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Abstract

We develop a level set theory for the mean curvature evolution of surfaces
with arbitrary co-dimension, thus generalizing the previous work [8, 15] on hy-
persurfaces. The main idea is to surround the evolving surface of co-dimension
k in Rd by a family of hypersurfaces (the level sets of a function) evolving with
normal velocity equal to the sum of the (d — k) smallest principal curvatures.
The existence and the uniqueness of a weak (level-set) solution, is easily es-
tablished using mainly the results of [8] and the theory of viscosity solutions
for second order nonlinear parabolic equations. The level set solutions coincide
with the classical solutions whenever the latter exist. The proof of this con-
nection uses a careful analysis of the squared distance from the surfaces. It is
also shown that varifold solutions constructed by Brakke [7] are included in the
level-set solutions. The idea of surrounding the evolving surface by a family of
hypersurfaces with a certain property is related to the barriers of De Giorgi.
An introduction to the theory of barriers and his connection to the level set
solutions is also provided.
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1 Introduction.
Recently, Evans & Spruck [15] and, independently, Chen, Giga & Goto [8] de-
veloped a level set approach for hypersurfaces evolving by their mean curvature.
We extend this approach to surfaces with arbitrary co-dimension.

In the classical setup, mean curvature flow is a geometric initial value prob-
lem. Starting from a smooth initial surface TQ in Rd, the solution I \ evolves in
time so that at each point its normal velocity vector is equal to its mean cur-
vature vector. By parametric methods of differential geometry much has been
obtained for convex or graph-like initial surfaces or for planar curves. See for
instance Altschuler & Grayson [3], Ecker k Huisken [13], Gage & Hamilton [21],
Grayson [23], and Huisken [25]. However for d > 3, initially smooth surfaces
may develop geometric singularities. For example the dumbbell region in R3

splits into two pieces in finite time (c.f. [2], [24]) or a "fat" enough torus closes
its interior hole in finite time (c.f. [39]). Also it can be easily seen that smooth
curves in R3 may self intersect in finite time.

Several weak solutions have been proposed. In his pioneering work, Brakke
[7] uses geometric measure theory to construct a (generally nonunique) varifold
solution with arbitrary co-dimension. Ilmanen's monograph [26] provides an
excellent account of this theory including the connections between different ap-
proaches and a partial regularity result. Also see Almgren, Taylor & Wang [1]
for a related variational approach and the survey of Taylor, Cahn & Handwerker
[40].

For co-dimension one surfaces, a completely different approach, initially sug-
gested in the physics literature by Ohta, Jasnaw & Kawasaki [34], for numerical
calculations by Sethian [35] and Osher & Sethian [33], represents the evolving
surfaces as the level set of an auxiliary function solving an appropriate nonlinear
differential equation. This "level-set" approach has been extensively developed
by Chen, Giga & Goto [8] and, independently, by Evans & Spruck [15]. Their
approach is this. Given an initial hypersurface To, select a function UQ : Rd -• R
so that

(1.1) r o = { x € R d : u o ( x ) = 0}.
Consider then the Cauchy problem

(1.2) m « |Vu| V • ( j ^ , in Rd x (0, oo),

'with initial data

(1.3) u(x,0) = tio(z), V i€R d ,
for the unknown scalar function u(x, t). In the regions where u is smooth and
Vu does not vanish,

(



are, respectively, the normal velocity and the scalar mean curvature of the level
set of u. Hence (1.2) says that each level set of u evolves according to its mean
curvature, at least in the regions where u is smooth and Vi* does not vanish.
So it is reasonable to define

Observe that the equation (1.2) is degenerate, and it is not well defined when
Vu is zero. Evans & Spruck and Chen, Giga & Goto overcame these difficul-
ties by using the theory of viscosity solutions ([11, 9, 10, 20]). In particular,
in [8, 15] it is proved that under very general hypotheses, there is a unique
viscosity solution u of (1.2),(1.3), and that Ft depends only on the geometric
initial data To, but not on the auxiliary function UQ and whence Ft is a well
defined evolution of IV Other interesting properties of Ft, including Hausdorff
dimension estimates, local time existence of classical solutions are obtained in
a series of papers [16, 17, 18]. Also [8] demonstrates that the level set approach
for hypersurfaces, is robust enough to treat equations more general than the
mean curvature flow.

More intrinsic definitions related to level-set solutions have also been intro-
duced. [37] recasts the definitions, constructions and uniqueness criteria into
a different form using the (signed) distance function to the surface (also see
[4]). In [27], Ilmanen uses smooth classical solutions as test functions to define
set-theoretic subsolutions. These subsolutions were then used in [26] to prove a
connection between the varifold solutions of Brakke and the level-set solutions.
In [29], Ishii & Souganidis analyze general equations with arbitrary growth in
the curvature term.

In [12], De Giorgi introduces the notion of barriers for very general equa-
tions, including the mean curvature flow with arbitrary co-dimension. For co-
dimension one surfaces, barriers are related to the level-set solutions of [8, 15]
(see [5], [6]) and in higher co-dimensions De Giorgi's definition is the starting
point of this paper. A discussion of the barriers and their connection to level-set
solutions is given in §6 below. Finally, the singular limit of a reaction-diffusion
equation with a cubic nonlinearity also provides an approximation and a possi-
bly different definition for hypersurfaces moving by their curvature. However,
this approach is shown to coincide with the previous definitions; see [19], [38] and
the references therein. Katsoulakis & Souganidis [31] proves the convergence of
a particle system to mean curvature flow.

Smooth surfaces with co-dimension k can be represented as the intersection
of the level sets of k scalar functions with nonvanishing gradients on the surface.
Then proceeding as in co-dimension one case, we can obtain a system of partial
differential equations generalizing (1.2). However, since this generalization is a
degenerate system of equations, we can no longer employ (as was done in [15, 8])
the theory of viscosity solutions or any other existing theory to analyze the
resulting equations. Therefore it is desirable to obtain an alternate approach



using only one scalar function. We achieve this representation following the
lectures of De Giorgi [12].

To explain the main idea, let F C Rd be a smooth surface with co-dimension
k > 1 and let v : Rd —* [0, oo) be an auxiliary function

r = {x € Rd : v(x) = 0}

and assume that v is smooth near F and its spatial gradient does not vanish
outside T. The key step is to express the curvature properties of F in terms of
the derivatives of this auxiliary function v. To this aim, we consider the e-level
set, Fc, of v for small c > 0. Let J(x) be the symmetric, d x d matrix

where for a nonzero vector p € Rd,

(1.4)

Now let
A i ( J ) < A 2 ( J ) < . . . < A d _ 1 ( J )

be the eigenvalues of J(x) corresponding to eigenvectors orthogonal to
(note that J(x)Vv(x) = 0). These eigenvalues are equal to the principal curva-
tures of the co-dimension one surface Fe, oriented by Vv (see Remark 2.7).

Recall that F has co-dimension fc. So for small enough c, we expect Fc to
have very large fc - 1 principal curvatures and the remaining d - fc principal
curvatures of Fc to be related to the geometry of F. Indeed, approaching to F
from a normal direction p € S*"1, their sum converges to - / / • p, where H is
the mean curvature vector of F (see Remark 3.3).

Preceding computations together with [8, 15] suggest the following level-set
definition for the co-dimension fc mean curvature flow. For a symmetric, d x d
matrix A, and p € Rd with p ^ 0, set X = PPAPP, and let

be the eigenvalues of X corresponding to eigenvectors orthogonal to p (observe
that 0 is an eigenvalue of X corresponding to p) and define

d~k

(1.5) F(p,A) = J > ( * ) .

Given an initial data Fo, choose a scalar function no : Rd —• [0,oo) satisfying
(1.1). Then consider the equation

(1.6) ut = F(Vtx, V2u), in Rd x (0, oo),



with initial data (1.3), for the unknown scalar function u(x,t). In §2, below we
will show that the equation (1.6) is degenerate parabolic and that the extension
of the viscosity theory developed in [8] applies to equation (1.6). In particu-
lar, for a given uniformly continuous no, there is a unique viscosity solution u
satisfying (1.6) and (1.3). Moreover

(1.7) Ft = { x € R d : u ( x , t ) = 0}

depends only on To, but not on no. Hence I \ is a well defined evolution of To.
Clearly every weak theory has to be consistent with classical solutions when-

ever the latter exist. In §3, we prove that if there is a classical solution T't of the
geometric initial value problem, then it coincides with the level-set solution Ft.
This is done by analyzing the properties of the distance function 6(x, t) to F't

and the square distance function rj = 62/2. We first show that F{ is a classical
solution of the mean curvature flow if and only if rj is smooth and satisfies

Vty = AVT?, on r;,

see Lemma 3.7 below for the precise statement. Using this identity, we prove
that 6 solves a parabolic equation in a tubular neighborhood of FJ. Then it
follows that for sufficiently large K, e~Kt6 is a subsolution of (1.6) in a tubular
neighborhood of T[. Then by comparing 6 to a solution of (1.6) in this tubular
region, we conclude that FJ includes Ft. The reverse inclusion is proved after
showing that 6 is a viscosity supersolution of (1.6).

This final property also suggests an intrinsic definition using the distance
function as in [37]. Briefly, we say that Ft is a distance solution if its distance
function £(x, t) is a viscosity supersolution of (1.6). Then as in co-dimension
one case, the zero level-set of u is the maximal distance solution, see Theorem
4.4 below.

In §5, we study the varifold solutions of Brakke. Following Ilmanen's com-
putations for hypersurfaces [26, §10], we show that that the distance function
to any Brakke solution is a viscosity supersolution of (1.6). Hence every Brakke
solution is a distance solution. Since the level-set solution is the maximal dis-
tance solution, it includes the Brakke solutions. However, in general the level-set
solution or a distance solution need not be a Brakke solution.

