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Abstract

For modeling coherent phase transformations, and for applications to structural op-
timization, it is of interest to identify microstnictures with minima] energy or maximal
stiffness. S. Vigdergauz has shown the existence of a particularly simple microstruc-
ture with extremal elastic behavior, in the context of two-phase composites made from
isotropic components in two space dimensions. This "Vigdergauz microstructure1' con-
sists of a periodic array of appropriately shaped inclusions. We provide an alternative
discussion of this microstrncture and its properties. Our treatment includes an explicit
formula for the shape of the inclusion, and an analysis of various limits. We also dis-
cuss the significance of this microstructure (i) for minimizing the maximum stress in a
composite, and (ii) as a large volume fraction analog of Michel! trusses in the theory
of structural optimization.

•This work was done while Y. G. was a student at the Courant Institute.
'The work of R. V. K. w u partially supported by ARO contract DAAL 03-92-G-OOll and NSF grant*

DMS-9404376*nd DMS-9402763.



 



1 Introduction,
This paper is devoted to the "Vigdergauz microstructure", a special elastic composite in two
space dimensions whose microscopic behavior is in a certain sense elastically extremal. This
composite is spatially periodic, consisting of properly shaped elastic inclusions embedded
in an elastic matrix. We call it extremal because it minimizes the overall energy at a
given strain (, among all composites made from the same components in the same volume
fractions.

To explain why this microstructure is interesting, we note that extremal composites have
recently received a lot of attention. One reason lies in applications to structural optimization,
« * e.g. [2], [8], [12], [19], [26], [32], [39]. Another lies in theoretical developments in the
analysis of composites, see e.g. [3], [11], [13], [36], [37], [38], [44]. A third motivation
is the idea that the shapes of coherent precipitates may be explained by elastic energy
minimization, see e.g. [20], [21], [22], [28], [31], [40], [45].

As a result of recent progress, we now know a rather general algorithm for computing
examples of elastically extremal two-component composites [3], [5], [24], [36]. This algorithm
works in principle in three space dimensions, and with anisotropic component materials. It
produces the extreme value of the elastic energy, and examples of extremal microstructures
obtained by a construction known as "sequential lamination".

It is well-known that extremal microgeometries are generally not unique. To take a
familiar example, the Hashin-Shtrikman bounds on the effective bulk modulus [17] are real-
ized both by sequential lamination [11] and by the concentric sphere construction [16]. This
degeneracy is by no means restricted to the case of the bulk modulus bound, see e.g. [15].
Thus it is natural to consider other examples of extremal microstructures, particularly ones
that are in some sense simple.

Hence our interest in the Vigdergauz microstructure: it achieves the same extremal
behavior as the other known constructions ("second-rank lamination" and the "confocal
ellipse construction9*), but it is in some sense simpler and more ordered. This microstructure
was first discovered by S. Vigdergauz in a series of papers [46]-[56]. His first paper [46]
simply sought a finite number of "equally strong9* holes in an elastic plate. He reduced the
task of finding such holes to that of solving a particular integral equation, which he then
solved numerically. Subsequently Vigdergauz extended his calculations to periodic arrays of
elastic inclusions as well as holes [51], [54], [56]. In [56] he also computed the energy of the
microstructure explicitly, and observed that the value coincides with the optimal bounds
derived by L. Gibiansky and A. Cherkaev, [12].

The purpose of the present article is to give an alternative treatment of the Vigdergauz
microstructure, and to explore its properties in more detail. We take a different starting
point, namely the "optimally conditions* for elastic energy minimization as derived in [14].
This leads, through the use of Koloeov-Muskhelishvili potentials, to a problem in complex
variables for the shape of the inclusions. The problem is very similar to that addressed by
Cherepanov in [9]. Using his ideas we derive an explicit representation for the shape of the
inclusions in terms of elliptic functions. We recover almost all of the Vigdergauz's results,
with arguments that are somewhat simpler, and a representation of the answer that is much
more explicit. However we do not have an explicit formula for the full Hooke's law tensor
associated to this composite. Such a formula is asserted in [56] but we were not able to



understand that part of the paper.
The Vigdergauz microstructure consists of a spatially periodic array of inclusions of a

