estimate gy,, first note that

9 _ g (21)
g¢ 9¢ 9¢ 9¢/

The first term on the right-hand side is O(A~%/2) by our estimates of g, and
gex above. Thus we only need to show that

() =007 = (£)o(—27).
() g¢
as A — 0. From (2.11) and (2.12) we see that % has the general form
g _ 1
L~ (€40 x0) (3.2)

where for 1 = 1,2, ©; is of the form

k
o= (/bggzda) , (3.3)

where k is an integer, and a and b are may depend on £ but not on A. Thus it
suffices to show that @, = O(A~%/2)©. Using our earlier estimate of g,

b b g
|@x] = k(/ g{zdd) /—2g?2f(la
k-1

4
b b
k (/ gg'?da) sup (/ 2ggzd0>
a 14 a
= 0(\"¥?%e.

k=1

gex

9¢

IN

Therefore g)) satisfies the stated estimate.

4. We next use (2.10) and (2.11) to express g, entirely in terms of derivatives
of g¢, 9x, and g¢e. Our earlier estimates and a little bookkeeping then quickly
allow us to deduce that gear/ger = O(A~3).

The estimate of gxx, follows in a similar way from our earlier estimates. An
easy way to see this is to start by observing that

Pr _ eI | o96r (2’1) +(g_,\) _
9g¢ 9e ¢ ge \ge/x  \9e/

14



We know that the first two terms on the right-hand side are O(A~*), so it suffices
to show that (ﬁ)u =02\ Y= (%)O(/\‘a). Returning to our representation
of % in (3.2) and (3.3), we see that the desired estimate is implied by the

estimates ©) = O(A~3/2)@, which we have already established, and Oy =
O(A~3)@. This follows by differentiating © and using our estimates of gex and
gear- We omit the computations. O

We still need to estimate the auxilliary function h and its derivatives. Before
we undertake this, we first seek to represent h in a form from which the estimates
we want can be deduced without too much difficulty.

Lemma 3.2 Let p= h/ge. Then p solves the equation

_ 290 (X)) fo6 g¢do 3.4
=% gz \$T T (34)
g¢ 9¢ I gido

Remark.  We could integrate the above equation and multiply by g, to ob-
tain an explicit formula for h. By differentiating that formula, we could then
find representations of all the derivatives we want to estimate. The procedure
we actually follow in Lemma 3.3 below is equivalent to this but slightly more
efficient.

Proof.  First observe that

=XMgipe)e = Alhgeee — hecge)
= hW"(g)ge — Mheege by (2.1)
= 4geger + (0(N)/N)g? by (2.4).

Note that 6 is defined precisely so that the integral of the right-hand side van-
ishes. Since we want p; to be periodic, this means that we do not need to add
a constant to the right-hand when integrating to find p¢. (More precisely, the
appropriate constant of integration is 0.)

Next, we rewrite the above expression and substitute from (2.10), (2.12),
and (2.13) as follows:

1 -1

‘() ) ([ 2y )
290006 + A5 +3ee0) = 52 ([ otao) o2

¢ () '
= 2 <+ 1- .
(9e9x )¢ 5\ ( I sido
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Putting together the last two computations we deduce that the lemma holds.
=]

Lemma 3.3 For all 8,2 such that 0 < $; < 1,0 < B, <2, we have
00108 h = g O T~ 3 %)
as A — 0, uniformly for € € R. Finally, we also have h = O(A~3) as A — 0.

Proof. 1. We first claim that

pe =0(A"%%)  as A —0. (3.5)
Indeed, it is clear that
3
fO g?da 3 6
§-"1 = (3.6)
A g¢do

is bounded uniformly in £ and A. Also, we have seen in Step 3 of the proof of
Lemma 3.1 that ¢'(3)/g? = O(A\~'/2) as A — 0. These facts, with (3.4) and the
estimate of g» in Lemma 3.1, imply that (3.5) holds.

2. We next claim that

per = O(X™Y), pear = OA™12) as X — 0. (3.7

These follow from differentiating (3.4) and using the estimates in Lemmas
3.1. As in Steps 3 and 4 of the proof of Lemma 3.1, it suffices to check that the
right-hand side of equation (3.4) can be written as sums and products of factors
F* each of which satisfies

Fi =0\ ¥Y)F, Fi, =00 "3F, as A — 0.

This follows immediately from earlier estimates for F! = % and F? = y?,
and it is obvious for F3 = A~2. We have already verified that F4 = ¢'(A) =
( fol 9 2do)~! has exactly these properties. The remaining nontrivial factors

have the form
b
6= (/ g?da)

for some integer k. Estimating these in exactly the same way that we estimated
quantities of the form © in Lemmas 3.1, we find factors of the form © have the
required asymptotic behavior as A — 0. Thus (3.7) holds.

3. Since p is periodic, Step 1 implies that

k

¢
sup p(§,A) = sup / pedo.
¢ €ef0,1)Jo
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Thus
p=0(1"5%%) asA—0.

This is the estimate which is claimed for h/g¢ in the statement of the lemma.
Since g¢ = O(A~1/2) as A — 0, this implies the final estimate of k. Similarly,
by integrating our estimates for p¢y and pea we find that

pr=0("*%) asA—0.

par =012 as A —0.

4. In all of the following calculations, we differentiate both sides of the
identity h = pge and divide the result by g¢, then apply estimates from Lemma
3.1 and Steps 1-3 above.

h
H =Kyt pe =000  asi—0,

ge '3

hy ger _4
—=p+==p=001""%) a0,
g¢ g¢

h
22 = g+ L+ Ly, L KL 0(A%2) as A -0,
ge g¢ ge 9¢

h

DA g+ 2%82,, LI o(A-11/2) a5 A —0.
9g¢ g¢ 9¢

Thus we conclude the proof of this lemma. O

Now we are finally able to deduce the following

Proposition 3.1 Let ¢ be as in Lemma 2.1, and suppose that all derivatives of
¢ of fourth order or less are uniformly bounded. If 0 < o < 1/6 then the error
term E in Lemma 2.1 satisfies

E = o(g¢)
as € — 0, uniformly on any set of the form
Ss = {(z,1)16 < |Dg(z,1)|}
for any 6 > 0.

Proof. From Lemma 2.1 we have

E h h
L _ 0((1+09_A_ + €l+3aga\»\ + 1¥3e e | 1450780
9ge g¢ 9g¢ 9¢ 9e
: 2
+€2+4a§i + ¢2t6e hax + €2+2af_ + €1+5a_h_)’
9¢ 9¢ g¢ 9¢
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First suppose that @ > 0. The functions g, g, etc. are evaluated at the
point (£, \¢) = (,_{t—o, €22|D¢?|), so A¢ tends to zero with € and the asypmtotic
behavior of the functions appearing above is given by Lemmas 3.1 and 3.3. Also,
on the set S; it is clear that A¢ is bounded above and below by €2. This fact
and the estimates yield

;Ei: O(cl—a +€l—2a+€l—3a+cl—4a+C2—4a+€2—5a+ 62—aa+ CI—Ga)_
€

Thus the conclusion of the lemma holds for 0 < @ < 1/6. If a = 0 then all the

terms involving the auxilliary functions are O(1) as ¢ — 0 and the conclusion
of the lemma is obvious. O

Finally, note that

Lemma 3.4 Suppose ¢ is smooth and define v¢ as in the statement of Lemma
2.1 and the set S5 as above. Assume also that a < 1/6. Then v¢ — ¢ uniformly
on Ss for every § > 0.