As mentioned at the beginning of this introduction, the starting point of
our analysis is the notion of barriers defined by De Giorgi [12]. In §6, we give
a brief introduction to De Giorgi's barriers. Then we discuss the connection
between the level set solutions and the barriers, in the same spirit of the work
of Bellettini k Paolini [6] in the co-dimension 1 case.
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2 Level set solutions
We start with a brief review of several standard notation, definitions and results
from the theory of viscosity solutions. An excellent introduction to this theory
is the User's Guide [10].

For any function tu, the upper semicontinuous envelope w* of ti/, is the small-
est upper semicontinuous function that is greater than or equal to w. Similarly,
the lower semicontinuous envelope w+ of ty, is the largest lower semicontin-
uous function that is less than or equal to w. Let F be as in (1.5). Then
F* (p, A) = F* (p, A) = F(p, A) on p ^ 0, and for p = 0,

We continue with the definition of viscosity solutions. Although the unique
viscosity solution of (1.6) is continuous, discontinuous sub and supersolutions
are often useful tools. So in the following definition we do not assume the
continuity of u.

Definition 2.1 (Viscosity solutions) Let Q C Rd be a an open set, let u :
fix [0, T) -* R be a locally bounded function and let G : R x ( R d \ { 0 } ) x 5 d x d ->
R.

a) We say that it is a viscosity subsolution of

(2.1) ut = G(tx,Vtx,V2tx)

in ft x (0, T) if for any <f> € C2(fi x (0, T)) we have

4>t{y,t) < G*(u*(y,t),ix(V0(2/,t),V2<f>(y,t))

at any local maximizer (y, t) € fi x (0, T) of the difference (u* — <f>). (If for a
given <}> there are no local maximizers of the difference (u* — </>), then there is
nothing to check!)

b) Similarly, we say that tx is a viscosity supersolution of (2.1) in fl x (0,T) if
for any <f> € C2(Q x (0, T)) we have

at any local minimizer (y, t) € ft x (0,T) of the difference (u«, - </>). (Again if
for a given <f> there are no local minimizers of the difference (u+ — 4>), then there
is nothing to check!)

c) Finally, u is a viscosity solution of (2.1) in ft x (0, T) if it is both a viscosity
subsolution and a viscosity supersolution of (2.1) in ft x (0,T).



We now state a comparison result which follows from Theorem 2.1 of [22].

Theorem 2.2 (Comparison) Letu,v be a viscosity subsolution and, respec-
tively, a viscosity supersolution of (1.6) in Rd x (0,T). Suppose that u*(-,0) or
v*(,0) i5 uniformly continuous, and that there exists a constant K satisfying,

Then

(u* - «.)(*, 0 < sup{(u* - «•)(»,0): y € Rd}, V(x, t) £ Rd x [0, T\.

(Note that if u and t; are uniformly continuous, then the assumption on the
growth of u and v is automatically satisfied.)
PROOF. This theorem follows directly from Theorem 2.1 of [22]. In the following
steps, we will show that F satisfies the hypotheses of [22, Theorem 2.1].

Let Sdxd denote the set of all symmetric, d x d matrices.
1. It is clear from the explicit form of F* and F» that

Moreover, for every p > 0, F is uniformly continuous on {[p| > p) x Sdxd and
F(p, A) grows linearly in A.
2. Let H be a (d — l)-diiriensional space, let X b e a symmetric bilinear form
on if and let

*i(X) < \2(X) < ... < \d-i(X)

be the eigenvalues of X. We claim that

Xv • v
(2.2) Xi{X) = max{imn —rjp— : £ C # , codim(£) < i - 1}.

The above identity is proved in [30, Theorem 6.44] and shows that \{X) depend
monotonically on X. For completeness, we give its elementary proof in the next
step. Now the above formula and the definition of F imply that F is degenerate
elliptic, i.e.,

F(p, A) > F(p, B\ Vp ̂  0, A > B € Sdxd

because A > B implies PPAPP > PPBPP on the hyperplane H orthogonal to p.
Hence F satisfies all the hypotheses of Theorem 2.1 of [22]. Set

V = v* + sup{(u* - vO(y, 0) : y € R d}.

Then V is a supersolution and t**(x,0) < V(x,0) for all x. Hence, by Theorem
2.1 of [22], u* < V in Rd x [0,T].
3. In this step, we prove (2.2). Let L denote the right hand side in (2.2). The in-
equality K(X) < L easily follows by choosing E to be the vector space generated



by eigenvectors corresponding to A<,..., \d-i- To prove the reverse inequality,
let E be any subspace with codimension at most (t — 1) and let Er be the vector
space generated by the eigenvectors corresponding to \i{X),..., K{X). Since

dim(E) + dim(£') > {d - i) + i > d - 1,

there exists a unit vector v$ € EnE'. We have then

The final inequality follows from the fact that UQ belongs to Er and that Ef is
spanned by the first t eigenvectors. •

Since F is geometric, i.e.,

(2.3) F{Ap, XX + op <g> p) = AF(p, X) VA > 0, a € R,

the equation (1.6) is invariant under the relabelling of the level sets:

Theorem 2.3 (Invariance) Let 6 : R —• R be a continuous nondecreasing
function and let u be a viscosity subsolution {supersolution) of {1.6) infix (0, T).
Then 6{u) is still a viscosity subsolution {supersolution) of {1.6) infix (0, T).

The above theorem follows from (2.3) and Theorem 5.6 in [8]. A formal proof
can also be obtained by a direct computation.

The following existence theorem is an immeediate corollary of [8, Theorem
6.8}

Theorem 2.4 (Existence) For any uniformly continuous function UQ there
exists a unique, uniformly continuous viscosity solution u of {1.6) and {1.3).

PROOF. Since uo is uniformly continuous, there is a constant K* > 1 satisfying

1. For R > 0, let

u£{x) * min{tio(x) + h{\x\ - R),

where for r < 0, h{r) = 0 and for r > 0,

Since h{\x\ — R) grows faster than |i*o(^)| as |x| —• oo, u^ is equal to R outside
a large ball. Hence Theorem 6.8 of [8] implies that there exists a uniformly
continuous viscosity solution uR of (1.6) satifying the initial condition uR{x, 0) =



u^(x). In the next several steps, we will show that uR is equicontinuous in R
and then we will let R —• oo.
2. Since uo is uniformly continuous and h is Lipschitz continuous, there is a
modulus m, independent of J2, satisfying

|«£(x) - t £ ( y ) | < m(|x - y|), x,y € Rd.

Note that a modulus m is a nondecreasing, continuous function on [0, oo), with
m(0) = 0. Since the equation (1.6) is translation invariant in space, the com-
parison result, Theorem 2.2, implies that

\uR(x, i) - uR(y,t)\ < m(|x - y|), Vx,y € Rd, t > 0.

3. Fix xo € Rd . It is easy to verify that the function </>(x, t) = |x-xo|2+2(d-A;)t
is a solution of (1.6). Now let

6(x, t) =

By Theorem 2.3, b is a viscosity solution of (1.6). Since by construction, u$(x) <
6(x, 0), Theorem 2.2 implies that uR < b. In particular,

uR(x0 , t) - tif (xo) < m(2(d - fc)t)f Vt > 0.

An entirely similar argument using 6 = no — m(- • •), yields the opposite inequal-
ity. Hence, for any t > 0 we have,

Then the translation invariance in time of the equation implies that

|tx*(zo, t) - u*(x0, s)\ < m(2(d -

4. Previous steps imply that the sequence uR is equicontinuous. Also as R —• oo,
u£ converges to no locally uniformly. Then the well known stability properties
of the viscosity solutions (c.f. [8, Proposition 2.4]) together with the Ascoli-
Arzela Theorem enable us to let R —• oo and construct a uniformly continuous
solution u = limuR, satisfying the initial data (1.3). •

Next result imply that the zero level set of any viscosity solution at time
t > 0, depends only on the zero level set of the initial data but not on the other
level sets of the initial data. Similar results were already proved in [8, 15].

Theorem 2.5 Assume that Fo is a closed subset o/Rd . Let UQ be any nonneg-
ative, uniformly continuous function satisfying (LI) and let u be the viscosity
solution of (1.6) satisfying the initial data (LS). Then the zero level sets,

are independent of the choice



PROOF. Let t/(x, t) be the unique uniformly continuous, viscosity solution of
(1.6) satisyfing

t^(x) := u'(x, 0) = dist(x, r0) .

We will prove that the sets

Tt := {x € Rd : u(x, t) = 0}, r't := {x € Rd : u'(x, t) = 0},

coincide for all t > 0.
1. Set

: dist(x,r0) < t\.

Since ito is uniformly continuous, u is non decreasing and uniformly continuous.
Moreover,

0 < ULQ(X) < u;(dist(x, To)), Vx € Rd.

By Theorem 2.3, u(x,£) and u;(t/(x,£)) are solutions of (1.6) and by Theorem
2.2, we conclude that

0 < u(x, t) < u(u'(x, t)) Vx € Rd, t € [0, +oo).

Hence F[ C Ft for any t > 0.
2. Let xfc* 0 be the indicator of the zero level set of u and w = 1 — x, i.e.,
tt;(£, x) = 0 if u(x, t) = 0 and otherwise tu(x, t) = 1. Observe that

tu(x, t) = lim inf /i€(tx(r/, *)), x € Rd, t > 0,

where

hc(r) = 0, for r < 0, /ic(r) = 1, for r > e, /ic(r) = ~, for 0 < r < c.

Then by Theorem 2.3 and the stability theorem [8, Proposition 2.4], w is a
viscosity supersolution of (1.6). Since u is continuous and UQ = tx(,O) satisfies
(1.1), we have

t^(x) A 1 = dist(x, r0) A 1 < w(x, 0).