particular shape. The shape of the inclusions depends on the average strain ( (or more
precisely, on its eigenvalues). When the deviatoric part of ( becomes much larger than
its hydrostatic part, this microstructure ceases to exist. The condition for its existence,
equation (3.23) below, is easy to understand from the viewpoint of energy minimization:
it defines one of the regimes in the optimal energy bound as derived in [4] (formula (1.4)).
When the existence condition (3.23) breaks down one enters another regime, where the
optimal geometries must have a different topological structure (see [14] for a more detailed
discussion). The condition (3.23) appears in the work of Vigdergauz, too; there it was
derived from the positivity of a Green's function for an elliptic operator.

In this paper we examine the behavior of the Vigdergauz microstructure in various lim-
its. We are able to do so because our representation of the microstructure is very explicit.
Remarkably, one can obtain such diverse structures as an optimal elliptical inclusion in an
infinite plane, a simply layered composite, and a rank-two laminate as limits of the Vigder-
gauz geometry. More precisely, in the dilute limit the Vigdergauz microstructure consists of
a periodic array of non-interacting optimal elliptical inclusions. As one approaches equality
in the existence condition (3.23) the inclusions become increasingly elongated, forming in
the limit a layered microstructure. And if we use a rectangle with sides L and \/L as the
period lattice rather than a square, then the Vigdergauz microstructure becomes a rank-two
laminate in the limit L —• oo.

Let us dwell a bit more on the dilute limit. It has been known since the work of Eshelby
that the strain in an isolated elliptical inclusion is constant. Several authors have used this
fact to predict the shapes and orientation of coherent precipitates in the dilute limit, by
assuming an elliptical geometry and optimizing over orientation and eccentricity [7], [20],
[21], [40] (see also [43] for a critical review). The Vigdergauz microstructure can be viewed
as a large volume fraction analogue. It has constant strain in the inclusion, provided that
the average strain takes the specified value £. Curiously, the strain in the inclusion is always
isotropic even when f is anisotropic. (See [25], [31] for more on elastic energy minimization
and the shapes of coherent precipitates.)

Our treatment of the Vigdergauz microstructure is organized around the minimization
of elastic energy at fixed average strain f. It is equally natural to consider composites
which minimize the complementary energy at fixed average stress <r$. These are the most
rigid composites, so they arise quite naturally in problems of structural optimization, see
e.g. [2]. The Vigdergauz microstructure can be used to solve this problem too under
certain conditions on <?o (see equation (5.6) — the analogue of (3.23) for complementary
energy). The case when the "inclusions" are holes is particularly interesting. Then the
Vigdergauz microstructure provides a systematic and appealing way to pass from a dilute
array of elliptical holes (volume fractions 0) to a Michell truss (volume fractions* 1), while
maintaining exact optimality at any intermediate volume fraction — but only if the two
principal stresses have the same sign, or equivalently if det <r0 > 0.

Questions of elastic energy aside, it is natural to think that the Vigdergauz microstructure
might minimize the "stress concentration** within some class of composites. Indeed, this is
probably what Vigdergauz had in mind when he first sought a periodic array of "equally
strong inclusions", c.f. [6], [9], [10], [49], [57]. We explore this issue in section 5.2.



It seems likely that there should be an extension of the Vigdergauz construction to three
space dimensions. However the methods of the present paper are entirely two dimensional.
This question remains open aside from some suggestive calculations by Vigdergauz [49], [53],
[55], where be gives necessary conditions for the existence of "equally-strong" cavities and
presents a numerical scheme for calculating their shapes.

Another natural extension would be to let the component Hooke's laws be anisotropic.
We address this topic in [14]. The result is rather interesting. For certain non-generic choices
of the (now anisotropic) matrix material the Vigdergauz microstructure extends. But for
"most" anisotropic choices of the matrix material, there is no elastically optimal analogue
of the Vigdergauz construction. Thus an anisotropic perturbation of an isotropic Hooke's
law can break the cegeneracy (confocal ellipses vs. rank-two laminates vs. Vigdergauz
construction) that is present in the isotropic case.

