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Abstract

A statistical equilibrium theory is developed which
characterizes the large-scale coherent structures that emerge
during the course of the evolution of an ideal two-dimensional
magnetofluid. Macrostates are defined to be local joint
probability distributions, or Young measures, on the values of the
fluctuating magnetic field and velocity field at each point in the
spatial domain. The most probable macrostate is found by
maximizing a Kullback-Liebler entropy functional subject to
constraints dictated by the conserved integrals of the ideal
dynamics. This maximum entropy macrostate is, for each point in
the spatial domain, a Gaussian probability distribution, whose
local mean is an exact stationary solution of the evolution
equations of the magnetohydrodynamic system. The predictions of
the statistical equilibrium model are found to be in excellent
qualitative and quantitative agreement with recent high resolution
numerical simulations of turbulence in slightly dissipative two-
dimensional magnetofluids.

Research supported by the ARO and the NSF through grants to the
Center for Nonlinear Analysis.



 



1. INTRODUCTION

l.l Features of Two-Dimensional Magnctodydrodynamic Turbulence

The turbulent behavior of a two-dimensional magnetofluid is a

fascinating phenomenon that has attracted the interests of

theoreticians and experimentalists for many decades.

Magnetohydrodynamic (MHD) turbulence in plasmas occurs in

astrophysical systems, such as the solar wind [9, 37, 48], and in

devices developed for controlled nuclear fusion research [17]. It

is believed that certain large-scale features of solar dynamics can

be modeled by the equations of two-dimensional MHD [36, 37, 48].

It has also been argued that, in strongly magnetized situations,

NHD turbulence becomes essentially two-dimensional with increasing

field strength [18, 43].

Apart from the relevance of MHD to problems of plasma physics

and astrophysics, two-dimensional MHD turbulence is a particularly

nice prototype for the general turbulence problem. High-resolution

numerical simulations are available for slightly dissipative two-

dimensional magnetofluids [7, 9, 10, 11]* These simulations

clearly display the dominant features of the turbulence - namely,

the generation of small-scale fluctuations, and the emergence and

persistence of large-scale coherent structures amidst the turbulent

fluctuations. It is expected that a turbulent three-dimensional

magnetofluid will also display these generic features. Unlike

nonmagnetic fluid dynamics, a two-dimensional magnetof luid produces

energetic small scales, which makes the difference between two-

dimensional and three-dimensional MHD turbulence less severe than

that for ordinary hydrodynamic turbulence [24]. In addition, a

two-dimensional magnetofluid exhibits a rich set of phenomena not

found in ordinary hydrodynamics, which challenge any proposed model

of two-dimensional MHD turbulence. For example, such a model must

account for correlations between the magnetic field and the

velocity field, and must predict how energy is divided among its

magnetic and kinetic parts.



1.2 An Overview of Our Approach

In this work, we develop a model that predicts the properties

of the long-lived organized macroscopic structures which emerge

during the course of the evolution of an ideal (or a slightly

dissipative) two-dimensional magnetofluid. These coherent

structures are naturally modeled by appealing to the methods of

equilibrium statistical mechanics. Our approach is information-

theoretic in spirit [3, 26, 30]. In characterizing the relaxation

of the magnetofluid into a coherent state, we appeal to the general

principle that entropy is to be maximized subject to constraints

imposed by the underlying dynamics. These constraints are dictated

by the global conservation of energy, cross-helicity, and flux

under the evolution of an ideal two-dimensional magnetofluid. By

solving this constrained maximum entropy problem, we obtain a most

probable macrostate, which quantifies the macroscopic mean field-

flow, as well as the small-scale fluctuations that are present in

the turbulent relaxed state.

The essence of our method is to introduce a macroscopic

description of the MHD system, which only partially captures the

highly complicated small-scale behavior of the microscopic field-

flow state. A macrostate is taken to be a local joint probability

distribution, or Young measure [14, 41], on the values of the

magnetic field and velocity field at each point x in the spatial

domain D. Such a description measures the fluctuations of the

field and the flow in an infinitesimal neighborhood of any point x

in D.