Hence by the comparison result, Theorem 2.2, we conclude that

0 < t / ( x , t ) A l <w(x,t) .

Consequently, I \ is included in TJ. •

Definition 2.6 For a given closed set To, let u be as in the statement of the
previous theorem. Then the zero level sets {r j t >o of u(,t) are called the
(d - kyievel set flow of To.
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Using Theorem 2.5 it is easy to see, with the same argument of [15], that
the (d - fc)-level set flow has the semigroup property, i.e., Tt+S coincides with
the evolution at time s of Tt. When dealing with unbounded sets, the restric-
tion to uniformly continuous functions is necessary in view of a counterexample
constructed by Ilmanen in [28].

Remark 2.7 Let us assume that u is a classical solution of (1.6) in Q x (0,T),
i.e., u is C2 and its spatial gradient does not vanish. Let r € R and let us
consider the sets

£ t : = { x € R d : u ( x , t ) = r}

with the orientation induced by v := Vu/|Vu|. Denoting by

the second fundamental form of Et (see [32, page 13]), the principal curvatures
of Et are given by the eigenvalues /clf . . . , Kd-i of the symmetric bilinear form

on the tangent space to Et. With this sign convention (opposite to the one
adopted in [32, pages 30-32]), the mean curvature vector of Et is given by

H = -(/ci + . . . + «d-i)^

and convex sets have nonnegative principal curvatures when oriented by the
outer normal. A simple computation shows that B coincides with Pl/V

2uP1//| Vix|
on the tangent space to Et, hence

represents the sum of the smallest (d - k) principal curvatures of Et.
Arguing as in [15] we obtain that each level set of u flows in the direction

—i/ with velocity equal to the sum of the smallest (d — k) principal curvatures.

11



3 Agreement with smooth flows
In this section, we will show that the level set solutions and the classical solutions
agree whenever the latter exist. Our analysis is based on the properties of
the distance and the square distance functions. We start by proving several
elementary properties of these functions. Let F be a compact subset of R d and
define,

tf(z):=dist(x,r), t7(:r):=i$2(z),

/,(r):={z€R" :*(*)</>}.

Theorem 3.1 Let F be a smooth embedded manifold of co-dimension k without
boundary. Then there is a > 0 such that r\ is smooth in /<r(F). Moreover for any
x € F, the matrix V2rj(x) represents the orthogonal projection on the normal
space toTatx and

(3.1) 6(

for any p orthogonal toT at x and \p\ < a.

PROOF. Fix x<> € F. By the smoothness of F, there are a constant s > 0 and a
smooth orthonormal vector field

spanning the normal space to F. Set

k

$(z,a) = x + ^ a j ^ ( x ) x € B*(xo) n r , a € R*.

Using local coordinates, we compute that the Jacobian J$(xo, 0) is equal to
the identity matrix. Hence by the implicit function theorem, there is r € (0, s)
satisfying,

(1) In (Sr(xo)OF) x JB*(0), $ is one to one and its Jacobian is nowhere singular;

(2) V = $((Br(xo) n F) x J3*(0)) is an open set containing xo.

For y € V, let

€ (Br(x0) D F) x Br*(0)

be the smooth inverse of*. Choose a € (0, r/2) such that Ba(xo) C V. We wish
to relate the functions x(y), a(y) to the distance function. So for y € 2?<r(xo),
let x € F be the minimizer of the distance, i.e., 6(y) = |x — y|. Then it is clear

12



that the minimizer x belongs to BT{XQ) n T and it is equal to x(y). Moreover,
6(y) = \ct(y)\ and consequently

2v(y) = Hy)\2 = 5>?(y), y € Bff(x0).

Hence TJ is smooth and (3.1) holds by construction. Since T is compact, we use a
covering argument to extend these properties to a tubular neighborhood Ia(r).

Finally, let N = (Nij) be the orthogonal projection on the normal space to
T at x0. Then for z € Rd,

V(*o + *) = ̂  + o(\z\2) = 1 AT* • z + o(N2),

where as usual o(r) is any function satisfying \o(r)\/r —• 0 as r J, 0. By differen-
tiating twice with respect to z and evaluating at z = 0, we find ^ (xo ) = N^.

•
Next, we will show that the eigenvalues and the eigenvectors of V2rj propa-

gate along the characteristics of the distance function, and k eigenvalues of V2rj
are exactly equal to 1 as long as rj is smooth. Then using the properties of the
eigenvalues of V2r;, we will establish a relation between the mean curvature of
T and V \

Let xo € T and p be a unit vector orthogonal to T at xo- Let ft be the
maximal open set on which rj is smooth and define

t* := sup{r > 0 : x0 + tp € ft, Vt € [0, r]}.

Then t* > a, where a is as in the previuos theorem. For t € [0,t*), let

B(t) := V2i?(x0 + tp\

and
\l(t)<\2{t)<...<\d(t),

be the eigenvalues of B(t).

Theorem 3.2 Fort € [0,t*), eigenvectors of B(t) are independent oft, B{t)
has exactly k eigenvalues equal to one and the remaining (d — k) eigenvalues
are strictly less than one. Moreover, for any a satisfying I<r(T) C ft, there is a
constant C = C(cr), independent ofxo and p, such that

( 3 . 2 ) | A * ( 0 | < C6{xo + tp) = Cty V t € [0 ,<r] , t = 1 , . . . , d - k .

Finally, the map

t € (0, r ) « F(V6(x0 + tp\ V26(x0 + tp))

is nonincreasing in (0,t*).

13



PROOF. 1. Since 6 is smooth in Q \ I\ |W| = 1 on this set. Then, using the
summation convention, we compute that,

(3.3) 6& = 1, SijSj = 0, 6ijk6j + Sis6$k = 0,

in fi \ T, and in fi,

(3.4) rjjfjj = 2rjt

where a subscript denotes differentiation with respect to that variable.
2. Using 6(xo + tp) = t, V?7(xo + tp) = p6 and the third identity in (3.4) we
obtain,

(3.5) ^Bn{t) = ViM*o + tp)Pk =

Let « i , . . . , Zd be any basis such that B(a) is diagonal and for i = 1 , . . . , d, let
be the unique solution of,

satisfying /x»(a) = Ai(cr). Recall that Aj(a)'s are the eigenvalues of B{a). Then
the matrices

d

solve the differential equation (3.5) and satisfy B(a) = B{a). Hence, by the
uniqueness of solutions to (3.5), B = B. Consequently the eigenvectors of B(t)
are equal to Zi and eigenvalues A^iJ's solve,

(3.6) — ^

3. In view of Theorem 3.1, f?(0) is the orthogonal projection on the normal space
to T at xo. Hence k eigenvalues of B(0) are equal to one and the remaining
(d—k) of them are equal to zero. By the differential equation (3.6), we conclude
that if for some i we have Ai(0) = 1, then Xi(t) = 1 for all t e [0, t*). Moreover
if Ai(0) = 0 for some i, then Xi(t) < 1 for all t € [0, t*). Hence for any t € [0, t*),
Bij(t) has exactly k eigenvalues equal to 1 and its restriction to the normal
space of F at xo, is equal to the identity. The remaining eigenvalues are less
than one and the corresponding eigenvectors span the tangent space to T at xo.
Moreover, solving the differential equation (3.6), we find
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Therefore if A* (a) < 0, then A»(t) < 0 for all t and

If, however, Xi(a) > 0 and i = 1, . . . ,d-fc, then \i(t) € [0,1) for all t. Moreover,

I < £ € [0, (Tj.

In summary, for all t € (0, a) and t = 1 , . . . , d - fc, we have,

| ^ ' | < C := max< —: —^—r-rr : A < 1 eigenvalue of V277(x), 5(X) = a >.

4. To prove the final statement of the theorem, we differentiate the identity
T̂  = 6SX to obtain,

r Vij — OiVj

Since V5(xo + tp) = p on t € (0, £*), we conclude that

V t € ( 0 , O .

Therefore V26(xo -f tp) has (k — 1) eigenvalues equal to \/6{XQ + tp), one eigen-
value (corresponding to p) equal to 0 and the remaining (d — k) eigenvalues are
less than l/6(xo + tp). Let /?i(t) < ^ ( t ) . . . < /3d-fc(t) be these eigenvalues.
Since ft(t) = Ai(t)/t, we find from (3.6) that ft(t)' = -/3?(t). Hence ft's are
nonincreasing and therefore

d-fc
F( V6(y + twi), V26(y -f ti^i)) = J ^ ft (t)

is also nonincreasing. •

Remark 3.3 Using the differential equation (3.6), we conclude that for i =
1 , . . . , d - k, the eigenvalues ft(t) := K(t)/t of V26(x0 + tp), converge to real
numbers ft depending on p, as 11 0. Clearly these numbers ft's are related to
the geometry of T. We conjecture the following: let (c./. [32, page 13])

be the second fundamental form of T, where TXo(r), NXo(F) are, respectively,
the tangent and the normal spaces of F at xo. Then ft's are equal to the
eigenvalues of the symmetric bilinear form,

h(v,w) := -B(v,ti/) • ;>, v,w € TXo(r).

15



Since the above conjecture is only tangentially related to this paper, its
analysis will be pursued elsewhere. However the proof of Theorem 3.5 can be
used to prove that the sum of # is equal to -H • p (see (3.16) below for the
stationary flow).