Proof.  Since g¢ > 0 and g(k, ) = g(k,A) + 1 for every integer k and every
A > 0, it is clear that |g(é,A) —€| < 1. Thus the conclusion of the lemma follows
immediately from the definition of v and the fact that A = o(¢?*2%) uniformly
onSsase—0. O
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4 Supersolutions: 0 < a < ag

In this section we construct explicit supersolutions of (1.1) in the case o > 0. We
will not discuss subsolutions other than to note that they could be constructed
in exactly the same manner.

The construction will yield a family of supersolutions converging as ¢ — 0 to
a function ¢ V B, where ¢ is a supersolution of the mean curvature PDE and B
is an appropriately chosen constant. In building these functions, we start with
the function ¢ and make extensive modifications, guided by the asymptotic
expansion in Lemma 2.1. Because the construction is quite complicated, we will
present it first for a specific choice of ¢ and B. We indicate afterwards how the
construction can be modified to achieve slightly greater generality.

Let
#(z,t) = ]z|2+2(n=1)t - 1+t

Fix T > 0so that ¢(0,t) < 0 for t € [0, T)]. For the remainder of this construction
we will confine our attention to the set Q7 = R™ x [0,T). (Thus the superso-
lutions we construct will be local in time.) Having restricted our attention to
this time interval, we may define p(t) > 0 so that p?(t) + 2(n — 1)t = (1 — t)?
for t € [0,T]. We have chosen p so that

¢(z,1) 20 iff 2] 2 p(t).

Note that p is smooth and decreasing.
We then have the following

Lemma 4.1 ¢ satisfies the following on Qr:

&z, bz;
¢t - (5.';' - W) ¢z.a:, =1,

C'<|D¢|<C on {(z,t) € Qr|é(z,t) > 0}.

Proof.  These follow directly from the definition of ¢. In fact, one easily
verifies that y/|z|? + 2(n — 1)t is an exact solution of the Mean Curvature PDE,

SO ¢ ¢
¢t - (6:']' - TBW) ¢z.z'j =1

Similarly, we have "
T

D¢(z,t)| = —m—m—————.

S ey = e g

This is clearly bounded. Moreover, if ¢(z,t) > 0 then |z]| > p(t) > p(T), from
which we easily deduce that |[D¢| > C~!. O
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Following Lemma 2.1, we next define

vf = cl-—ag(CI?_a’cZalD(ﬁl'l) + €2+2a¢=i¢tj¢z.‘zjh(elqia , €2°|D¢Iz).

We would like to use Lemma 2.1 and the error estimates to conclude that v¢ is
~a supersolution of the PDE. However, this is not yet true, so we have to modify
v° is several ways.

First, the asymptotic expansion in Lemma 2.1 breaks down at points where
D¢ = 0, so we need to modify v¢ near the origin. We do this by using a cutoff
function to replace v¢ by a constant in a neighborhood of the origin, so that we
only need to rely on the expansion on a set in which D¢ is bounded away from
zero.

We now define this cutoff function: Let (¢(z,t) = n*(|z| — p(t)), where 7¢ is
a smooth function on [0, c0) such that

n°(z) =0 if 2<0,

n'(z) =1 if z > ¢,
7' <Cle, 7" <Cle.
Finally, we define
V=o' + €%

The role of the €? is to absorb error that is introduced by our use of the cutoff
function C¢.

We will need several estimates of v¢ on the support of D(¢. The crucial fact
is that Dv¢ is extremely small, so that v can be melded smoothly to a constant
function.

Lemma 4.2 On suppD(* we have

2a 2 —-a 1
9e( o5, €2 IDB) = O(° expl~=cz))
= ofexp(~ )

v = ofexp(-=3)),
€) — -a _ 1
|Dv| = O(c™® exp(~ 5.))

Proof. 1. Let (€%, X%) = (o=, €2%|D¢|?) as usual. We first claim that

€ €[0,CVAq (4.1)

on suppD(¢. Indeed, it is clear from Lemma 4.1 that on this set we have
C~1e2® < A¢ < Ce2?, so we only need to show that 0 < €€ < Ce®. We know
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from the definition of (¢ that p(t) < |z] < p(t) + € whenever (z,t) € suppD(*.
Writing ¢(z,t) = ¢(|z|, 1), it is clear that ¢(-,1) is an increasing function, so

0 é(p(t),1)
$(P(i) +¢€,t)
Ce

ININIAN I

. since ¢ is smooth. This implies that 0 < £¢ < €* as claimed.
2. We next claim that (4.1) implies that 0 < g(f‘ A9) < Cy/e(A€) on
suppD(‘. We know that g(0, ) = 0 and that g(-, A) is increasing, so we only
need to cstimate g(Cv/A¢, X¢). For this we have, by (2. 8) and (1.8),

9(€°.2%) A€ 1/2
—_— du
0 2W (u) + c(A¢)
962 3¢ 1/2
_— du
0 2Mu? + c(A¢)

,/%sinh-‘< "Ef{) (€, ))
sinh ™! (‘,C(g(é‘ ,\()) < \C/ﬁ—( <C

on suppD(*, by (4.1). Hence the argument of sinh™! is bounded, which was the
claim we set out to prove.

3. The ODE (2.7) now implies that for (£¢,A¢) corresponding to points
(z,t) € suppD(€, we have

6(

v

Thus

€ )€ A€ 1/2
2}\49({‘,/\‘)2+C(/\‘) 1/2
< ( X )
€ 1/2
< (%",

by Step 2 and (1.8). This inequality, together with Lemma 2.2 and the fact that
A€ is bounded above and below by €22, yields the stated estimate of g.
4. It follows from the above and the estimate of h in Lemma 3.3 that

€2+2a¢¢'.¢2‘j¢:;zjh(€‘,A‘) < C€2+2Q(A‘)—5/2ge

< Ce4e\/c(X9)
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on suppD(*. Since v¢ = €!~%g(€, A) +€2¥2° ¢, ¢, 02,2, h, this fact and Step 2
imply that v¢ = o(y/c(A¢)). Now the stated estimate of v¢ follows from Lemma
2.2.

Finally, we have
Dot = 95D¢+0(9A51+a + h€2+2° + h£€]+3a+ h)€2+4a).

Using Lemmas 3.1 and 3.3 and, again, the fact that A¢ is bounded above and
below by €2 on suppD(¥, this becomes

Dvt = gf[D¢+ O(cl+a + c2—3a +€1—3a + C2-30)] - 0(9()

as ¢ — 0. Using Step 3, we find that the proof of the lemma is finished. O

The proof of the following proposition is now quite straightforward.

Proposition 4.1 V¢ is a supersolution of (1.1) on Qr for all sufficiently small
€.

Proof. 1. We begin by looking at the case where (¢ = 1, so that V¢ = v¢+¢2.
By Lemma 4.1, |D¢| > C~! on this region, so we may use the asymptotic
expansion in Lemma 2.1 and the error will be negligible, by Proposition 3.1.
We thus have

1 ,, Ve
V- AVE+ ZT'*_JW (c—I:'-)
v(

1 Ve
g€(C™ + o) + 7z (W) - W/(5s))

v

(a) + O(e'+e). (4.2)

el-

9¢(C™1 + 0(1)) + W"(

We consider two subcases. The notation comes from (1.10) and (1.11).

Subcase 1: |g— zj|<p (mod1)forsomei=1,...,J.