2 The problem and some notation.
Let us consider a unit square Q in R7. Assume that it is "made* of two elastic isotropic
materials with Hooke's laws C\ and C*. Then at any point z € Q the Hooke's law is given
by the 4th order tensor

where Xi(r) &nd Xiix) *re the indicator functions of the sets occupied by materials 1 and
2 respectively, with

Each material is characterized by a bulk modulus i» and a shear modulus /i,. The Hooke's
law d is then defined by

Cm = 2/i,- (IJ - \{Trri)i) + ki(T*n)l (2.1)

for any symmetric 2 x 2 matrix IJ, where / is the identity matrix. Without loss of generality
we may assume that fi\ > / i j .

In linear elasticity the stress and strain tensors a(x) and e(r) are related via the Hooke's
law:

<r(*) = C(x)e(x) (2.2)

and the strain is

i£fe
where v is the vector of displacements. The equilibrium equation is

V.<r(*) = 0. (2.3)

We are interested in spatially periodic composites; therefore the equations of elasticity (2.2)
and (2.3) must be solved on the period cell Q, with periodic boundary conditions. To be



Figure 1: Structure of the period cell.

precise, for any 2 x 2 symmetric matrix £ we look for a Q-periodic strain field with average
value £:

d* = t, (2.4)i
where 7 denotes the average value over Q. Such a field is uniquely determined.

JQ
The elastic strain energy is given by

where c* is the average stress:

T*=-f <r(z)dx.
JQ

(2.5)

(2.6)

Obviously the energy W depends on the microstructure. The problem we address is that
of finding microstructures which minimize the energy Wy when the volume fractions of the
component materials are fixed, i.e. when the microgeometry is constrained by

i (2.7)

In other words, we look for a characteristic function Xi(x) (taking only the values 0 and 1)
solving the following minimization problem

|e(v),e(v))dx. (2.8)

Specifically, in this paper we look for an optimal microgeometry which is a (^-periodic
array of simply connected inclusions with smooth boundary. See Figure 1.

From now on we will restrict ourselves to a single period cell, except when we specif-
ically refer to the two dimensional ^-periodic array. Our strategy is exactly as in the



paper [15], henceforth referred to as Part I. We begin with the optimality conditions and
apply them to the complex variable formulation of the problem. Here we have a periodic
problem, while Part I considers a problem with affine boundary condition, but the opti-
mality conditions for the two cases are the same (see [14]). Therefore the identification of
the Kolosov-Muskhelishvili potentials proceeds exactly as in Part I, (equations (3.6), (3.7),
(3.8)):

ifri = 0 (2.9)

(2.10)

(2.11)

where the constants £o> d and c are given by equations (2.6), (2.7) and (3.9) of Part I. Thus
4>\, %l>\ and fa are fully determined in Q. The potential fa remains unknown, as does the
shape of the interface I\ These will be determined in section 3.

We note in passing that it is not strictly necessary to use the full set of optimality con-
ditions as in Part I. One can actually arrive at (2.9)—(2.11) by starting from the apparently
weaker hypothesis that the strain in the inclusion is a constant multiple of the identity. But
the argument is long and very tedious, whereas the passage from the full set of optimality
conditions to (2.9)—(2.11) is very easy.

Now we use the periodicity to obtain a translation law for the potentials fa and fa.
From the double periodicity of e(v) and v ( z ) - ( z we find, using the method of [34] (p. 251),
that the complex potentials fa and fa are single valued, and

fa = fa(z) + 0z + yz 1
\ (2.12)

where A = 1 + 2^21^7\ fay fa &re Q-periodic functions (they do not have to be analytic);
and /?, 7 are constants to be determined. The expression £z in (2.12) is understood in the
sense of complex variables, i.e.

Now comparing the first line of (2.12) with (2.10) we find that

0=1*1*, 7 = 0.

Applying this and (2.10) to the second formula in (2.12) we obtain

+ bx9 (2.13)

where V>o is Q-periodic as before, and b and c are defined in Part I, (equations (3.9), (3.11)).
We note that we haven't used the average strain condition (2.4). However one can check

that (2.9), (2.10), (2.11) and (2.13) are consistent with (2.4). The calculations involved are



not completely trivial. The key is to use the formulas

[i i*(z)dz) = f/?-
r * (214)

where ft and 7 are the same as in (2.12) and square brackets denote the jump across the
interface (e.g. [<f>] = fa - +1). Incidentally, the formulas (2.14) do not depend on the
optimality conditions: they are valid for any smooth, connected inclusion in Q determining
a spatially periodic composite.