Remark 3.4 For A € Sdxd and p € Rd
t p ^ 0, let Pp and X = PPAPP as in

(1.4). Let

be the eigenvalues of X and define

d-fc+l
F(p,A):=

Recall that in the definition of F, we only used the eigenvalues of X that are
orthogonal to p. Therefore, it is easy to check that F < F and they are equal
if and only if at least k eigenvalues of X are nonnegative. In particular, F
coincides with F in the co-dimension 1 case (in this case F also coincides with
the function F(p,A) = trace(PpA) considered in [15], [8]). Moreover, step 4 of
Theorem 3.2 shows that

(3.7) F(W, V26) = F(W, V26)

in the region where 6 is smooth.

We are now ready to express the mean curvature vector in terms of rj.

Theorem 3.5 Let H(x) be the mean curvature vector ofT at x. Then

(3.8) H(x) = -AVT7(Z) , x € T.

PROOF. The mean curvature vector H of F is characterized by the property

(3.9) / &vT<t>dHd-k = - / H •
JT JT

where, using the summation convention, divr^ = df 4>\ is the tangencial diver-
gence of <f>> and for a scalar function (p

denote the tangencial gradient of tp, i.e., the projection of Vy? on the tangent
space to F. The integration by parts formula, (3.9), is also related to the first
variation of area (see [36]) and motivates the study of flow by mean curvature.
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We claim that H = - A V T J satisfies (3.9). Indeed by the divergence formula
on manifolds (see [36]), we have

for any tangent vectorfield X. Given a smooth test function <£, let X be the
tangencial component of <f> and P^ be the projection on the tangent space. The
divergence formula yields,

[ divrXdHd-k= I dF
JT JT

Hence, Hi = d^Pji. Since by Theorem 3.1, V2ty is the projection onto the
normal space, P = / — V2rj. So we have,

Hi = d^Pji = ]

where as before, a subscript of rj denotes differentiation with respect to that
variable and all derivatives of r\ are evaluated on the surface F. We now claim
that rjijTfiji is equal to zero. Indeed,

where Ai , . . . f Â  are the eigenvalues of V2r). By the previoiis theorem, the sum
of the squares of the eigenvalues is equal to fc + o(S) near F, and therefore it has
zero derivative on F. Hence rjijtiiji = 0 and Hi = - r ^ . D

Next we give a definition of classical solutions.

Definition 3.6 Let (rt)te[otT] be a family of smooth embedded (d— fc)-submanifolds
of Rd without boundary. We say that (Ft)t€[o,r] is a smooth (d-k)-dimensional,
mean curvature flow if there exists a smooth deformation map

satisfying,

(1) for every t <T, ^(-,t) is one to one, and on Fo the tangential Jacobian of
<£(•,*) has full rank (d - k)\

17



(2) 0(rOl 0 = Tt , for any t € [0, T\\

(3) <f>(x, 0) = x and

*),*), Vx € To,* € [0,T].

For future use we make one more definition. We say that (Tt)te[o,T] is a
smooth flow if there is a deformation map </> satisfying the first two conditions
in Definition 3.6 and that for every x € To, &(x, t) is orthogonal to Ft at <f>{x% £).
Note that since the mean curvature vector is orthogonal to the surface (see for
instance [36]), smooth, mean curvature flow is also a smooth flow!

The following characterization of the mean curvature flow in terms of the
square distance function r\ (c.f. (3.11) below) was first stated in [12].

Lemma 3.7 Let (rt)t€[o,r] b* & smooth flow. Then, there exists a > 0 such
that the function

V(x,t) :=|dist2(x,r ()

is smooth in {(x, t) € Rd x [0, T] : 17 < a}. Moreover, the displacement of the
flow is given by

t),0 vt e \o,T], x € ro.

In particular, (Tt)te[0tT} ^ a smooth, mean curvature flow if and only if

(3.11) Vty = AVr7, onTt.

PROOF. Since the Jacobian of 0(-,£) has full rank rank on To, the smoothness
of rj can be proved as in Theorem 3.1.
1. Fix yo € r t , and let xo € To be the unique point satisfying,

Since <£(xo, t + h) €

We differentiate the above identity with respect to h twice, and then evaluate
it at h = 0. Since </>(xOi t) = y0 and V»7(yo, t) = 0, we have,

Vn(yo,t) + V V * 0 , 0 & ( * 0 . 0 • ̂ t(xo,t) + 2VtH(yo,t) • *t(«0,0 = 0.

2. By the definition of smooth flow, <£t(xo,t) is orthogonal to Fe at j/o- Then
by (3.1),

h) - fc^t(x0, * + fc), * + M = 5 ^2|^t(x0, t + h)\2
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for h small enough. Observe that

\4>(x0, t + h) - fcfcfo, t + h) - yol < C/i2

for some constant C. Since Vry vanishes at (yo,O» w e have

Therefore,

3. Combine the two previuos steps to conclude that,

2 2 * ( * o , 0 . <M*o,t) + 2VT?t(yo,t) • <M*o, 0 = 0.

Recall that ^t(xoiO is orthogonal to Ft at yo and V2r;(xo,t) is the orthogonal
projection on the normal space of Tt at yo- So we have

and

2|0t(xo, t)|2 + 2Vr?t(yOi t) • ̂ t(x0 , t) = 0.

Then, </>£(xo,£) = -^m(vo,t) follows by the inequality |VTyt(yo,t)| < |<^>t(xo,t)|
which is obtained in the next step.
4. Let c > 0 and y € Rd; then, if <j>(z,t) € Tt is the point of least distance of
yo + y from Tt we can find p > 0 so small that \y\ < p implies \z — XQ\ < c. For
any y € Bp(0) we have

hence
<5(pt> + 2/, t + r) < «(y0 + y> t) + rl^t*. t)\ + o(r)

and
«7(l» + y, t + r) < ^(yo + y, t) + r«(yo + y, t)|^ t(2, t)\ + o(r)

Letting r J, 0 and using our choice of p we find

Vtivo + y, t) < |y| sup |^(z , t ) \
(

and
yo,O|< sup

Letting c J, 0 the statement follows.
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The smooth mean curvature flow is a system of partial differential equations
in T). But quite surprisingly, it turns out to be equivalent to a differential
inequality in 6. This observation was first made in [37] for co-dimension one
flows.

Theorem 3.8 Let (rt)t€[otr) be a smooth flow and let ficR^x (0,T) be the
maximal open set on which rj is smooth. Then, Ft is a smooth (d—k) dimensional
mean curvature flow if and only if

(3.12) 6t(x,t) > F(W(x, t ) , V 2*(x,0) V(z,t) € ft, x £ Tt.

PROOF. 1. Suppose that I \ is a smooth, mean curvature flow and let

We compute that on ft',

Vit = (6$i)t = M» + 6Sii%

and

(3.13) Sifju = 6t + 66it6i = 6t + ^6(6^ = 6t

Similarly, using (3.3) we get

Aty = 6i A6 + 26j6ij 4- 6A6i = 6i A6 +

and

(3.14)

in ft'. Set a» = rnt - A^ . Then (3.13) and (3.14) imply,

Using the last identity in (3.3), we conclude that,

(3.15) ciiSi = 6t — A6 + 6||V2£||2,

where || • || denotes the Euclidean norm in Rrf2. Since V26 is a symmetric matrix
||V2£||2 is equal to the sum of the squares of the eigenvalues. Hence,

d d

82, in ft',

where A < . . . < A are the eigenvalues of V26. By step 4 of Theorem 3.2, the
last Ac — 1 eigenvalues are equal to 6"1 and by (3.2) the remaining (d — k + 1) of
them are bounded in a tubular neighborhood

la = {(x,t) € Kd x [0,T] : tf(x,t) < a} .
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Therefore, using (3.7) we obtain

d-fc+l d-fc+l

(3.16) £
«=1 t = l

for some bounded function C(x,t). Since Tt is a smooth, mean curvature flow,
Oi = 0 for each i. So we have ,

(3.17) lim 6t(x, t) - F (W(x , t), V2£(x, t)) = 0 , Vx0 € Tt, t € (0, T).

2. Now, fix x € fi' and t € [O,TJ. Let xo € Ft be the unique point satisfying,
£(x, £) = |xo - x|. Then with p = (x - xo)/|x - xo| we have,

— (6t(x0 + spy t)) = X76t{x0 + 5p, t) • p = W t ( x 0 + sp, t) • V5(x0 + sp, t)

for any s € (0,6(z,£)). In view of Theorem 3.2 and the above calculation, the
map

s •-> 6t(x0 + sp, 0 - F(V6(x0 + sp, t), V2<5(x0 + 5p, t))

is nondecreasing in (0,6(x,t)]. Now we obtain (3.12) from (3.17), after letting
5 10.
3. Conversely, suppose that (3.12) holds in fi'. Let

(3.18) 7 (x , t) = Vr?t(x, t) - AVrtfx, t).

By continuity, we need only to show that 7(2/, t) = 0 for any £ € (0,T), y € IV
Since (rt)teio,r) ^s a smooth flow, by Theorem 3.7, Vrjt(y, t) is orthogonal to
Tt at y. Also the mean curvature vector H = — VA^t/, t) is normal to the
surface Ft at j/ , (see for example [36]). Therefore, we only need to show that
P ' 7(2/) 0 ^ 0 f°r a n v u r i^ vector p normal to I \ at y.

Let cr > 0 be as in Theorem 3.1 (with T = Tt) and for s € (0,a] let x8 =
y+5p. By Theorem 3.1 and Theorem 3.2, we have 6(xs, t) = s and V6(x3i t) = p
for any s € (O,cr]. Multiply (3.18) by p and proceed as in step one to obtain,

= 6t(xay t) - F(V6(x8y 0 , V2*(x,, t)) + O(5(x,, t)).