Estimates of the auxilliary function h in Lemma 3.3 imply that v¢/e!=% =
g + o(1) uniformly, since D¢ is bounded away from zero. In particular, if € is
sufficiently small we have |v¢/e!~* — z;| < 2y, in which case (1.10) assures us
that W"(v¢/e!=%) > C~! > 0. Together with (4.2), this implies the conclusion
of the lemma.

Subcase 2: |g—2;|>p (mod1)foralli=1,...,J.

In this case (1.11) tells us that W(g) > C~! > 0, and so

2W(g) + c(’\c))ll2 1 -1 -
= —X_" 7 >——=C e,
g ( e CV¢ €

This estimate and (4.2) imply that V¢ is a supersolution in this case.
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2. On the region where ¢ = 0, it is evident that V¢ = €2, and so

1 Ve

Vi-Ave+ clta W’(fl-a) =

1
€1+a Wl(€1+a).

Because W' (0) > 0, this number is positive if ¢ is small.
3. Lemma 4.2 implies that on suppD(¢, V¢ = €2 +0o(€?), so we see as in Step
2 that ) ye
-1
=g >C
for small €. Thus we only need to show that V;* — AV¢ = o(1) as ¢ — 0. We
have

VE— AV = (¢ — AC)v® = 2DCC - Dot + (v — Avf).
It is obvious from the estimates in Lemma 4.2 that the first two terms on the
right-hand side vanish as ¢ — 0. As for the final term, using Lemma 2.1 and
the error estimates as in Step 1, we compute that

1 v

v — AvE = gg(C'_l +0o(1)) - 4o l(fl-a)‘

By Lemma 4.2,

1 ,, v 1 , ‘ 14a
el+a (61"0‘) = d+a Wi(o(e77%)) = o(1)

on suppD(¢ as € — 0. Also, g¢ — 0 on suppD(‘ by Lemma 4.2, so we are
finished with the proof. O

Remark. Given A,B€ Rwith A<B,zo0€ R*, M >0 and ¢ € (0,1/6) we
can construct a family of supersolutions V¢ as above such that

Ve{(z,t) = (M\/|z —zo|2+2(n-1)t+ A+t)VB

uniformly in Qr as ¢ — 0. We simply modify the above construction in a
number of ways. We translate the origin in the obvious way, then define ¢(z,t) =
M</|z]?+ 2(n — 1)t + A +t. The cutoff function ¢* is defined as above, where
pt(t) now solves

M2 ()2 +2(n—1)t) = (B - A—1)?

where B¢ is a number such that B¢ — B as ¢ — 0 and B¢/e!~® is an integer. The
functions p¢ may be taken to be defined on some fixed interval [0, T], independent
of € as € — 0. In fact, it is clear that T' depends only on B— A and M and that,
if M is fixed, T may be made arbitrarily large by increasing B — A.
Finally, define
Ve = ((v( + (l _Cc)Bt + (2.

These are defined on Qr, where T is as discussed above. All the proofs then
proceed exactly as before, except that the estimate of v¢ in Lemma 4.2 is now
replaced by an estimate of v¢ — B*.
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5 Supersolutions: a =0

The construction of supersolutions in this case follows very closely the construc-
tion presented above. However, several modifications are necessary. First, in
the earlier construction we took advantage of the fact that it is extremely easy
to construct explicit (radially symmetric) supersolutions of the mean curvature
PDE. Doing the same for solutions of the limiting PDE in the a = 0 case is a
little more difficult.

Second, the proof of Lemma 4.2 relies on the fact that A¢ = €2@|D¢|? tends
to zero as € — 0. To establish a version of the same fact for the case a = 0, we
need to use a sequence of supersolutions ¢¢ of the limiting equation (1.4) such
that D¢¢ tends to zero on a certain set as ¢ — 0.

We start by defining this sequence. We take ¢¢ of the form

¢(r,t) = ¢ (Vr2+ 2Lt) + €1,

where r = |z|, and L and ¥ are constants which will be fixed below. For each ¢,
q¢(+) is chosen to be a smooth function on [0, 00) such that

¢t)=€"(t-1/4) if0<t<1/2,

¢"(t)=0 ift>1
g(t) 2t-1,
q(l S 1, qtll 2 0, qthtll _<_ C

As in our earlier construction, we fix T > 0 such that ¢¢(0,1) < 0for0 <t < T.
This can be done independent of ¢; for example, we may take T' = 1/K L, for
some large number K. For the remainder of this section we restrict our attention
toQr = R" x [0, 7).
We also may define a smooth, positive, decreasing function p¢ on [0, T] such
that
Pz, )20  ifffzl > p(0).

We now have
Lemma 5.1 If L is sufficiently large, then for all e <1 we have
82,9z,

|D¢|?

¢; — (6 — 6(|1De*|*) )82z, 2 €.

Also, C~1¢" < |D¢*(z,t)| < C on the set {(z,t) € Qr|¢*(z,t) > 0}.

Proof.  First, note that Lemma 2.3 immediately implies that 1 —8()) < C)?
for some appropriate constant C. Using this fact and the radial symmetry of
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¢¢, we have

¢;g¢;,‘
|Dé<|?

n—

1
ee, = &% - ¢5 — o5, (1—0(8:2))

r
n-1

> - "6 - 0o,

¢; — (67 — 6(|Dg‘[*)

Next we use the definition of ¢¢ to write out the above expression in terms of
¢¢. The left-hand side above then becomes

___qf’__ L-(n-1)- (qf')2_"22L - q(,q(,,_r‘___ + €7
Vri+ 2L (r? +2Lt)? (r? +2Lt)3/2 )
We need to show that the quantity in brackets is positive if L is sufficiently
large. For this, it clearly suffices to show that the negative terms are bounded

independent of ¢. This fact follows from our choice of ¢¢. Indeed,

r22Lt

€1\2
mﬁ(tl ) <1,

(q(l)2

and
4

1 €l r 1€l
¢ WSQ‘Q‘ <C

We have used the fact that ¢¢”’(v/r2 4+ 2Lt) =0 if Vr2 + 2Lt > 1.
The estimate of D¢¢ is proved in exactly the same way as the corresponding
estimate in Lemma 4.1. O

Next we define
€ d’( €12 2 € € € ¢( €2
v = eg(— [D") + €792, 826 2 h(T-, | D)

As before, we want to use a cutoff function to wed v¢ to a constant function,
which we will again take to be 0. We accordingly define a cutoff function which
will truncate v¢ on a set where ¢ (and hence v¢) are very close to 0. Thus we
define (¢(z,t) = n°(|z] — p*(t)), where n¢ is exactly as in Section 4, i.e.

n°(z)=0 if2<0,
n%(z) =1 if z>e,
' <Cle, n" <C/é.

Finally, we define
Ve= (ot + 21D,

First we need to establish some estimates like those found in Lemma 4.2.
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Lemma 5.2 Ify < 1/6, then on suppD(¢ we have

¢ 1
5e(£.1D6) = O~ exp(~55),

. 1
v = ofexp(~ ),
¢ - 1
|Dve| = O(e "exp(-~C7)).

Proof. 1. Let (§5,X¢) = (%', [D¢¢|?). From the definitions of (¢ and ¢¢ it is
clear that
A= 0(e?) in suppD(*. (5.1)
We may also easily check, as in the proof of Lemma 4.2, that 0 < ¢ < C¢".
Thus

£ € [0,CcVAq in suppD(¢. (5.2)

We have already proven in Step 2 of the proof of Lemma 4.2 that (5.2) implies
that

0<9(852%) < Cv/e(Xe). (5.3)

We then deduce, exactly as before, that

(5.4)

ey 1/2
gf(E(a’\e) <C (C(:‘( ))

on suppD(¢. The first conclusion of the lemma now follows from (5.1), (5.4),
and Lemma 2.2.