We also note the following formula for the average stress <r*:

(2.15)
[ - 6 1 + 2 » 6 J ) + 2?(A + 1 ) /

This is obtained from (2.6) by representing the local stress <r{x) in terms of the complex
potentials, then evaluating the integral. Therefore the energy W defined in (2.5) is given by

W = (A + l)(»e[y(62 - 6 1 + 2*12)] + 0 1 * 0 - 4/i2 detf. (2.16)

Substituting the values of fi and 7 in (2.16) we obtain an expression that coincides with the
minimum value of the energy derived in [4] (formula (1.4)).

3 Solution of the reduced problem.
In this section we find the remaining unknown complex potential ^2 &nd the shape of the
inclusion ttplxcitly. Here as in Part I we apply the method of Cherepanov, [9]. We recall
that the remaining unknown potential V>2 satisfies (2.11) and (2.13):

(z) = ez, z € T |if>,(z) = ez,
(3.1)

^ ( :

Conversely, any analytic function satisfying (3.1) provides, together with (2.9) and (2.10),
an optimal field in the matrix. We will show that (3.1) has a solution for a certain regime
of values of the average strain f.

We begin by mapping the exterior of a periodic array of slits in the C plane onto region
2 in the z plane. More precisely, let z = w(Q map the periodic array of slits M of length 2e
(e € (0,1)) with the period cell Q1 = [0,2) x [0,2A) in the ( plane to the Q-periodic array
of inclusions with smooth boundary in the 2 plane (see Figure 2). The map w must satisfy
the following conditions:

v>{0) = 0; w{C + 2) = w(C) + 1; w(C + 2ih) = w{Q + i. (3.2)

At the endpoints of the slits w(Q = O(y/{ — CM) •* C -^ CM» where CM is an endpoint of
a slit, on account of the smoothness of the boundary of the inclusion in the z plane.



z-plane -plane

1+e 2

Figure 2: Conformal Mapping

Let us now substitute z = w(() in the first equation of (3.1) and differentiate along the
slit. Using notation ¥(£) = ¥3(u;(()) we obtain:

<€Af. (3.3)

We can represent (3.3) using the following trick of Cherepanov: Consider two analytic
functions F and G chosen such that

(3.4)

(3.5)

Then (3.3) becomes
0, < € M, ^

= 0, <€M. J
(3.6)

Besides (3.6) the analytic functions F and G have the following properties: they are Q'
periodic, by (2.13); at the endpoints of the slits

no= a n d (3.7)

also F' and G' are single valued and have no other singularities. Once such functions are
found, using (3.4), (3.5) we can easily reconstruct w(() and • « ) . The result is

(3.8)



where Co is a constant of integration, determined by (3.2), and

(3 9)

Now let's construct the functions F and G. Let p(C) be the Weierstrass elliptic function
with the period cell Q7. We introduce the notation

p(l) = tu P(ih) = c3, p(l + ifc) = c2, p(l - e + ifc) = p(l + c + ih) = A,

where 2A is the height of a period cell in the (-plane and e is the half-length of the slit M
(see Figure 2). We remark that tj and A are real and t\ > ej > A > C3 (see [33]).

Let us consider the function:

•T- (3.10)

We claim that v(£) has the following properties:

1. v(Q is single valued analytic function in the exterior of the periodic array of slits M\

2. v(C) is Q* periodic;

3. v{Q = O( J 1 ) as C - • CM> ^ ^ v ** bounded everywhere else;

4. *e(v(O) = 0 on M.