Since by hypothesis 6 is a classical supersolution of (1.6) in fi', we let s [ 0 to
obtain p • 7(2/, t) > 0. •
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Corollary 3.9 Let (rt)t€[0|T] ^ ° smooth (d — k)-dimensional mean curvature
flow and let tt(x,t) be the unique viscosity solution of (1.6) with initial data
ti(x, 0) = dist(x,To). Then,

for any t € [0,T). Moreover, 6(x,t) := dist(x, I\) is a viscosity supersolution of
(1.6) inRdx(0yT).

PROOF.
1. Choose a > 0 so that TJ is smooth on

Q, := {(x,t) : 0 < t < T, «(*,*) < a}.

Fix (x,*) € Qa, x £ Tt and choose y £ Ft such that £(x,*) = \y - x|. For
^€ [0,£(t,x)], set

x-j/
x« := y + ST r

l * - y |
and let

A(5)<f t (5 )< . . .<Af(5)
be the eigenvalues of V2^(xa, t). The following are proved in Theorem 3.2:

(this condition is empty for k = 1), and for t = 1 , . . . , d — k +1,

(3.19) ^ f t ( s ) = - (AW) 2 => AW = Y ^ - 5 € (0,<

for suitable real constants ft. Moreover in view of (3.2), |A|'s are uniformly
bounded by some constant C, independent of x and t € [0, T). By step 2 of
Theorem 3.8, 6t(x8yt) is constant and by (3.17),

t ( , , ) ( ( , , ) , ( , , ) ) = 0.

Reducing a, if necessary, we may assume that aC < 1/2 (recall that C is an
upper bound for &'s in (3.19) ). For 0 < s' < s < a, using (3.7) to compute F,
we have

6t(xstt) -

2
 # ,0)]

d-*+l
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Letting s' j 0, we obtain,

Set C* := 2C2{d - k + 1) . We have proved that * is a subsolution of

(3.20) 6t<F(V6,V26) + C*6%

in
Q'a := {(x,t) € Rd x (0,T) : 0 < «(*,*) < a}.

2. Set W := tT0*1 (6 A a/2). We claim that W is a viscosity subsolution of
(1.6) in Rd x (0,T). Indeed, let

w := H*(6), Ha{r) := r A a/2 r > 0.

We only need to show that w is a viscosity subsolution of (3.20) in Rd x (0,T).
Suppose that for some test function ip,w-rp attains its maximum at (xo, to) €
Rd x (0, T). Since Tt is smooth we conclude that xo ^ F^.
3. Suppose that 6(xo,io) > cr/2 (opposite case will be considered in the next
step). Then 6 > a/2 near (xo,to) and H = a/2 near (xo,to). So, at (xo,to),
^t = 0, Vif = 0, V V > 0. Hence

(3.21) 0 = Vt(x0, to) < F*(V^(x0, to), V2^(xo, to)) + C*5(x0, t0).

4. Suppose that fi(x0, to) < a/2. Recall that x0 & Tto. So (x0, to) € Q'a and the
first step yields

«t(*o, to) < F(V6(xOi t0), V
2£(x0, t0)) + CT6(x0, to).

Now the smoothness of 6 near (xo, to) imply that (3.21) still holds.
5. By Theorem 2.2, 0 < W < u in Rd x [0,T]. Therefore the zero set of u is
contained in the zero set of W for all t € [0,T], Observe that the zero level set
of W is equal to IV
6. To prove the opposite inclusion, set V = Ha(6), where Ha is as in the
second step. Using Theorem 3.8, and Theorem 2.3, it is easy to show that V
is a classical supersolution of (1.6) in Q'a and a viscosity supersolution of (1.6)
in {(x,t) € Rd x (0,T): V(x,t) > 0}. Therefore by Lemma 3.11 below, V is a
supersolution in all of Rd x (0,T). By the comparison result, Theorem 2.2,

Hence Ft is included in the zero level set of u.
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7. In this step, we show that 6 is a viscosity supersolution in Kd x (0,T). So
let <f> be a smooth function and (xo, to) € Rd x (0, T) be a minimizer of (6 - >̂).
Choose yo € T^ satisfying £(xo, to) = |xo - yo| and set

<p(y, t) = 4>{y + xo - voi t).

Then by the subadditivity of 6, it is easy to show that (yo>to) is a minimizer
of (6 - <p). Let V be as in the previuos step. Since j/o € T^, (3/0,̂ 0) is also a
minimizer of (V - <p). Since V is a viscosity supersolution of (1.6), we have

at (2/0, to). Hence ^ satisfies the above inequality at (xo, to) and therefore 6 is a
viscosity supersolution of (1.6) in Rd x (0,00). •

Remark 3.10 Let F be the function defined in Remark 3.4. It is easy to
check that the results of §2 apply to F as well. In particular, given a uniformly
continuous viscosity solution of

ut = F(Vu, V2u), {u(., 0) = 0} = To

the sets f(t) := {tx(-, t) = 0} are well defined and depend only on To.
Using (3.7) we see that Theorem 3.8 trivially holds with F in place of F. Also

Theorem 3.9 holds with F in place of F, hence the weak solution ft is consistent
with the classical solution. However, the inequality F < F and Theorem 2.2
easily imply that Ft C f t in general. By an explicit computation it can be seen
that the inclusion is strict if r 0 = {x € Rd : 1 < |x| < 2}.

We continue with the proof of the lemma already used in step 6. For future
reference, we will prove is a slightly more general version than needed in that
step.

Lemma 3.11 Let w : Rd x [0,7*] —> (0,oo) be a lower semicontinuous function
satisfying:

(t) for every (x, t) € Rd x (0, T) with tu(x, t) = 0, there is a sequence (xn, tn) -•
(x, t) such that tu(xn, tn) = 0 and tn < t;

(u) w is a viscosity supersolution of (1.6) on {(x,t) : ty(x,t) > 0, t € (0,T)};

(Hi) \w(t, x) — tu(t, y)\ < L\x — y\ for some suitable constant L.

Then w is a viscosity supersolution of (1.6) tn Kd x (0,T).

PROOF. For c > 0, let h€(r) = (r — c)+. We claim that ht(w) is a viscosity su-
persolution of (1.6) in Rd x (0, T). Suppose that for some test function function
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* , h€(w) - * has a minimum at (z0, to) € Rd x (0,T). Adding to * a fourth
order perturbation, we may assume that the minimum is strict.
1. Suppose that tu(xo, to) > 0, the opposite case will be discussed in the next
step. Choose a sequence of strictly increasing functions {/n} uniformly converg-
ing to hz on R. Since (xo,to) is a strict minimum it is easy to see that there
are local minimizers (xn , tn) of fn(w) — * converging to (xo,to). By the lower
semicontinuity of w, tu(xn,tn) > 0 for n large enough. Since by Theorem 2.3
/n(tu) is a viscosity supersolution in {w > 0}, we have,

Send n —• + oo to obtain the above inequality at (xo, to).
2. Suppose that tu(xo,to) = 0. By (i) there is a sequence (xn , tn) —» (xo, to)
with w(xn,tn) = 0 and tn < to. Recall that by hypothesis, w is Lipschitz
continuous in the x variable. Therefore for sufficiently large n, ht(w(xo, tn)) = 0.
Since tn T t, we conclude that *t(xo,to) > 0. Also ht(w(x,to)) s 0 for all x
near x0. Hence V*(xOito) = 0, V2*(to,xo) < 0 and at (to,xo) we have,
*t = 0 > F*(V*, V 2 * ) . Let c | 0, and use the stability property of viscosity
supersolutions (see for instance [8], Proposition 2.4) to conclude that w is a
viscosity supersolution in Rd x (0,T). •
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4 Distance solutions
In the previous section, it is shown that the distance function of a smooth, mean
curvature flow is a viscosity supersolution of (1.6) in all of Rd x (0, oo). This
suggests the following definition of a weak solution of mean curvature motion.

Definition 4.1 We say that {Ft}t€(Otr) *s a distance solution of the (d - k)
dimensional, mean curvature flow, if the distance function

6(x, t) = dist(x, TO, x € Rd, t € (0, T),

is a viscosity supersolution of (1.6) in Kd x (0,T).

For co-dimension one flow, a similar definition was first given in [37]. The
above is an intrinsic definition using the distance function to the surface instead
of an auxiliary function u(x, t) used to the define the level set solutions. How-
ever, as opposed to the level-set solutions, for a given To, there may be more
than one distance solutions. Nonuniqueness of distance solutions is related to
the "fattenning" of the unique level set solution. We will show in Theorem 4.4
below, that distance solutions and the level set solutions are very closely related.

We will study the properties of distance solutions satifying an initial condi-
tion. However, as set valued maps we do not expect continuity at time zero.
For instance, consider the planar mean curvature flow with initial data

To = {(X!,x2) € R2 : (xj)2 + (x2)2 = 1} U {(0,x2) € R2 : x2 € [1,2]}.

Then at time £, the only solution (level set, distance, etc) with the above initial
data is is the circle with radius y/1 — 2t. Hence the line segment {(0, X2) € R2 :
£2 € [1,2]} disappears instantaneously. So we need to make precise how the
initial data is achieved.

Definition 4.2 For a given closed set F*, we say that {Ft}te(o,T) satisfies the
the initial inclusion

(4.1) Fo C F*,

if
^(x,0) = liminf 6{x,t) > dist(x,F*).

Geometrically the above condition is equivalent to

(4.2) liminfTt := ft (J TSCT\

Note that for level set solutions, the geometric initial data is imposed by
requiring (1.1) and the continuity of the viscosity solution u.
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In this section, we will show that the level set solution is the maximal dis-
tance solution satisfying the initial inclusion (4.2). We start our analysis by
proving an equivalent formulation for the distance solutions. Let xr(^» 0 be the
indicator of the set Tt evaluated at x.

Lemma 4.3 {r\}t€|o,T] ** a distance solution of the {d — k) dimensional mean
curvature flow if and only if 1 — xr *$ a viscosity supersolution of {1.6) in
Rdx(0,T).