2. It follows from the Step 1 above, Lemma 5.1, and the estimate of & in
Lemma 3.3 that

€2¢‘z.¢‘tj¢(z.z, h(Et’,\t) < C€2(At)—5/2g€

< CEe(Xe)
on suppD(*. Since v¢ = €g(€, A¢) + e2¢‘,_¢‘51¢‘,',jh(5‘,/\‘), the above in-
equality and (5.3) imply that v¢ = o(y/¢(A9)) if ¥ < 1/6. Now the desired

estimate of v¢ follows from Lemma 2.2.
3. Finally, we have

Dv¢ = g¢D¢" +O(€g,\+€2h+€hg +€2h/\)
9e(O(€™ + €)1+ €(X) 3+ (X)) 3+ (1))
= geO(" + el=67 4 cz's"),

by (5.1) and Lemmas 3.1 and 3.3. It is therefore evident that Dv¢ = O(g¢) as
€ — 0 if v < 1/6. Since we have already estimated g¢, we are finished. D

The proof of the next proposition is very similar to that of Proposition 4.1
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Proposition 5.1 Let v be some fized number such that vy < 1/12. Then V¢ is
a supersolution of (1.1) on Qr for all sufficiently small ¢.

Proof. 1. We consider separately the cases (¢ = 1, D{¢ # 0, and (¢ = 0.
The final case follows exactly as in Proposition 4.1. For the first two cases we
need to use the asymptotic expansion in Lemma 2.1, and we need to be able to
assert that the error term E is small. Using the expression for E in Lemma 2.1,
the error estimates from Section 3, and Lemma 5.1, we find that

E = O(gec(A)"1%) = O(gee ) ase—0.
(We exhibit only the largest term.) Since ¥ < 1/12, this gives
E = ogee™). (5.5)
2. On the set where {* = 1, the asymptotic expansion from Lemma 2.1,
together with (5.5) and Lemma 5.1, yields
Vi Ave+ W)

96(5‘7 +O(('r))+ % (W’(Kci) _ W/( v

)

Recall that the constant g is defined in (1.10) and (1.11). We consider two
subcases.

Subcase 1: |g—z;| < p (mod 1)forsomei=1...,J. Then |V¢/e—z| < 2u
(mod 1) for small ¢, and we deduce from (1.10) that

€
el-a

9e(€7 + o) + FTW (=) + O(1+)

€
V- AV + %W’(%—) = ge(€7 + 0(€")) + C~1e® + O(' 7).

- This quantity is positive if ¢ is sufficiently small.
Subcase 2: |g—z;| > u (mod 1)foralli=1,...,J. Then W(u) > C~! >0,
by (1.11) and

an 1/2
g£=(2W(g)’\-‘+c(z\)) sl o

It follows that
€ €
ve— aves 2wy 2 a4 o)+ W) 4 o),
€ €
In this case too we find that V¢ is a supersolution as claimed.

3. The final case to consider, D{* # 0, is handled very much as in the proof
of Proposition 4.1, the only difference being that, as in Step 2 above, one has
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to keep track of factors of €7 which multiply various quantities. We omit the
details. O

Remark. Given A,B € R with A < B, z9o € R*, and M > 0, we can
construct a family of supersolutions V¢ as above such that

lim ié]fV‘(:c,t) SMV|z—zol?+2Lt+ A+ €t) VB
€—

and
lim V¢(z,t)= B
€—0

for all (z,t) € N x[0,T], where N is some neighborhood of zo. This is done
by modifying the above construction in various ways similar to those described
in the remark following the proof of Proposition 4.1. As in that case, the time
interval T for which the supersolutions are defined depends only on A, B, and
M, and it can be made arbitrarily large by taking B — A large compared to M.
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6 Proof of Theorem 1.1

Although the limiting behavior of solutions of (1.1) is very different according
to whether o = 0 or 0 < a < ayg, the proofs are nearly identical in the two cases.
In order to discuss the two cases simultaneously, it is convenient to introduce

the function
1 ifa>0

6(%;0) = { 6()) ifa=0

In the proof which follows, we employ the method of Barles and Perthame for
weak passage to limits, together with a version of Evans’ perturbed test function
argument. The chief technical difficulty rests in the fact that the asymptotic
expansion of Lemma 2.1 breaks down at points at which the test function ¢ has
zero gradient. The proof of Lemma 6.5 is chiefly devoted to circumventing this
problem.

We first assume several lemmas and use them to complete the proof of the
theorem, then afterwards present the proofs of the lemmas.

Theorem 1.1 Suppose that u® solves (1.1) with initial data u‘(z,0) = h(z),
where h is uniformly Lipschitz on R". If 0 < a < ap = 1/6, then u* converges
uniformly to a function u, and u solves the equation

‘u_.,,‘u,’ _ _ pn
Uy — (6,'j - 0(|Dul2;a) [Dup ) Uz,z; =0 on @=R" x (0,00) (6.1)

with tnitial data u(z,0) = h(z).
Proof. We start by defining

u*(z,t)= limsup uf(y,s).
€—=0,(y,5)—(z,1)

—-— M 3 €
)= it uns)
By Lemma 6.4, both u* and u. are finite.

We prove in Lemma 6.2 that u*(z,0) = u.(z,0) = h(z), and in Lemma 6.5
we show that u* (resp., u.) is a subsolution (resp., supersolution) of (6.1). It is
easy to check that u* is upper semicontinuous and that u, is lower semicontin-
uous. Finally, Lemma 6.1 shows that both u* and u, are uniformly Lipschitz.
Thus the Comparison Principle, Theorem 1.2, immediately implies that

u*(z,t) < u.(z,1)

in Q. On the other hand, the opposite inequality is evident from the definitions
of u* and u,. It follows that u* = u. = u, and that u is both a supersolution
and a subsolution. 0O

Let L denote the Lipschitz constant of h. We start by showing that u*
inherits the same Lipschitz constant.
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Lemma 6.1 For everyt > 0 and every z,y € R*,

lu*(z,1) — v (,2)| < Liz - 9.

Proof. Fix z € R™. It suflices to show that
u*(z + 2,t) > u'(z,t) — L|z| (6.2)

for all (z,t) € Q.

Let u® as above denote the solution of (1.1) with the given initial data h,
and i¢(z,t) = ué(z + z,t) + K¢, where K¢ = ¢!~%([L|z|/¢'~®] + 1), and [s] here
denotes the integer part of s. Then K¢ > L|z|, so

u(z,0) = h(z 4+ 2)+ K¢ > h(z) - L|z| + K¢ > h(z) = u’(z,0).

Also, since K¢ is a multiple of ¢!, ¢ is again a solution of (1.1). The com-
parison principle thus implies that

u(z + 2,1) + K = @°(z,1) > u'(z,1).

Because K¢ — L|z| as ¢ — 0, this readily implies that (6.2) holds. O

Our next lemma shows that the initial data is assumed.
Lemma 6.2 u*(z,0) = u,(z,0) = h(z).

Proof.  First suppose that « > 0. Fix any point zo € R". We will show that
u*(z0,0) < h(zo). The inequality u.(zo,0) > h(zo) is established in exactly the
same way, and together these imply the conclusion of the lemma.

Let M = L+1, so that h(x) < h(xo)+ M|zo—z| for all z # z¢, and fix some
6 > 0. As noted following the proof of Propositions 4.1, if 0 < o < 1/6, we can
construct supersolutions V< on @, = R" x [0, 7], for some 7 > 0 independent of
¢, such that

Vi(z,t) = (My\/|z = 202 + 2(n = 1)t + h(zo) +1) V h(zo) + 6.