To explain why, let us choose the branch of the square root such that y/\ = 1, with the
branch cut along the negative real axis. Then the function v(Q has a branch cut wherever

This is equivalent to the condition that p(Q € (A,es), which is satisfied only along the cut
M (this is how the function (3.10) was constructed). Thus properties 1 and 4 are proved.
Property 2 follows from the Q* periodicity of p(£). And property 3 follows from the fact
that points CM * K simple points for p(C) (P'(CM) ¥" 0)-

We look for the functions F' and G' in the form

where r^dj € R are constants to be determined. It is easy to see that equations (3.6) are
satisfied, as is the condition (3.7). In order to recover F and G from the above formulas we
have to use the function

i = I v(z)dz.
Jo

V(C) = / v{z)dz. (3.12)



This function is single valued in the exterior of the periodic system of the slits because
§dQt v(QdC = 0, since v(C) is doubly periodic. Let V(2) = 2iu V(2ih) = 2tt3, tj > 0. Then
according to (3.2) and (3.8) we obtain:

h-l
n = c — — - , r2 = 0,

iih - <s

and therefore
*' ~^-C- (3-13)

Thus by (3.9)

h ^ ^ ( 3 1 4 )

Now using the translation law for the potential V"J (the second equation in (3.1)) we obtain:

2 T - 1 - T A

(3.15)Th-1

2h-l-Th
V1 «" Th-1 '

where

Notice that (3.15) implies that q is real, hence so is b. From the formula for b ((3.11) Part I)
we see that £12 — 0. This means that the sides of the period cell have to be oriented along
the eigendirections of the average strain tensor (. Solving the system (3.15) for h and T we
obtain:

- < 3 1 7>
(The other pair of solutions h = 1 and T = 1 is not feasible because it leads to a slit of
length sero. However, we will see that h —• 1 and T - • 1 in the limiting case when the
volume fraction of the inclusion tends to sero.) Finally substituting (3.16) and (3.17) into
(3.13) we obtain:

(3.19)

10



Now we have to determine parameter e (the half-length of the slit) or, equivalently, the
parameter A (the value of p « ) at the endpoints of the slit):

We notice that by the definition of T

It is easy to check that in the above formula the numerator is an increasing function of A, and
the denominator is a decreasing function function of A. Thus T(A) is an increasing function
of A. It increases from 0 to I/A as A increases from es to €2- Indeed, when A = e$ the
numerator in (3.20) is finite, while the integral in the denominator diverges since p'(ih) = 0,
[33]. When A = e2 then T(A) is clearly I/A. Therefore in order to be able to solve for A we
need

0<T<i (3.21)
n

By (3.16), (3.17), this condition implies

Ifl < *2J (3.22)

substituting the value of q in the above inequality we find the alternative formulation

IC22 — C111 < 02 ,fl , ,fl , — • (3.23)
/ij + 01*2 + 02*1

The problem is solved.
Notice that (3.23) coincides with the definition of the third regime in energy bounds in

[4]. We have seen this condition before, in Part I, as the condition for the existence of the
confocal ellipse construction.

4 Analysis of the solution.
First of all we want to know qualitatively the shape of the optimal inclusion. Of course it
depends on some parameters like volume fraction, average strain and material properties.
But for all admissible values of the parameters it has rectangular symmetry due to the
symmetry of p(() with respect to the center of the period cell. Therefore, it is sufficient to
study only one quarter of the inclusion. From the conformed mapping (3.18) we can obtain
one quarter of the interface T in the parametric form: * = 9te[w(t + ih)]f y = &m[u>(< + ih)]y

< g [ l - e , 1]. Using (3.11), which holds on the slit, we can write an explicit parametrization
ofT:

(4.1)

11
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Figure 3: Vigdergauz inclusion in the period cell.

where t € [1 - e, 1] and
1 + 01 + q

= —1

Eliminating t from this expression and ignoring x0 and yo we obtain:

j x / • ' " / p ( « + i h ) - e 2 . (4.2)

Notice that the coefficients pi and pj are positive real numbers, so, x £ [(1 - e)pupx]. In
order to study the shape of the inclusion let us look at the derivative of y(x):

pjih -f•(«) = r1

It is easy to see that this function is positive, monotone decreasing and becomes 0 only when
x = pi, [33]. Therefore y(r) is a monotone increasing and concave function. Thus the whole
interface consists of four identical quarters (4.2) glued smoothly together (C = 1 + ih is a
double point of p(C)), e&ch of them being a graph of a monotone convex (concave) function.
Figure 3 shows a "generic** Vigdergauz inclusion, drawn using the program Mathematica
(for more explanation see the Appendix).

