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Abstract—Simulations of magnetic and magnetoelas-
tic behavior based on xnicromagnetic theory exhibit
hysteresis. These magnetic systems have a highly non-
linear character involving short and long range fields.
Computational results are presented and the role of
various energetic contributions assessed and predicted
using methods of contemporary nonlinear analysis.

I. INTRODUCTION

Simulations of magnetic and magnetostrictive behavior
based on micromagnetic theory and exhibiting hystere-
sis are presented. These magnetic systems have a highly
nonlinear character involving both short range anisotropy
and elastic fields and dispersive demagnetization fields.
For approaches based on imposed dynamical mechanisms
such as a driving force or Landau-Lifshitz-Gilbert dissi-
pation see [1], [2] and the references therein. For static
methods hysteresis is symptomatic of the way the sys-
tem navigates a path through local minima of its energy
space [3]. It is not sensitive to the particular method: we
implement continuation based on the conjugate gradient
method, although the same results were obtained by other
methods (e.g., Newton's) as well. We strive to attain an
efficient algorithm with careful attention dedicated to the
treatment of the demagnetization energy. It is robust:
computational experiments confirm that the shape of the
loop is invariant over several decades of mesh refinement.

Computational results and predictions, developed us-
ing contemporary nonlinear analysis, are presented. The
width of the hysteresis loop is determined analytically in a
simple case as a correction to the Stoner-Wohlfarth The-
ory [4]. A computed magnetostriction curve illustrates
the role of microstructure in the behavior of a giant mag-
netostrictive material [5].

II. FRAMEWORK AND FORMULATION

In the micromagnetic framework, a two dimensional

magnetoelastic system is subjected to an applied mag-
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netic field. Employing the notations

a

<p(e,OL,x)
H = (i/i,0)

magnetization
2 x 2 linear strain matrix of displacement rj
stored energy

applied magnetic field
potential of demagnetization field,

the energy of the system occupying a region Q may be
expressed, in simplified units, in the form

\Vu\2 dxf
n

( )

Aw = V-axn in IR and \OL\ = 1 in Q.

The characteristic function \n of ft is 1 in Q and 0 else-
where. For the computations, Q = (—L,L) x (0,1), a
rectangle, <p will be specified later according to the ap-
plication. The results discussed here do not include ex-
change energy. Simulations were also executed with small
exchange contributions and they behave nearly the same
as those without.

III. THE COMPUTATION OF HYSTERESIS

The hysteresis diagram for energy (1) is computed by
continuation of minimum energy solutions with respect to
increasing and decreasing the applied magnetic field along
the xi-axis. The shown curve in Fig. 1 is the overlaid
graphs of computed energies vs a decreasing sequence of
applied fields and an increasing sequence of applied fields
respectively. Fig. 2 depicts magnetostriction in the direc-
tion of interest.

The computational domain is a rectangle Q = (—L, L) x
(0,1), partitioned into N\ x N2 squares of side length h =
2L/N\ = 1/iVV The magnetization is approximated by
piecewise constants on the squares, and the displacement
is approximated by continuous piecewise linear functions
on the triangles further divided from these squares. The
minimization of energy (1) is then carried out by, e.g., the
Polak-Ribiere version of the conjugate gradient method,
or Newton's method.

We recall the essential features of this conjugate gra-
dient procedure. It is an optimization method which re-
solves the displacements and the magnetization in all the
cells simultaneously. Demagnetizing fields are taken as



functional of the magnetization field. The result is a con-
tinuous displacement and piecewise constant strain matrix
and magnetization. At each value of the imposed field H,
inspection of the magnetization (and strain) distribution
reveals the underlying magnetic domain structure (and
the domains of elastic distortion.)

The optimization procedure requires the computation
of energy and also the gradient of the energy with respect
to the discrete variables. We remark that the most expen-
sive feature of these computations is the determination of
the averages of the demagnetizing field Vu on the square
cells. These are nonlocal functionals of the magnetization
field a, and they are needed at each iteration of each mini-
mization step. Our implementation is efficient [6], [7], the
subsequence hysteresis computations take about 3 min-
utes of the CPU time at over 300 MFLOPS on the CRAY
YMP-C90 at the Pittsburgh Supercomputer Center.