In particular, for ¢ sufficiently small, V‘(z,O) > h(z) = u*(z,0). The compari-
son principle then implies that

u* < Ve on Q.

Thus u*(z,t) < h(zo) + 6 for all z in some small neighborhood of £y and all
t € [0, 7). This clearly implies that u®(z9,0) < h(zo).

If @ = 0 we argue in a similar way, using the remark which follows the proof
of Proposition 5.1. O
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Lemma 6.3 Suppose (zo,10) € Q and r > 0 are such that
u*(y,20) < v (20,0) for all y € B,(z0).

Then there erists T > 0, r' > 0, depending only on r and the Lipschitz constant
L of u™, such that

u*(y,t) < u*(zo,t0) for all y € B,(z0).
for all (y,t) € Br(z0) x [to, 20+ 7).
Proof. The hypotheses and Lemma 6.1 imply that for any 6 > 0,
u”(y,t0) < u”(zo,t0 + 8) + [L(|z — zo| - r)]*,

where [f]* = f V0. By a translation we may set t; = 0, to simplify notation.
Now we repeat the argument from Lemma 6.2, constructing supersolutions V¢
on R™ x [0, 7] for some 7 > 0 such that

V«(z,t) = u*(zo,to) + 6 + [L\/|z — zo|* + 2(n = 1)t — Lr + 1]*.

Recall from the from the construction of V¢ that the only condition on our
choice of the time 7 is that we need V¢(z,1) = 0 on a neighborhood of zo, i.e.,

we must have
Ly/2(n=1)t—Lr+t<0

for all t € [0, 7]. The parameter § does not enter into this condition, so we may
construct the above supersolutions on a time interval [0, 7] which is uniform for
6 > 0 (This is not the case in the proof of Lemma 6.2 above.)

We deduce as above that u¢ < V¢ on Q, for all sufficiently small ¢, and in
particular that, for all z in some small ball B,/(z¢) x [0, 7], we have u¢(z,t) <
u*(zg,%0) + 8. Passing to the upper-* limit and then letting § — 0, we find that
u*(z,t) < u"(zo) as claimed.

If @ = 0 we reach the same conclusion using Proposition 5.1 and the remark
which follows it. O

We also need the following
Lemma 6.4 u* and u, are finite.

Proof. Given any T > 0, we can construct a family of supersolutions {V¢},s0
which are defined on R" x [0,T] and such that V¢(z,0) > h(z). This is evident
from the remarks following the proof of Proposition 4.1 (if 0 < @ < 1/6) and
Proposition 5.1 (if @ = 0). The comparison principle thus implies that u¢ is
locally uniformly bounded above on @Qr for small €. A similar argument shows
that u¢ is bounded below. The conclusion of the lemma is now immediate. O

A final, long lemma will complete the proof of the theorem.
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Lemma 6.5 u* (respectively u.) is a subsolution (resp. supersolution) of (6.1).

We show that u* is a subsolution of the appropriate limiting equation. The
proof that u. is a supersolution follows exactly the same pattern, so we will
omit it.

Fix some smooth function ¢ such that

v -¢<0

with equality at (zo,0) and strict inequality elsewhere. We will show that

0= (8- 00D ) 5552 ) s, <0 (63)

at (zo,10), if Dé(z0,10) # 0, and that if Dé(zo,0) = 0, then
o — (51']' - y"de’x.x,) <0 (64)

at (zo,1o) for some v € R" such that |v|= 1.
1. First, suppose that D¢(zo,10) # 0. We define v¢ by

v =€ 7%(E ) + 21706, 62,02, R(ES, NY), (6.5)

where A¢ = €2°(|Dg|* V 1| Dg(z0,10)|?) and € = o5 + d°. Here d° is some
constant, which we claim can be selected so that, at least along a subsequence,
we have

u—v°<0

with equality at points (z,,t,) such that (z.,t) — (z0,%0) as ¢ — 0.
2. We now verify the above claim. First define v¢(-,;s) for s € R by taking
v¢ as in (6.5), A¢ as above, and ¢¢ = ;,% + s. From the definitions of ¢ and h
we have i
vi(z,t; s+ 1) = v(z,t;8) + ! (6.6)

for all (z,t,s). By Lemma 3.4, v‘(-,-,0) converges uniformly to ¢(-,-), so the
same holds for v(, -, s) uniformly for s € [0,1]. The definition of u* now implies
that there is some subsequence of the €¢’s tending to zero along which, for every
s € [0,1], ut(-,-) — v°(-,-; s) attains a max at some point (z°,1°), and that
(z*,1*) — (z0,t0) uniformly for s € [0,1] as ¢ — 0. This follows from a
straightforward modification of a standard, elementary argument, which I omit
here.
Now select some ¢ in the subsequence identified above, and define

f(s) = (3)&;{0 uf(z,t) — v¥(z,t;s).
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Clearly f(-) is continuous, and (6.6) implies that f(s+1) = f(s)+€!~. Thus the
intermediate value theorem implies that there is some number, which we can call
d¢, such that f(d¢) = 0. Let (z.,t.) be a point at which max(u‘(-,-) — v*(-, -, d°)
is attained. We see from (6.6) that for any integer k, max(u‘(-, ) —v¢(-,-,d+k))
is attained at the same point (z.,1.). In particular, there is some s € [0, 1] such
that (z¢,t¢) can be identified with (z**,t*). It follows that (z,t¢) — (zo,%0)
as claimed.
3. The comparison principle now implies that

1
el+a

1
WI(CT:;) <0

vi — Av' +

at (z¢,¢). We have assumed that D¢(zo,t0) # 0 and we know that (z,t,) —
(z0,t0), so |Dé(z¢,te)| > %|D¢(Io,io)| for small . Thus A¢ = €2°|D¢|? in a
neighborhood of (z,1.), for small €. Also, |Dé(z,t¢)|? is bounded away from
zero as € — 0. We may therefore use the asymptotic expansion in Lemma 2.1
and Proposition 3.1 to deduce that

¢x.¢r,

gf[d" -A¢+ 0(’\() |D¢|2

¢z.z; +0(1)] <0
at (z.,t¢). Letting € tend to zero we find that (6.3) holds.

4. Now suppose D¢(zo.tg) = 0. We consider several cases.

Case 1: There is some vector § € R", |n| = 1, such that D;,¢ < 0.

Let A be a neighborhood of (zg,10) in which Dy,¢ < —6 < 0 for some
number 6. For each h > 0, we define ¢*(z,t) = ¢(z — hn,t). Clearly ¢* — ¢
uniformly as h — 0, so for h sufficiently small, u* — ¢" attains a maximum at
some point, say (zp,ts), and (zx,t,) — (zo0,%0) as h — 0. We moreover claim
that for h sufficiently small D¢h(zh,th) #0.