4.1 Low volume fraction limit.
Now let's study what happens to the shape of the inclusions as the volume fraction becomes
small while all other parameters are fixed. Our goal is to show that the shape becomes

12



Figure 4: The sketch of the graph of / (x) = p(t + x).

asymptotically an ellipse. When 0\ —* 0 we have 9 —• 90, where

A = 1 - M i + 0 ( 0 , ) ,
Also

where

Therefore from (3.20) we see that A approaches t% and thus, is approaches 1, while the half
length of the slit e - » 0 + . Then we obtain

To
- > J > 3 =

Let / (x) = p(i + x), x € [0,1] (here p is the Weierstrass' elliptic function with periods 2
and 2i). The function /(x) is real, with a graph as shown schematically in Figure 4, [33].

In the limit we have for a quarter of the interface boundary:

13



Expanding /(«) in the power series near * = 1 and taking into account that /'(I) = 0 and

/"(I) # 0 we obtain:

— rfr
- . ^ c 2 - ( l - * ) 3

Evaluating the integral gives

or, equivalently

Thus in the small volume fraction limit y(x) represents an ellipse with the eccentricity

E l - bi
Pl To'

The fact that the ellipse is an optimal shape in the small volume fraction limit is known
as a matter of theory, [30]. The orientation and eccentricity of such an optimal ellipse is
uniquely defined by the value of the average strain [7], [20], [21], [23], [29], [40]. The above
calculation recovers those parameters precisely, by realizing the optimal ellipse as a limit of
micro6tructures that are optimal for any volume fraction.

4.2 Limiting rank-1 laminate.
Now let's consider a different asymptotic limit, namely what happens as we approach equal-
ity in the solvability condition (3.23). Our goal is to show that the inclusions become
elongated, approaching in the limit a layered microstructure. Assume, to fix ideas, that q is
positive, so the limit of interest is q —• 02. In this case h - • 02, T —• 0. Therefore A —• t$
(see the comment after (3.20)) and thus <s —• oo. Therefore p\ —• 1/2, pa —• 0. Now from
(4.2) it easy to see that

JstfPi V A ~ P ( « + "0

and the integral is bounded as long as the distance between s</pi and 1 — e is uniformly
positive. Since p? —• 0, we see that y(x) —• const. Thus we obtain horizontal layers. Figure 5
shows how the interface approaches horizontal layers as ( changes, while other parameters
are held fixed.

If one approaches the other side of the region defined by (3.23), i.e. q —• —02, then one
would obtain vertical layers. This statement is obvious in real space because our period
cell has square symmetry. On the other hand our formulas do not possess this symmetry
since we have chosen a horizontal slit to be mapped into the unknown interface. The corre-
sponding calculations require much more effort. It is possible to eliminate this asymmetry
by expressing the function (4.2) in parametric form using elliptic integrals of the first kind
(see the Appendix, formula (6.4)).

14



Figure 5: Evolution of Vigdergauz microstructure.

4.3 Limiting rank-2 laminate
So far in this article we have used a square as the period cell. However, the period cell does
not have to be a square. It can just as well be a rectangle, with any aspect ratio. Let us
summarize briefly how the calculations change. If Qi is a rectangle with sides L and \jL
then equations (3.2), (3.13) and the formulas for r« and d« must be adjusted appropriately.
It is not hard to see that if h\ and T\ are given by (3.16) and (3.17) respectively then the
corresponding quantities for a rectangular period cell QL are

Since (3.21) depends only on the product Th we see that the existence condition (3.22)
remains the same. Finally the formula for the inclusion changes: the conformal map w is

now
(4.3)

where VL is defined as in (3.12) but using the Weierstrass p function with periods 2 and
2iht,.