PROOF. Let {Tt}te[o,T} be a distance solution and h€ be as in the second step
of Theorem 2.5, i.e.,

h€(r) = 0, forr < 0, h€(r) = 1, forr > e, /i€(r) = - , for 0 < r < e.

Then by the stability of viscosity solutions (c.f. [8, Proposition 2.4]),

w{x,t) = liminf /i€(%,s)), x € Rd,t € (0,T],
€—0, (y,«)—(x,t)

is a viscosity supersolution of (1.6). Also it is easy to check that w is the lower
semicontinuous envelope of 1 — xr- Hence 1 — xr is a viscosity supersolution of
(1.6)inRdx(0,T).

To prove the sufficiency, suppose that 1 — xr is a viscosity supersolution of
(1.6) in Rd x (0,T). For K > 0, set

Then it is easy to prove that vK is a viscosity supersolution of (1.6); see for
instance [20, Section V.7]. Note that

ti*(x,0 = «(xf 0 Ainf{/T + |x - y| : y i Tt).

Now let K —» oo, to conclude that 6 = limt;* is a viscosity supersolution. •

Let F* be a closed set and let u be the unique, uniformly continuous viscosity
solution of (1.6) satisfying u(x, 0) = dist(x, T*). Recall that the level set solution
is the zero level set

r t = { i € R d : u ( x , t ) = 0}.

Theorem 4.4 The level set solution TJ is the maximal distance solution satis-

PROOF.

Let h€ be as in the previous proof. Set

t/;(x,t)= liminf h€(u(yys))y x € Rd,* € [0,oo).
c—0, (y,«)—(x,t)
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Then it; is a viscosity supersolution of (1.6) and it is easy to check that w is
equal to the lower semicontinuous envelope of 1 - xv-

By the previous lemma, {F{}t>o is a distance solution. Also the continuity
oft* and the initial data tx(x,O) = dist(x,F*) implies that {FJ}t>o satisfies (4.1)
in the sense of Definition 4.2.

Let {Tt}te(o,T) be another distance solution satisfying (4.1) and let 6 be its
distance function. Then by definition, 6 is a viscosity supersolution of (1.6).
Moreover, (4.1) implies that

&(x, 0) > dist(x,r*) = u(x, 0), x € Rd.

Hence by Theorem 2.2, we have

6>6*>u, inRd x [0,T].

Therefore, FJ contains any other distance solution satisfying (4.1). D
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5 Varifold solutions of Brakke
In this section, we compare the varifold solutions of Brakke [7] with level set
solutions defined in §2. The definition given by Brakke involves varifolds. Here
we use the formulation of Ilmanen [26], using the Radon measures on Rd. We
will show that the support of these Radon measures is a distance solution in the
sense defined in the previous section. Hence by Theorem 4.4, they are included
in the level set solution. We start by recalling Ilmanen's definition. Note that
this definition implies the Brakke's original definition [26, §6].

Let (/it)t>o be a family of Radon measures on Rd. Following [26, §6], we call
(Mt)t>o a Brakke motion provided that for all* > 0 and all <f> € C*(Rd -> [0, oo)),

= J
J ^

where for any real valued function / , Dtf(t) is the upper derivative,

* s — t

and for any Radon measure /x, B(/x, <f>) is defined as follows. Suppose that,

(i) fi[{<(> > 0} is a (d — k) rectifiable Radon measure,

(ii) |£V|L{# > 0} is a Radon measure, where V is the varifold corresponding to
the rectifiable measure n[{<t> > 0} and 6V is its first variation (see for example
[36], or [26, §1]),

(hi) |5V|[{<£ > 0} is absolutely continuous with respect to /x[{0 > 0}, with a
Radon-Nikodym derivative H € L2(Rd -+ Rd, d/x[{<£ > 0}).

Then

B(/x, <f>) = J - < £ ! # | 2 + V<f>. S 1 .

where S(x) is the projection onto the tangent space Tx/x. If however, /x and <f>
do not satisfy any one of the above conditions (i),(ii),(iii), then we set

For a Brakke motion (Mt)t>o, dfi := dntdt is a Radon measure on Rd x [0, oo)
(see (5.2) below). Let T be the support of /x and for t > 0 let tt be the support
of/it-

Lemma 5.1 Let (/xt)t>o be a Brakke motion. Then,

r=LJftx{t}.
t > 0
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Moreover, for any (xo,*o) € F with tp > 0, there exists a sequence (xn , tn)
converging to (xo,to) ^ ^ **** xn € f^ and tn < to. Finally, if (x,0) € F,
t/ien x € To.

PROOF. Let

C:={Jttx{t}.
t>o

1. The inclusion F C C is immediate. Suppose that to > 0 and (xo,to) £ r.
Then there are 0 < c < to and a smooth function £ : Rd —• R + with compact
support such that £(xo) > 0 and

Hence for almost every t e (to - e, to + c), we have /xt(£) = 0. According to [26,
7.2(ii)], the following limits exist and satisfy,

(5.2) J

In particular /ito(f) — 0 a Rd xo £ f^. So we have proved that

CCTCC.

Since F is closed, (5.1) follows.
2. Suppose that xo € fto for some to > 0. For any c > 0, choose a smooth
cut-off function £ : Rd —• [0,1] which is equal to 1 on i?c(xo) and is equal to 0
on Rd \ i?2C(xo). Then we use the first inequality in (5.2) to obtain,

0.

Since c > 0 is arbitrary, we can now easily create the desired sequence (xn , tn ) .
3. Now suppose that (xo, to) € F. In view of the previuos step, we may assume
that xo $ fto. Then there is p > 0 such that fito(BP(xo)) = 0. By Brakke's
clearing out lemma, [7, page 164], there is r > to satisfying,

Mt(£p/2(*o))«O, V t € [ t o , r ] .

Hence Bp/2(xo) and tt are disjoint for all t € [to,T]. Since (xo,to) € F, (5.1)
implies that

(xo,to)€ (J f tx{t}.
0<t<t0

We now use this inclusion and the previous step in a diagonal argument to
construct the desired sequence.
4. If x £ fo, there is p > 0 satisfying, fj,o(Bp(x)) = 0. Then by Brakke's clearing
out lemma, there is r > 0 such that ^t(J5p/2(x)) = 0 for any t € [0,r]. Hence
(x, 0) is not in F. •
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Lemma 5.2 LetX € S*** and Xu = O for some unit vector u. Then

F(uiX)<X:S-r\\X\\\Su\i,

for any (d — k) -plane S. Here S is identified with its projection matrix, X : S
is the scalar product of the matrices X and S, and \\X\\ is the operator norm of
X.

PROOF. Since the statement is rotationally invariant, we assume that u = e^
and X is diagonal, i.e., Xij = XiSy. Then the equation Xu = 0 implies that
A<j = 0. We may also assume that

Xi < X2 < . . . < Ad_!.

Since 5 is a projection matrix and u = e^, we have, Sdd = Suu= \Su\2. Also

and recall that X = PUXPU, hence

d-k

So it suffices to prove that

Indeed, the above inequality is equivalent to

d-k d-\

Since 0 < 5 0 < 1, and the trace of 5 is equal to (d - A), we have,

d-k d-k , d-k

*=1 t=l

d d-l

= Ad-k 2 2 ^ " - zZ *iOii "•• \Ad-k\°dd>
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Proposition 5.3 Let {(*t)t>o be a Brakke motion. Set

*(x,t):=dist(x,{y:(y,t)€F}).

Then 6 is a viscosity supersolution of 6t > F*(V6, V25) in Rd x (0,oo).

PROOF. Suppose that for some test function ip the function 6 —-0 attains a local
minimum at (xo, to) £ F with to > 0. We wish to show that at (xo, to) we have
ipt > F*(V^, V2^). We argue by contradiction. So we assume that

P := -[V>t(*o,to) - F.(V^(xo,to), VV(xo,to))] > 0,

and then obtain a contradiction in several steps.
First observe that without loss of generality we may assume that rp(xo, to) =

£(xo, to), ip is globally Lipschitz continuous and the infimum of 6 — t/> is stricly
positive on the complement of any ball containing (xo,to).
1. Since £(xo,to) > 0 and any distance function is semi-concave on its positive
set, we conclude that 6 is differentiate with respect to x at (xo,to). Therefore

, ^ ) , V2V(xo,to)) =

Choose 0 < t < to such that for all |t - to| < 2c and |x - xo| < 2e,

(5.3) Vt(*, t) - / W ( x , t), W ( x , t)) < -/3/2,

and
(5.4) 2>|VV(x,t) |>l /2.
2. Set

Q0 :=5(xo,to) + inf{(«--0)(t,x) : | x - x o | > c or | t - t o | > cor both}.

By our assumptions on ̂  and 6, we have ao > ^(xo,to) > 0. Choose t/o 6
such that

a := 6(x0, to) = |x0 - yo|, (yo, k) € F,

and define
fi(t) := {x € Rd : i{>(x + x0 - j/o, t) < a} .

3. We claim that

{ x € R d : ( x , t ) € F } c n ( t ) Vt > 0.

Indeed, suppose that £(x, t) = 0. Then

(5.5) rl>{x -f xo - l/o, t) < S(x + x0 - yo, t) < 6(x, t) -h |x0 - ^ | = 5(x0, t0).
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4. In this step, we will show that \t — to I > * implies

{x : dist(x,0ft(t)) < ^ Z ^ , «(x,t) = 0} = 0.