Let (y,t) be any point in A such that Dé(y,t) = 0, so that D¢*(y+ hn,t) =
0. Any maximum of u* — ¢* must eventually be contained in N, so it suffices
to show that u* — ¢* cannot attain its maximum at (y + hn,t) if k is very small.
First note that, since D¢(zo,%0) = 0 and Dy, ¢(z0,%0) < —8, we have

(u* = ¢")(z0,t0) = ¢(z0,t0) — ¢(zo — h7,10)
> 6h%/2+ o(h?)

as h — 0. Thus if k is sufficiently small, u* — ¢" is positive at the point at which
its maximum is attained. On the other hand, similar calculations yield

(u* = ")y +hnt) < Sy+hnt)—(y,1)
< —6h?/2 + o(h?).

as h — 0. This is negative if h is small, so the maximum cannot be attained at
(y + hn, 1), as claimed.
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Since D¢*(zh,tn) # 0, we may use the results of Steps 2 and 3 above to
conclude that

h h)2 ¢z.9z, h
o1 = | &5 — 0IDS" " )5 | 62, < 0

at (zp,ts). By the definition of ¢”, this says that

¢z,9z,

)éer, <0
at (yn,tn) = (zn — hn,ts). Because the unit sphere is compact in Euclidean
space, we may extract a subsequence along which D¢(yn,tr)/|Dé(yn,ts)| con-
verges to a limit v € R™ with |v| = 1. Also, Dé(yn,tn) — Dé(zo,t0) = 0, so
6(|Dé(yn,tr)|?; @) — 6(0;a) = 1. Letting h tend to zero along this subsequence,
we pass to limits in the above expression to deduce (6.4)

5. We may now safely assume that D?¢(zo,10) > 0. Without any loss we
may in fact go farther and assume that

D?¢(z0,10) >0  and (6.7)

é(z,1) > u"(z,1) + s(|r — zo)* + (1 — 0)?) for some s > 0. (6.8)

Indeed, if (6.7) and (6.8) do not hold, select some s > 0 and define ¢(z,1) =
é(z,t) + s(|lz — zo|? + (t —10)?). The above conditions are clearly satisfied by ¢.
If we can show that ¢ satisfies (6.4) for arbirtary s > 0, we can then let s — 0
to find that ¢ satisfies (6.4).

Conditions (6.7) and (6.8) imply that ¢ attains a minimum near z for all
t in a neighborhood A; of to. In other words, there is a neighborhood A of
zo in R™ such that, for any t € M, there is a unique point z(t) € N; at which
D¢(-,t) = 0.

We remark for future use that clearly

z(-) is continuous, and z(tg) = zo. (6.9)

We can now state the remaining 2 cases.

Case 2: For every t sufficiently close to g, u*(-,t) attains a local maximum
at z(1).

Case 3: Case 2 does not hold, so that in every neighborhood of ¢y there are
points t such that u*(-,t) does not have a local maximum at z(1).

6. We consider first Case 3. As in Step 4, we will modify ¢ slightly so that a
maximum is attained at a point near (zg,%o) at which the gradient is nonzero.

Fix h > 0 and let f, : R — R be a smooth function such that

fu(s) = s if s < h?, fu(s) > s —h;
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0<fi' <1, 0<fi" <C/h

The number v will be chosen below; here we only specify that vy € (0,1]. We
now define

d’h(zrt) = ¢(z(1),t) + fu(d(z,t) — #(z(2),1)).

" Since fj converges uniformly to the identity function, ¢* converges uniformly to
¢, so u* — ¢ must attain a maximum at a point (z,1p), with (z5,t5) tending
to (zo,%0) as h — 0. (So it does not matter that ¢" is only defined on the
neighborhood of (z¢,0) for which the function z(t) is defined.)

7. We now claim that if v is sufficiently small, then D¢"(.1:;.,t;.) # 0. Note
first that D¢* = f4'(---)D¢, so D¢*(z,t) = 0 if and only if z = z(t). Thus we
need to show that the maximum is not attained at one of the points (z(t),t), if
we select v correctly. Regardless of our choice of 4, we have

(v = ¢")(z(1),1) = (u* = ¢)(2(1),1) < 0.

On the other hand, if we let ¥ approach 0, ¢"(-,t) converges uniformly to
é(z(t),t) on some neighborhood of z(t), for every t € N,. The condition
that defines Case 3 may be restated by saying that the function (y,t) —
u*(y,t) — ¢(z(t),1) takes on positive values in every neighborhood of (zo, o).
Thus if ¥ > 0 is small enough, u* — ¢» is positive somewhere in Nz x AN;. This
verifies our claim.

8. Since Dé(zp,ty) # 0, we may now appeal to the results of Steps 2 and 3
to assert that

h gh oh oh
oh - (&i - —;’;;;5,,7;) $2z, S(1- 0(|D¢”|’;a))—| E;sz $a.z, (6.10)

at (zp,tn).

From the definition of ¢* we compute, recalling that D¢(z(t),t) = 0,

¢:.(1:vt) = ¢,(I(i),t) + fhl(¢(xvt) - ¢(.‘L‘(i),i))(¢¢(.‘t‘,t) - ¢t(r(t)’t)'

Both (z4,ts) and (z(14),1s) converge to (zo,10) as h tends to zero, so |(z4,tn)—
(z(tn),tn)] is arbitrarily small as h — 0. Thus the above identity and (6.9) imply
that

¢ (zh,th) = :(z(t"),t*) + o(1) = ¢e(zh,th) + o(1) (6.11)

as h — 0. Also, for all (z,t) for which ¢* is defined and D¢" # 0 we have

22\ h . .0z, ( ¢z.¢,,)
(6""WT§) by = (‘*’"TDW) Peies < \8ii = Tpgp ) P=ees

(6.12)
The inequality holds because D?¢ > 0 and f; < 1.
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Now (6.10), (6.11), and (6.12) imply that

¢:r:.'¢z,~ h12 ¢2.¢2,
bt — | 6ij — A $z,2;, < (1= 6(|Dg"| :0))|—5W¢z.:, +o(1) (6.13)
at (zh,th) as h— 0.

9. The right-hand side of (6.13) is zero if & > 0. If @ = 0, it equals

¢z.¢x,

|D¢|2 (fhlqsx.‘r,' + fhll¢:.¢zj)

r.hs. = (1 - 6(|Dg"|?))
evaluated at (zn,15). We now claim that this quantity vanishes as h — 0. Using
the properties of fi, we have
r.hs. < (1-6(|D¢|*))(C + C|D#?|/h).
To show that this vanishes as h — 0, we must estimate |D¢(zp,t5)]. We have

|Dé(zn,th)l |Dé(z0,t0)| + O(lzn — zol| + [th — to])]

O(lzh = zo| + [th — to]).

]

I

Next, from the construction of ¢”, the fact that u™ — ¢ attains its maximum
at (zx,th), and (6.8), we have

0 < u™(zh,th) =" (zh,th)
< u‘(zh,th)—(¢(2h,th)_h)
<

h - s(]l‘h - 2012 + (to — i)z).
The above two estimates imply that |D¢(z,t5)|? = O(h). Thus
r.hs < C(1-6(Ch)) = o(1)

at (z,1,) as h — 0, using Lemma 2.3. We may finally let h — 0 and pass to
limits in (6.13) as we did in Step 4 above to deduce that (6.4) holds.