As L —» oo, the Vigdergauz microstructure approaches a "sequentially laminated mi-
crostructure of rank 2", the microstructure used in [4] and [13] to prove the optimality of
the energy bounds. (See e.g. [11] and [35] for further discussion of sequentially laminated
microstructures.) To see this we should use a different scaling. We can do so because what
is important is the aspect ratios, not the actual sizes. Thus without loss of generality we
may assume that the macro-scale corresponds to lengths of order 1. The longer side of the

15



Figure 6: Limiting Second Rank Laminate.

period cell should be of length e. Then the shorter side must be of length e/L7 to make the
period cell have aspect ratio L7. When L —• oo we have three different length scales 1, e
and t/L7. In the limit the Vigdergauz microstructure looks like a doubly periodic array of
platelets (see Figure 6). This is exactly what is called a rank two laminate.

It is natural to ask if similar microstructures exist with a non-rectangular period cell.
This question remains open.

5 Applications.
5.1 Structural optimization.
In problems of structural optimization one is usually interested in the moist rigid possible
composite. Therefore, in this framework it is more interesting to minimize the compliance
rather than the elastic energy. We will show that the two minimization problems are different
but closely related (see [2] or [14] for more detailed treatments).

We start with the dual variational principle for the compliance U:

U = ^inf o / (C"\x)<r, <r)dx. (5.1)

The problem we consider in this section is to minimize the compliance U over all microstruc-
tures with fixed volume fractions, i.e. to evaluate

M vmfo / ( C W , <r)dx. (5.2)

We will show that in two space dimensions the Vigdergauz microstructure achieves the
minimum value in (5.2), under certain restrictions on the average stress <ro- But now, as
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one would expect, the more rigid material must be in the matrix and the softer material in
the inclusion.

In order to find a relation between (5.2) and our original problem (2.8) we represent the
stress field a via the Airy stress potential 4>:

a =

where

Since c and VV^ are linearly related we can express <r as

where H is a 4ih order tensor with the symmetries of a Hooke's law. Then we can rewrite
(5.1) as

f i l (5.3)
where

We can simplify (5.3) even further if we notice that for any isotropic Hooke's law C and any
two symmetric matrices £ and 17

Thus (5.3) is equivalent to

A (rl(*)e(V«,e(^))«l«. (5.4)
tjQ

Here we used the fact that W<£ is always a symmetric matrix. If instead of V<f> in (5.4)
we allow any vector field to be admissible then we will enlarge the space of admissible test
fields and therefore

A (5.5)

Thus we have found that the minimum of the compliance is bounded below by the minimum
of the strain energy with a different Hooke's law, namely the inverse of the actual local
Hooke's law tensor. It is interesting to ask when equality holds in (5.5). Obviously this is
the case if and only if the optimal field u for the right hand side of (5.5) is curl-free. If the
right hand side of (5.5) is optimised by the Vigdergauz microstructure, then the associated
field u is indeed curl-free, as can be seen from the optimality conditions presented in Part
I (formula (2.8)). Thus, the Vigdergauz microstructure achieves the minimum in (5.2)
whenever (3.23) is satisfied with <r0 in place off, and i f 1 and /if1 in place of *» and /1,:
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where <rx and <r2 are the principal stresses of the average stress <r0.
Now let us consider a particular case of interest: shape optimization. In other words we

take one of the materials to be void, so k\ = p\ = 0. In this case the existence condition
(5.6) for the Vigdergauz construction becomes

det<ro>O. (5.7)

If this condition is satisfied then a periodic array of holes with the Vigdergauz shape will
minimize the complementary energy at average stress <TQ.

Notice that when k\ = /ii = 0, the volume fraction does not figure in the existence
condition (5.7). Therefore, we can study the "large volume fraction limit**. When 9\ « 1 we
remove almost all of the material, leaving a truss-like structure with optimal properties. It is
essentially a Michell truss, see e.g. [18], [27], [41], [42]. At intermediate volume fractions the
microstructure can be thought of as a Michell truss with thickened members and rounded
corners.

5.2 The problem of minimal stress concentration.
In this section we show that the Vigdergauz construction, besides minimizing the elastic
energy, also solves a certain problem of minimizing the stress concentration.

Our objective is to find the shape of a simply connected inclusion of given area (whose
characteristic function we denote by x) that minimises the stress concentration throughout
the periodic composite with period cell Q:

infsup||<r(*)||,

where ||<r|| is the operator norm of matrix a:

||*|| = sup \*v\.