Suppose that dist(x,9f2(t)) < (ao - a) /2. Since \t - U>\ > c, the definition of
QO yields

ao — a
2~'

Choose y € 3fi(t) satisfying,

- y | = dist(x,0fi(t)) <

Since %l>(y -f xo - j/o, 0 = CK, we have

6(x,t) >

+ x0 - j/o, t) - |x - 2/1 - l*o -

5. Finally we claim that for any t > 0,

{x € Rd : dist(x,0fi(t)) < ^

Let x be an element of the set on the left. In view of step 4, we may assume
that \t - to| < c Choose y € dft(t) such that

\y - x| = dist(x, #fi(t)) < °

<*Q — a

Since ip(y + xo - 2/0,0 = a» w e obtain

< [I|V*|U + 1]

= ao — a.

Since \t - to | < e, by the definition of ao, we have x + x0 - j/o € 5 c (x 0 ) and
therefore x e Bt(yo).
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6. Choose 7 € (0,e/2) such that

(5.6) 7 <

and the signed distance r(x, t) to

{ -dist(x,

dist(x,£

,«l(t)), infi(t),

' ,01(0), inR"\fi(f),

is smooth in the region

{(x,t): \t - to| < e, x € Be(j/o), dfct(*, «!(*)) < 2 7} .

Observe that the above choice of 7 is possible, because of (5.4) and the smooth-
ness of \j>.
7. Let h := ([7 - |s|]+)p with p > 2 to be chosen later. Set

*(x , t ) := / i (r (x , t ) - | ) , /(t) : = * ( * ) .

Since j/o € #fi(t0), $(yo>to) > 0. Moreover, (3/0, *o) € T. Therefore by (5.1) / is
not identically equal to zero in (to — c, to -f c). On the other hand, step 4 implies
that for \t — to I > c, we have |r| > (ao — a)/2 > 27 on F. Hence / is identically
equal to zero for \t — to| > c. We will obtain a contradiction by showing that
for suitably chosen p, we have Dtf(t) < 0 for any t > 0.

By steps 3, 4, 5 and 6 we have F n spt$ C U, where

(5.7) U := {(x,t) : \t - to| < e, x € B£(JA)), - ^ < r(x,t) < 0}.

Hence our choice of 7 in step 6 implies that $ is smooth on F.
8. By the previous step, $ is a time varying admissible function in Brakke's
definition. Hence we conclude that for any t > 0, either we have Dtf(t) = -00,
or spt/xt fl {x : (x, t) € spt$} is (d - fc)-rectifiable and following [26, page 60,
step 3] we obtain,

Dtf{i) <

= /[-$\H\2 + V* . S - H + V$ • H + *J dfit
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where S = S(x) is the projection matrix onto Tzfiu SV& is the tangential
gradient of $, and we used the first variation formula (3.9) in the third step.
Proceeding as in [26, page 60] we compute the derivatives of * in terms of the
derivatives of h evaluated at r - J, to obtain,

By Lemma 5.2,
F(Vr,V2r) <S:V2r+ ||V2r|||SVr|2.

In view of (5.7), h'(r - 7/2) > 0 on T O spt$. Therefore,

Dj{t) < J[iy£-h»

where A is a constant satisfying ||V2r|| < A on U. Now choose p = p(A) in the
definition of h so that the first integral in the above expression is non positive.
Therefore
(5.8) Dj(t) < j h'[rt - F(Vr, V2r)] dMt.

9. By (5.4) we have |V^(x,t)| > 1/2 for any |t - to| < 2c, x € £*(*()). Also
note that Vr and VV> induce the same orientation of #fi(t). Therefore for any
t € [to - e, to + e] and any x € B2€(yo) n dfi(t), we have rt = ^ t/ |V^| and

where all derivatives of rp are evaluated at (x -f- x0 -1/0,0- By (5.3) and (5.4),

(5.9) V|t - to| < c, y € B2t(vo) n dCl(t).

Now, take any (x,t) € r Hspt$. Since 27 < c, by (5.7) and the smoothness
of r (c.f. step 6), there is a unique y € dSl(t) n 2?2c(vo) satisfying r(x%t) =
—|y - x|. Since the eigenvalues of V26 decrease moving away from #fi(t) along
characteristics of the distance (see step 4 of Theorem 3.2), by (5.9) we get

rt(x, t) - F(Vr(x, t), V2r(x, t)) < rt(y, t) - F(Vr(y, t), V2r(y, t)) < -fi/4.

This, together with (5.8) shows that Dtf(t) < 0. Hence 6 is a viscosity super-
solution of (1.6) in {6 > 0}.
10. In view of the previous step and Lemma 5.1, all hypotheses of Lemma 3.11
are satisfied. Hence 6 is a viscosity supersolution of (1.6) in Rd x (0,00). D
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Theorem 5.4 Let (/*t)t>o be a Brakke motion and let u be a non-negative,
uniformly continuous, viscosity solution of(l.ff) satisfying

spt/xo C {x € Rd : u(x, 0) = 0}.

Then for all t > 0,

PROOF. Since {u(«, 0) = 0} contains spt/xo, Lemma 5.1 implies that {n(-, 0) = 0}
contains {£(•, 0) = 0}. Then arguing exactly as in Theorem 2.5 we construct a
non decreasing uniformly continuous function u>(t) such that u>(0) = 0 and

0 < u(x, 0) < UJ(6(X, 0)) Vx € R*.

Then by Theorem 2.2, 0 < u < u;(6) on Rd x (0, +oo) and this gives the desired
inclusion, because {£(•, t) = 0} contains sptfit. D

Remark 5.5 Since Ilmanen's solutions of mean curvature flow, obtained by
elliptic regularization in [26], satisfy Brakke's condition, our result applies also
to them. Theorem 5.4 can be used, in some situations, to show the occurrence
of the fattening phenomenon, i.e., Wrf~"*+1(rt) > 0 for some t > 0 even though
the initial set To has dimension (d — k). It suffices to find a family {/xj}i€/ of
Brakke's varifolds such that / 4 a r e supported in To and

for some t > 0.
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6 Geometric supersolutions of De Giorgi
In this section, we compare the level set approach with a purely geometric
approach based on the notion of barriers, recently introduced by De Giorgi in
[12]. In addition to the general definition of barriers, [12] also contains the
characterization of the smooth mean curvature flow as a system of equations for
t) (c.f. (3.10) ) and the idea to evolve hypersurfaces by the sum of the smallest
(d — k) principal curvatures. Both of these observations were crucial in the
development of this paper.

We start with De Giorgi's general definition of barriers.

Definition 6.1 (De Giorgi) Let (S,<) be a partially ordered set and let T
be a class of functions defined on intervals [a, b] C [0, +oo), with values in 5. We
say that <f>: [0, +oo) —> 5 is a barrier relative to Ty and we write <f> € Barr(^),
provided that the following implication holds for any / € T ,

/ : [a,fc]->S, / ( a ) < * ( a ) =* f(t)<4>(t) Vt€[a,b].

If S is a complete lattice, then the infimum any family of barriers is still a
barrier. For any s e 5, this suggests the following definition of the least barrier,
barr(.F, s), that is greater than s at time 0,

barr(.F,s)(t) := inf <4>{t) : <f> e Barr(^), s < <t>{0)\.

Heuristically, we think of T as the set of all classical solutions and Barr(T)
as the set of all supersolutions. Then in analogy with the Perron's method,
barr(^r, s) is a weak solution with initial data s.

In this section, we apply the above definition of barriers to the co-dimension
k, mean curvature flow, assuming k > 1 (the co-dimension 1 case is studied in
[6]). Following [12], we take 5 to be the collection of all subsets of Rd, ordered
by inclusion. Then there are two choices for T. First one, denoted by Ty is
the class of smooth co-dimension k mean curvature flows {rt}te[a,&]i given in
Definition 3.6 up to a translation in time. The second choice T* is the collection
of all maps with values in compact sets {fii}t€[a,6) such that {dQt}te[aM is a
smooth co-dimension 1 flow (see Definition 3.6) and the signed distance, r(x, t)
from dQti

r(x,t) :=dist(x,n t) - dist(x,Rd \f2 f),

satisfies,

J > F ( V r , V 2 r ) on {(*,«) € Rd x [a, 6] : r(x,t) . 0}.

Given a compact set To, in [12] De Giorgi uses the choice T to define a weak
solution of the co-dimension fc, mean curvature flow starting from IV His
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definition is,
(6.1) At^

where Np(Fo) is the open ^-neighbourhood of To. Using T* instead of T one
obtains the following definition

(6.2) r , : « ^ b a i r ^ Ar,(T0))(t).

We will show in Theorem 6.4 below, that the latter definition is the same as the
level set flow. In the co-dimension 1 case, the connections between the level set
approach and the barrier approach are investigated by Bellettini and Paolini in
[5], [6].

Conjecture [De Giorgi] For any open set A C Rd and t > 0, we have,

(6.3) barr(JF A){t) = barr(.T, A)(t).

If the above conjecture holds, then Ft and At defined above agree and both
are equal to the level set solution defined in §2.

Remark 6.2 The inclusion C in (6.3) is not very hard to prove. Let </>(t) be
the family of sets on the right hand side. We will prove that </> € Barr(^r). Let
{F t}t€|a,6] be any function in T satisfying Fa C <£(a). Choose a > 0 such that
*7(x, t) = dist2(x, Ft) is smooth on

Q := {(x,t) : a < t < fe, r){x,t) < 4a 2 } .

For t € [a, 6], set fit = {t|(-, t) < a 2 } . Then using Theorem 3.8, we can show
that the family {fit}te[a,6] belongs to T*. Indeed, the signed distance r(x,t)
from 17t is equal dist(x, Tt) - o near d£lt and outside flt.

By Lemma 6.3, the sets </>(t) are open for any t. By reducing a, if necessary,
we may assume that Qa C <f>(a). Since <f> is a barrier relative to T*% Qt C 4>{t)
and therefore,

Ft C fit C 4>(t)

for any t € [a, 6]. Since <f> € Barr^) the inclusion C in (6.3) follows.