10. Finally, we consider Case 2. Fix some t € A; such that ¢t < ty and such
that u™(z(t),t) > u*(y,t) for all y € B,(z(t)), for some small number r. Taking
N; smaller as necessary, we may assume that r > C~! uniformly for t € A,.
According to Lemma 6.3,

u*(y,s) < u*(z(1),t) for all (y,s) € By (z(t)) x [t,2+ ) (6.14)

for some numbers r’ and 7 which depend only on » > C~! and on the Lipschitz
constant L of u*(-,t). Since we have uniform control over these quantities in
MNi, we may assume that v’ > C~! and 7 > C~!. In particular, if we take t < ¢,
sufficiently close to tg, then (6.14) implies that u*(zo,t0) < u*(z(t),?). Since
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u* < ¢ with equality at (zg,1p), we see that ¢(zo,%0) < ¢(z(t),t) for t such that
0 < 1y —t is small. Therefore

0< %4’(2(1),1)'1::0 = D¢(z0,10) - £(t) + ¢:(20,t0) = ¢:(Z0, o)

Since D?¢ > 0 this implies that (6.4) holds for any choice of v € S*~1. D
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7 Application: Averaged Kinetic Constants

In the problem considered above, we find the same limiting equation for o > 0
for an extremely wide range of potentials W(-). In some sense, this says that
information about the structure of the potential is lost in the passage to the
limit. We now consider situations in which the limiting PDE depends more
delicately on the structure of the approximating PDEs. The two examples we
will consider are fully nonlinear versions of (1.1) and semilinear equations in
which the potential varies as ¢ — 0. In both cases, if the potential W has a
number of potential wells in each periodic repetition, a constant appears in the
limiting equation which we interpret as reflecting a sort of average of the kinetic
properties of fronts associated with the different potential wells. This procedure
thus predicts properties of “composite fronts” formed when various fronts im-
pinge on and interact with one another, from a knowledge of the properties of
the constituent fronts.

We first consider a fully nonlinear version of (1.1). Assume that W(.) is as
described in the introduction, and in particular that W(-) satisfies (1.7)-(1.11).
We further assume that |W"”| < 1 and that W € C4(R/Z). Then the function
z — z + W'(z) is increasing, so we may define

T(-) is the inverse of the function z — z + W'(z). (7.1)

We will look at the asymptotic behavior of solutions of the equation

1 —ut ut .
uf = T5a (el_a +T(€1__a +eteAu )) . (7.2)

If & = 1, this is essentially the phase-field equation proposed by O. Penrose [17]
and analyzed by the author in [12]. We will instead look at values 0 < o <
Qo S 1.

Existence and uniqueness of solutions of (7.2) with @ = 1, under some re-
strictions on the initial data, is proven in [12]. Exactly the same arguments
can be used to establish existence and uniqueness for arbitrary a for continuous
initial data which is periodic or can be approximated monotonically by periodic
functions. The latter holds, for example, if u(z,0) equals a constant, say u,
outside a compact set and if u, is an extremal value of u(z,0). No doubt one
could establish existence under more general hypotheses; we will not pursue
that here.

Recall that (1.1) is the equation for L?-gradient flow with respect to the
functional E¢, defined in the introduction. It is easy to verify, at least formally,
that the same energy E¢ is a Lyapunov functional for equation (7.2). Indeed, if
u® is a smooth solution of (7.2), then we have

d 1 ,, uf
‘—EE‘(UC) = /Du‘ DU: + EW (F)ufdz
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= o [V + g - )Jusda
= 'e;_ia /(Al — A2)(T(A;1) — T(Az))dz, where

€ €

Ay =c¢

= W/(m) + o,

We have used (7.1) and (7.2). The integrand in the last integral can be seen to
be nonnegative, since T'(-) is an increasing function.

This suggests that we may think of (7.2) as a fully nonlinear phase field
equation corresponding to the infinite-well potential W¢.

We now translate our earlier results to this context. We start by proving a
lemma corresponding to Lemma 2.1, which contains the asymptotic expansion
in the semilinear case.

First we rewrite the ODEs defining g and h in terms of T', defined in (7.1).
It is easy to see that the ODE (2.1) is equivalent to

g-T(g+ Agee) = 0. (7.3)
Also, (7.1) and (7.3) imply that

1
W'g)—-1= —m——. 7.4
S PR v 9
We may use this to rewrite (2.4) in the form
h ()
—————— —h—Jhe =4 ——g¢. 7.5
T'(g + Mee) 133 gex + by [']3 (7.5)
We also define another auxilliary function A by the ODE
yee £(A) )
hee + 2 he (—— 1 7.6
33 T'(g + Agee) ( )

h(0,2) = 0, h(€+1,)) = h(€, N).
Here x()) is defined by the condition
1 A)g?
/ _I'i)g_f._ - g3do =0.
o T'(g+ Agee)

As usual, this is a solvability condition for (7.6).
It will be convenient to use the notation
a N(¢
N(9) = ¢z,¢z;9z.z,) M*(¢) = A — 6(**| Dg| )lD(‘ﬁlz

We now carry out an asymptotic expansion.
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Lemma 7.1 Suppose ¢ : Q — R is smooth, and on the set where D¢ # 0 define

6 = ¢+ EMU(Dh(=>=,°|Dg]2),  and

cl—a’

€ €
e = fl—ag(c—i—a’fzawﬂz) + €2+2aN(¢)h((—1:;,€20|D¢l2).

Then v¢ is smooth where i1 is defined, and on this sel we have

1 v v
v + elta _((1-0 - T(cl-a + ‘HGA”())

¢(
= gf(cl—a

€221 D)%) [¢: — K(**|Dg|*) M (¢)] + O(e)

where the O(¢) error term contains derivatives of ¢ up to fourth order, and
derivatives of the auzilliary functions g, h, and h up to second order.

Proof. Let £ = ;rf—a, £ = ;1?:—0, X = €22|Dg|?, and A = 22| Dg*|2.
We start by computing
v¢ 1 <

Toa F AV =g+ Mgee

+ € [ge A + 46298 62, 02,2, 96x + 2N (9)(h + Ahee)]

+ O(éY).
Here and in what follows, we combine derivatives of ¢ up to fourth order and
derivatives of the auxilliary functions up to second order in the error terms
indiscriminately. All the auxilliary functions explicitly appearing in the above
expression are evaluated at (£¢, A¢). Recall, however, that h and its derivatives,

which we do not yet exhibit explicitly, are evaluated at (£¢, A€).)
From the definition of ¢¢, we easily compute that

A6 = A1 4 262 M4 (¢)he) + O(€?)

We use the above substitution for A¢ where it appears in the leading order
term. In the lower-order term, we use the cruder estimates A¢ = ¢ + O(e),
#5, = ¢z, + O(¢). This gives
v(
el-a
+ € FO(geAd  +2M($)X geche + 7N (8)(h + M hee + 49¢2))
+ O(éY).

Now equation (7.3), Taylor’s theorem, and the above equation give

1
cl+a

+ €l+aAv¢ = g+ A(gfg

v 14 €
lo - T(;ﬁ +eT7A0Y)]

= =T'(g+ Agee)lge Ao’ + 2M‘(¢)/\(9£e;l€ + °N(9)(h + Ahge + 4g¢))]
+ O(¢)
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We next substitute for the terms T7(---)(h + A¢hge + 4g¢x) from (7.5) to find
that

a 1 v( a
€2 N(¢)h+€l+a[9_T(61_a + et Av))

= =T'(g+ A gee)ge Ag* + 2M($)X geehe — 62"']\;(—?)9(«\‘)95]

+ O(¢) (7.7)
Using the definition of ¢¢, we now compute that
A¢C = Ag + A M (¢)hee + O(e).
It follows that

N(¢)
€

We substitute the above into the right-hand side of (7.7), and we rewrite the
left-hand side using the definition of v¢. This yields

geDg* — €27 —=L0(X )ge = ge M(8)(1 + Ahge) + O(e).

1 . v ve 14
€]+o[€1-a - T(cl—o te OAvt)]

= —T'(g+ Mgee) M ()ge[l + 2,\“;‘—:715 + Ahee] + O(e).