IV. ESTIMATION OF THE WIDTH OF THE HYSTERESIS

LOOP IN A MAGNETIC SYSTEM

We now show how the width of the hysteresis loop may
be estimated in a paradigm case, explaining the behav-
ior of Fig. 1. For a rigid uniaxial or cubic magnet as the
field is varied along the easy axis the width of the hys-
teresis loop is determined as a correction to the classical
Stoner-Wohlfarth value. The configuration is initially sat-
urated and at an absolute minimum of energy, with a ini-
tial magnetization nearly equal to (1,0) everywhere in the
region. It remains in an absolutely minimized state un-
til H\ changes sign, after which it traverses a metastable
regime. The regime ends in a critical field range which
is characterized by magnetization reversal in the closure
domain, the boundary columns of the computational grid.
This feature, that the closure domains are switched first,
is the basis for estimating the width of the loop. This
entails a careful treatment of the demagnetization energy
by methods of functional analysis and partial differential
equations [8], [9]. Elasticity is not present here so

= <P(OL) = *c or , K > 0, (2)

where K is the anisotropy constant. The critical field Hcr

with H = (Hcr,0) is determined by the criterion

£ ( H , o ) < £ ( H , e i ) for all a where

in the closure domain,
elsewhere,

4 is arbitrary, |£| = 1, and <
condition for £, cf. [3], gives

= (1,0). Optimizing this

where D is the closure domain and w is the solution of
the equation Aw = ^f-Xn in Et2. This may be reduced
analytically to the form

(4)

(5)

with the correction A given by

/ dw

The equation for w may be solved explicitly and yields
the value A = 0.6 for a 2 x 1 rectangle. The pre-
dicted value of Hcr is essentially exact in the uni-
axial case and varies by less than 10% of the com-
puted value in the cubic case, even for a grid as small
as 16 x 8, in tests across a generation of anisotropy
constants K, cf. Table I, where the critical field for
each K is measured at the beginning of the cascade.
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Fig. 1. Computed hysteresis picture, energy vs applied
field for uniaxial materials with n = 1.6. Units have been
chosen for ease of computations.

TABLE I
COMPARISON OF PREDICTED AND COMPUTED CRITICAL FIELDS

(3)

K

1.0
1.2
1.4
1.6
1.8
2.0

predicted
1.4
1.8
2.2
2.6
3.0
3.4

uniaxial
Her

computed
1.6
1.8
2.3
2.6
3.0
3.4

cubic

computed
1.3
1.7

2.1
2.3
2.6
3.0



We remark here that a simulation with neither exchange
nor demagnetization energy behaves like Ni x N2 uncou-
pled cells, each with constant magnetization. They all
switch at the same field value, when the magnetization
becomes unstable, which is the Stoner-Wohlfarth value.

V. MAGNETOELASTIC SINGLE CRYSTALS AND

LAMINATES

Magnetostriction curves are given for single crystal and
lamellar systems. The intention is to simulate Terfenol-d,
a highly magnetostrictive iron/rare earth pseudobinary al-
loy which exhibits a complex twinned dendritic structure
[10], [11]. This structure is comprised of lamella of (111)
growth twins. Within each lamella, there is an array of
possibly fine phase martensitic twins.

The simulation consists of a two dimensional model on
an (0-11) plane and components are given with respect
to axes in the (-211) and (111) directions. Anisotropy
energies are

(6)

for the single crystal <p+n is used, and

for the laminate where 7
couplings are

= 2\/2. The magnetoelastic

for the single crystal

XQ1

is used, and

= f Vtl/ma, if i < *3 < 1.
if 0< x2 < \

(8)

(9)

for the laminate. For simplicity, the pure elastic energy
density was chosen isotropic. For example, the easy axes
for the positive energy are (0,1) and ( 1 , T ) / > / ( 1 + 72)
which correspond to the directions (111) and (-111). The
constants 6,6',*c, and the Lame constants are chosen for
the facility of computation.

We are able to provide a qualitative comparison with
experiment. The curves in Fig. 2 bear a strong resem-
blance to the experimental magnetostriction curve [12].
The strain increases with increasing positive and negative
applied field and has the butterfly structure characteris-
tic of this material. The X-jumping described in [12] is
evident in the steep section of the curve, although this is
less pronounced in the experimental picture. In [12], an
unbiased rod achieves about 66% of its maximum mag-
netostrictive strain according to the author. In our sim-
ulation we achieve about 50%. However we would like

to better understand the role of growth twins and mi-
crostructure in the laminate. This is our present direction
of investigation.

,x10"

Fig. 2. Computed magnetostriction A vs. applied field H
for single crystal (lower curve) and laminate (upper curve)
in the direction of the rod axis, which is (-211). Units
have been chosen for ease of computation.
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