D
In the following lemma we prove elementary topological properties of least

barriers.

Lemma 6.3 Let A C Rd be an open set and let <f>(t) = barr^*,^)^) , K(t) =
Rd \ <f>[t). Then <f>(t) is open for any t and the map t »-• K{t) is upper semi-
continuous from the left, ie . , (xhith) -+ (x,t), xh € K(th) and th < t implies
x € K(t).
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PROOF. The translation invariance of the class T* easily implies that the
interior of a barrier is still a barrier. Hence the minimality of <f> forces <f>(t) to
coincide with its interior for any t.

To check the upper semicontinuity property we define

U *«•
0<T<t ae(t-T,t]

and verify that K(t) = K(t) for any t. Since K(t) contains K(t) and 4>{t) is the
least barrier, we will prove that <f>(t) := Rd \ K(t) is a barrier.

Let {ftt}t€[a,6) € F* such that fi(a) C #(a). For r small enogh we can
assume that y + fio+c C <f>(a) for any c € [0,r) and any y such that \y\ < r. The
barrier property implies

Nr(Qt) C <t>(s) Vs€( t -T, t ]

for any t > a. Hence,

ftt C Interior f p | <f>(s) J.
Se(t-Tt) '

In particular, since the set on the right is contained in ^(t), we obtain Qt C 4>(t).
D

The proof of the inclusion of the level set flow in the sets Ft defined in (6.2)
crucially depends on the following approximation property. Similar properties
for co-dimension 1 .F-flows have been proved in [16], [25], [27].

Approximation property. Assume that U is a bounded open set with C1*1

boundary E. Let r(x,t) be the unique viscosity solution of (1.6) with the initial
condition r(-,0) equal to the signed distance from E. Then, there exist T > 0,
an open set A containing E, and a family of functions re such that, with D =
~A x [0, T] we have,

(1) r€ € C°°(D), |Vrc| > 0 o n D and r€ are supersolutions of (1.6) in A x (0,T);
(2) r€ uniformly converges to r on D.

We remark that in the approximation property there is no hope in general to
look for smooth solutions of (1.6) because of the lack of smoothness of F(j>, X)
on ( R d \ {0}) x Sdxd. This is also the main motivation for the definition of F*.
We can now prove the following equivalence result.

Theorem 6.4 Assume that the approximation property holds. Let {rt}
be as in (6.2). Then, I \ is equal to the level set solution defined in §£.
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PROOF. Let u(x,t) be the unique viscosity solution of (1.6) with the initial
condition u(x, 0) = dist(x,r0) and set FJ : = W*. 0 = 0}.
1. To prove the inclusion rj D Ttl it suffices to show that 4>p(t) := {u(-,t) < p)
is a barrier relative to 7>, for any p > 0. Because if 4>ft is a barrier, then

and we obtain the inclusion V't D Tt by letting p | 0. The fact that 4>p is a
barrier follows from Theorem 2.2.

Indeed, let {fti}t€|a,&] be a function in T*% such that fio C ^>(a). Set
{(x,t) := dist(x, O(t)). Arguing as in Corollary 3.9, we can prove that 6 is a
supersolution of (1.6) in Rd x (a, 6). On the other hand, since fio C 4>P{o), there
exists a nondecreasing uniformly continuous function u{t) such that LJ(0) < 0
and «*;($(•, a)) > u(,a) - p (see Theorem 2.5 for the construction of a/). By
Theorem 2.2, Theorem 2.3 and the continuity of u, 6% we get u/(£(-, i)) > u(«, t)—
p for t € [a, 6]. Hence

x € O|f - • «(x,t) = 0, =* u(x,t) < p, =» x € ^p(t)

for any t € [a, 6]. This shows that 4>p is a barrier.
2. To prove the opposite inclusion C we define K(t) := Hd \ <f>(t) and we show
that the function /(£) := dist(rt, K{i)) is nondecreasing. It is easy to see that
the monotonicity of / follows by the following two properties:

(6.4) liminf / ( s ) > f(t) Vt > 0

and

(6.5) Vt > 0 s.t. f(t) > 0 3T > t s.t. /(*) > / ( t ) V5 € %T\.

Inequality (6.4) follows by the upper semicontinuity of the map t *-> K(t) (see
Lemma 6.3): if (x^, yhi sk) is a sequence converging to (x, y, t) such that *& < t,
Xh € rSk% yh € / f (SH) and

lim | x h - ^ | = liminf/(s)

we have x € I \ , y € /T(t) and the inequality follows.
3. In this step we begin the proof of (6.5). By the C1*1 interpolation lemma of
Ilmanen [27] there exists a bounded open set U containing Ft whose boundary
£ is C1*1 and satisfies

(6.6) dist(r t, E) + dist(E, K(t)) m dist(rtf K(t)).

Let rt be the signed distance function from £ and let r(x, s) be the unique
viscosity solution of 1.6 with the initial condition r(,t) = rt. Setting Us :=
{r(-,*) < 0}, Theorem 2.2 yields the inclusion
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for any y € Rd such that |y| < dist(I\, Ut). In particular

(6.7) dist(rJf dUt) > dist(rtl dUt).

Taking into account that

dist(r#, dUB) + dist(0[/,, K(s)) < dist(r,, K{s)) Vs > 0

and (6.6), (6.7), in order to prove (6.5) we need only to prove in the next step
the existence of T > t such that

(6.8) dist(9t/,, K(s)) > dist(0[/t, K(t)) Vs € [t,T\.

4. Let Ay T > t, r€ be given by the approximation property up to a translation
in time. Possibly reducing T we can assume that {r€(-,s) = 6} C A for any
s€[t,T\ and any e € (0,e0), 6 € (0,60).

Since r€ are supersolutions of (1.6) and smooth, the sets Ul'6 := {rc(-, s) < 6}
belong to T* (the functions r€ need not be distance functions). Hence, since
<f>(t) is a barrier, we get

(6.9) dist(dl^'*, K(s)) > dist(aC/t
c/, K(t))

for any 5 € [t, T], c € (0, e0), 6 € (0,60). Now, it is easy so see that the uniform
convergence of rc to r implies

liminf d\st(dUl\K{t)) > dist({r(-,t) = 6},K(t))

and

limsupdist^l^'^jK^s)) < d\st(dU8,K(s)).

This yields
/,, /f (5)) > dist({r(., t)

for any 5 € [t, T]. Letting 6 [ 0 we obtain (6.8).
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7 Extensions and Examples
As we have already seen several important properties of the codimesion one flow
generalize to flows with arbitrary codimension. However, there are differences.
The level set solution Tt of the arbitrary codimension flow is the zero level set of
a nonnegative auxiliary function u(-, t). Alternatively, Tt is the set of minimizers
of u(-, t). On the other hand, in the codimension one case, any level set can be
used to define the level set flow. This simple observation implies that certain
properties of the codimension one flow do not generalize. Most importantly,
consider the codimension one flow of two disjoint, compact subsets, C/o, Vo of
Rd. It is easy to construct a Lipshitz continuous uo : Rd —• R such that,

Uo = {x : uo(s) = 0}, Vo = {x : uo(x) = 1}.

Let u(xtt) be the unique viscosity solution of (1.2) with initial data UQ. Then
the codimension one flows

Ut = {x : u(x,t) = 0}, Vt = {x : u(x,*) = 1},

are disjoint for all time t > 0. In fact, since the Lipshitz constant of u(-, t)
is nonincreasing in time, the distance between Ut and Vt is nondecrasing in
time. This proof uses the flexibility, in codimension one, to use any level set
of u to define the level set flow, and therefore it can not be generalized to an
arbitrary codimension. Indeed, this "disjointness" property is false in higher
codimensions. Consider the codimension two flow in R3 with initial sets,

Uo = {(*, V, z) : * V = 4, z = 0 }, Vo = {(x, y, z) : (x-2)2+z2 = 4, y = 0 }.

Then the level set solutions are given by,

Observe that the distance between two solutions is decreasing and at t = 1.5,
they have a nonempty intersection at (1,0,0). Interestingly, the level set flow
Tt of the initial data Fo = Uo U Vb should become "fat" for t > 1.5.

Alternatively, we summarize the above observation as follows. Let Uty Vt be
the level set flows of two disjoint compact sets Uo and Vb, respectively. Then, in
the codimension one case the level set flow starting from UQ U VQ is equal to the
union of Ut and Vt but this property is not true for higher codimension flows.
However, the ellipticity of the function F(p, A) in (1.5) shows that there is an
inclusion principle for hypersurfaces flowing by the sum of the smallest (d — /c)-
principal curvatures, hence the level set approach can be used to describe this
motion. Moreover, Corollary 3.9 shows that these hypersurfaces are "barriers"
against co-dimension k surfaces flowing by mean curvature, giving a connection
between the two flows.
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Extensions, Consider the geometric equation

(7.1) V =

where p(x, t) € Rd is a given Lipschitz vector field, n is the projection onto the
normal space while, as before, V and H are, respectively, the normal velocity and
the mean curvature vectors. Then the theory developed in the previous sections
extend to the above equation with only minor modifications. For example, I \
is a classical solution of (7.1) if and only if

Vr]t = VArj + V2r/0, on Tt,

where 2rj = 62 and 6 is the distance function to Ft. Moreover, the above equation
holds if and only if there are positive constants C, a satisfying,

-C6 < 6t - F(V£, V26)

on {6 < a}. These observations lead to a result, analogous to Corollary 3.9.
Namely, whenever a classical solution of (7.1) exists, then it is equal to the zero
level set of the unique viscosity solution u of

ut = F(Vu, V2u) + Vu • g.
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