Recall that g and its derivatives are evaluated at the point .(5.‘, A¢), whereas h
and its derivatives are evaluated at (£¢,A°). We therefore replace h¢(€¢, A¢) by
ﬁf(f‘, A¢), and similarly for isz. Of course this adds another O(¢) term to the
error, since £ — £ = O(¢). Having done this, we can use the ODE (7.6) to
conclude from the above that
1 v¢
€1+a [cl—o

~ Ty + oAV = = M4(8)gc + O(e).
The statement of the lemma now follows once we observe that
v; = ged: + O(e) = gede + O(e).
m]

We now estimate the error terms. All our earlier estimates still hold for g
and h and their derivatives, so we only need to estimate h.

Lemma 7.2 There ezists some number k > 0 such that
0F 057 h = O(A\*g¢)
for all 8,2 > 0 such that By + B2 < 2.
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Proof. We may integrate (7.6) to find that

il 1 ¢ 2 "
(€N =5 / KM (g) + (x(A) = 1)]do.

This can be verified by differentiating the above expression and using (7.1) and
(7.4). Our definition of k guarantees that the right-hand side is periodic in &,
so we do not need to add a constant of integration. _

In principle, we could now use the definition of x()) to express h¢ entirely
in terms of g and its derivatives. 3

Now we can derive explicit expressions for h and its derivatives by integrating
and differentiating the above expression. (It is here that we use our assumption
that W is C%.) The only terms occurring in these expressions will be g and its
derivatives up to third order, all of which we have already estimated, and it is

clear from our earlier estimates that the conclusion of the lemma is satisfied.
0 ,

With the estimates from Section 3, Lemma 7.2 implies that if a > 0 is
sufficiently small, then the error term in Lemma 7.1 is O(ec-l)gf, for some
C-1 > 0. For such a and for a = 0, we may now proceed exactly as above to
construct supersolutions of the PDE (7.2). The proof of Theorem 1.1 uses only
the asymptotic expansion, the error estimates, the constructed supersolutions,
and certain facts about the structure of the limiting PDEs which still hold in
this case. Thus the machinery assmebled above now allows us immediately to
deduce the following theorem. We are implicitly assuming that the initial data
h belongs to a class of functions for which the PDE has a solution.

Theorem 7.1 Suppose that u‘ solves (7.2) with initial data u®(z,0) = h(z),
where h is Lipschitz. Then there exisls some ag > 0 such that if 0 < a < aqg,
then u® converges uniformly to a function u, and u solves the equation

Us, Uy,
Uy = K:(|Du2|;a) (64)' - 6(|Dul?; @) Dul? ) Usiz, = 0

with initial data u(z,0) = h(z). Here
o) = 1 KD ifa=0
K(Xa) = { o= lima—os(}) ifa>0

u]
We briefly discuss the possible significance of this result. We will focus on
the case 0 < a < ag.
Suppose that W(:) has exactly J zeroes in each period, so that in the refer-
ence period [—1/2,1/2), we have —1/2< z; < 22 < ... <23 <1/2< 2541 =
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21+ 1. We may then let @ = 1 in (7.2) and solve the equation with appropriate
initial data having roughly the form

he(z) ~ 2'x(2) + zi41(1 = x(2)),

where x is the characteristic function of some open, bounded, reasonably smooth
set. Results in [12] show that, as € — 0, solutions u¢ exhibit an interface evolving
via generalized mean curvature, rescaled by a factor ; = o;u;, where

oi = / + VW (u)du, i = ( / T'“(W"(u) + 1)\/§Wu)du.)_1 .

We refer to ; as the kinetic constant, for want of a better name. Very similar
results are obtained for a nonlocal, double-well version of (7.2) in [13], see also
[15]. Formal computations carried out by Buttd in [4] show that we may inter-
pret o; and p; as the surface tension and the mobility, respectively, of the wave
front associated with the pair of adjacent zeroes {z;, 2,41} of W(-).

In the infinite-well case, with 0 < a < g, the limiting equation specifies
that every level set moves via generalized mean curvature motion, with kinetic
constant ®. Using (2.6) and (2.7), we may rewrite the definition of k() in the

form
I3 V2W (u) + c(N)du

) Jo (W (u) + 1)\ 2W () + c(N)du

In particular, we have K = &z, where

E:/O1 V2W (u)du, A= (/OI(W”(u)+1)\/2_VT/TzT)du>—I.

Thus the limiting kinetic constant in the infinite-well case has the same form as
in the two-well case. Note also that

&(2)

Gg=01+---+o0y, Fl=pit 4 +uyh

We interpret @, %, and K as reflecting the average kinetic properties of a
wavefront formed from the interactions of the J fronts associated with the dis-
tinct pairs of potential wells. Thus our results suggest that the surface tension
and the mobility of a front composed of a number of smaller fronts can be ex-
pressed as above in terms of the surface tension and mobility of the constituent
wavefronts.

Finally we examine the family of equations

e L Ly m0 s
bt} u +€l+a( O(cl—c')-i'C 1(61’0)) .

discussed in the introduction. Here W; may be any smooth function the deriva-
tive of which is periodic with period 1. As above, the asymptotic behavior of
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this equation for a range of values 0 < a < ag can be established using the ma-
chinery developed for (1.1). In this case we modify the asymptotic expansion
by letting the auxilliary functions depend on ¢ as follows. Let W¢ = Wy + eW;.
For every A > 0, we require that

W (g%) = Agge — w‘(,\)\/XgE =0.

g(0,2) =0, g(€+1,2) =g, A) + 1.

Multiplying the ODE by g¢ and integrating gives a compatibility condition which
we use to define w*:

w((/\) - W"](l) — VVI(O)
VX [, g¢2do

One can verify that

wi(1) -Wi(0) _ Wlo

\/Xfol g¢do fol V2W () + c(M)du’

where g is the solution of the above ODE with ¢ = 0.
We also define ht by

liug)w‘()\) = w(d) =

(A
W (g)h¢ — Ahge — cw‘(/\)\/th =4g¢, + ———f\ )gg
with periodicity conditions as before and 6¢ defined by an appropriate modifi-
cation of (2.6).
We now have

Lemma 7.3 If ¢ is a smooth function, let (€¢,X¢) = (=%s,€2°|D¢|?), and on
the set where A¢ # 0 define

¢ = 61-09((6(,/\‘) + 62+2a¢z.¢:,~d’z.r,~h((£(a ,\t).
Then v¢ is smooth where defined, and on this set we have

v(

€/
£1+a (cl—a)

v — Ave +

¢x.¢z,
|Dg|?

= g¢(§5X) [¢: —[6i; = 6°(X) 16z.z; +w‘(/\‘)lD¢|] +0(e),

where the O(¢€) error term contains derivalive of ¢ of up to fourth order and
derivatives of g¢ and h® of up lo second order.

The proof of this lemma is a calculation very similar to that given in the
proof of Lemma 2.1. To complete the proof of the assertion contained in the
introduction, we would estimate the error terms and then argue exactly as the
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proof of Theorem 1.1. Because the ODEs depend on ¢, the required estimates
now involve some work beyond what we have already done in Section 3. We
therefore do not complete the proof, because very little insight would be gained
by going through these estimates. Formally, though, the above lemma shows
that solutions of (7.8) are governed in small-¢ limit by the equation

- (65 — |B rz’ Yuz,z; +@|Du| =

if 0 < o < ap, where @ = limy_.ow(A). This is essentially the result stated in
the introduction. If & = 0, the (formal) limiting equation is

ue — (6 — 6(| Dul?) Iz' r’ Yz ,z; +w(|Dul?)| Dul| = 0.
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