To solve this problem we repeat the argument of Wheeler, [58]. As in [58] we assume
that the two materials are well-ordered:

*i > h, Pi > 1*2-

The idea is to use maximum principle for the trace of the stress [6], which is harmonic in
an isotropic material. As usual, quantities with index 1 refer to the inclusion phase while
quantities with index 2 refer to the matrix phase.

If t denotes the tangent to the interface and n the normal then due to the continuity of
displacements and tractions across the interface we have:

(ext,t) =

Using the constitutive relations
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we easily see that

Tr<r2 = V^V^^lTtvi + "*VP1 ~p* ;(<r tn,n)

everywhere on the interface. Taking absolute values and estimating

and

where
llqloo - ^

we obtain

We also have
\Trel\ = ±-\Trel\<^. (5.2)

To use these estimates we observe that

= | / Tte(z)dx\ < Ox sup \Tttx | + 02 sup |1>e3| = 9\ sup |Trci | + 03 sup |Trc2|.
,/Q 1 2 r r

The last equality is due to the maximum principle and the fact that functions Trt\(x) and
Trc2(x) are harmonic on their respective domains. Now we can apply our estimates (5.1)
and (5.2):

This inequality is valid for any simply connected inclusion in the period cell with volume
fraction $\.

It remains to show that the bound is attained by the Vigdergauz geometry. It is not
difficult to check that the norm of the stress for the Vigdergauz microstructure ||0v(x)|| is
constant on the boundary of the inclusion. We have already seen that the stress in the period
cell has trace which is constant in each phase, and it follows (e.g. using the representation
in terms of complex potentials) that the stress itself is harmonic. Thus by the maximum
principle for harmonic functions, the maximum value of ||0v(x)|| must occur on the interface
boundary. But on the boundary of the Vigdergauz inclusion, as one can easily verify directly,
||0v||°o attains our lower bound (5.3) if and only if i i > k2. Thus our assertion is proved.

We remark that the above argument makes essential use of the hypothesis that the matrix
phase be connected. Without this hypothesis the result becomes false. For instance, a simple
calculation shows that rank-1 layering often produces a smaller stress concentration than
the Vigdergauz construction. This is the case, for example, if the average strain is isotropic
and the layers are orthogonal to one side of a square period cell.
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6 Appendix: An alternative representation for the in-
clusion shape.

In section 3 we derived an explicit formula (3.18) for the shape of the inclusions in the
Vigdergauz construction. In fact (3.18) is rather inconvenient to use, both with respect to
analytic investigation and for obtaining numerical solutions. For this reason we were led to
seek an alternative formula.

We start with our initial parametrization (4.1):

where i G [1 - c, 1]. It gives a quarter of I\ from the theory of the Weierstrass p-function
[33], we know that p(ih + s) is strictly monotone increasing from A to ej on [1 - c, 1].
Therefore we can reparametrize T using the new parameter p = p(ih + i ) . After a routine
but lengthy calculation we obtain:

ds

ds
(6.1)

These integrals can be expressed in terms of incomplete elliptic integrals of the first kind,
[1]. It is convenient to do so, because many software packages are capable of evaluating such
elliptic integrals. The resulting expression is

X = —

p - \
(6.2)

where

Let

so that

F(x\m)=
di

m =

— 171 p — I

m "eT^P
|m)

p-es
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and let
1 —m p - c s

f7I 6 j •• fp

Then it is easy to check that

tn\ p — £3 i

where
• * 1 — in 1 — iw^ # x

171 171^

For one quarter of the interface the parameter t ranges from Af to 1.
It remains to recalculate the constants p\ and p? in terms of the physical parameters.

Standard formulas (see e.g. [1]) provide the necessary information. The parameters m and
mx can be found as unique solutions of the equations

sr h,
T

K(m) ' K(mx)
where h and T are given by (3.16) and (3.17) and K(m) = F( l | m) is the complete elliptic
integral of the first kind. Once m and m\ are known we can write the final parametrization
of the interface:

(6.4)

where M is given by (6.3) above. This is the parametrization we used to create Figures 3
and 5.
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