There is a natural description of the system by such a

macrostate for any finite period of time. Indeed, if

Y(x,t) = (B(x,t),V(x,t)) denotes the field-flow state of the system

(B is the magnetic field and V is the velocity field), then the

Dirac mass9 pj(dy)**6Y(li)(dy) provides such a description. The final

turbulent relaxed state is then conceptualized as a possible weak

limit, as t-», of the trivial macrostates p*. Constraints on the

admissible macrostates are derived from the global conserved



quantities of the ideal MHD system in a manner that is consistent

with the weak convergence. The most probable admissible

macrostate is determined by maximizing a Kullback-Liebler type

entropy functional subject to these constraints.

The most probable macrostate is, for each xeD, a Gaussian

probability distribution on the values of B(x) and V(x) , with local

mean field-flow Y(x) = (B(x),V(x)), which is an exact stationary

solution of the evolution equations of the ideal MHD system. This

leads us to conclude, therefore, that an initial state Y°(x) will

eventually evolve, under the ideal dynamics, into a stationary

coherent structure (the mean field-flow) with Gaussian local

fluctuations about this coherent structure. We find that both the

fluctuations and the mean field-flow contribute to the total energy

and to the cross-helicity, while only the mean field contributes to

the flux integrals.

Our model for coherent structures in two-dimensional MHD

turbulence is largely motivated by the recent statistical

equilibrium theories of Robert et al. [33, 41, 42] and Miller et

al. [34, 35] for two-dimensional hydrodynamic turbulence. These

authors introduced the use of local probability distributions to

encode the small-scale fluctuations of the turbulent scalar

vorticity. In their theories, a macrostate is taken to be a local

probability distribution, or Young measure, on the values of the

vorticity field at each point in the spatial domain. Robert and

Miller also showed how the invariance of the energy and of the

generalized enstrophy integrals under the Euler dynamics translate

into corresponding constraints on the macrostates.

Robert has characterized most probable macrostates as

maximizers of an appropriate Kullback-Liebler entropy functional,

and has Bade great strides toward a rigorous mathematical

justification of the model within the framework of the theory of

large deviations [33, 40, 41, 42]. In addition, many predictions

of the Robert-Miller theory have been confirmed numerically [46,

52, 55] and experimentally [45].



We have attempted throughout to justify, both mathematically

and heuristically, our model of two-dimensional MHD turbulence,

although we recognize that there is considerable work remaining

along those lines. Perhaps the most convincing argument in favor

of the model, however, is its remarkable agreement with the recent

direct high-resolution numerical simulations of Biskamp et al. [7,

9, 10, 11] of slightly dissipative two-dimensional magnetofluids.

The comparison of our predictions with theirs is made in Section

4.5.

1.3 The Gibbs Ensemble Theory for MHD Turbulence.

The classical approach to a statistical equilibrium theory for

hydrodynamics or magnetohydrodynamics is based upon the canonical

Gibbs ensemble for a truncated spectral representation of the full

system of equations [18, 19, 28, 29, 44]. Such theories have led

to some very interesting and useful qualitative predictions about

the nature of turbulence in fluids and magnetofluids. For example,

Fyfe and Montgomery [19] have used the canonical ensemble theory

for two-dimensional MHD turbulence to predict an approximate

equipartition of magnetic energy and kinetic energy contributions

from the shortest wavelengths. This prediction will be seen to

have a counterpart in our theory. Fyfe and Montgomery [19] were

also able to use this theory to demonstrate that, as the number of

modes in the spectral representation is increased at fixed values

of energy, (quadratic) cross-helicity, and (quadratic) flux, the

flux spectral density becomes more and more dominated by the lowest

wavenumbers. This observation led them to conclude that, in

turbulent two-dimensional MHD, flux is cascaded to large scales,

resulting in the formation of macroscopic coherent magnetic

structures•

While the qualitative predictions of the classical canonical

ensemble approach to two-dimensional MHD turbulence appear to be

quite sound, the theory suffers from at least two major

limitations. First, the truncation to a finite number of spectral



modes destroys all but three of the infinitely many conserved

integrals. Only the energy, quadratic cross-helicity, and

quadratic flux integral are known to survive such a truncation

[19]. Furthermore, the theory yields ensemble-averaged quantities

that diverge as the number of modes is taken to infinity. This is

the so-called ultraviolet catastrophe [21, 24, 35]. As a result,

the classical approach provides very little information about the

precise form of the coherent structures.

Very recently, Gruzinov and Isichenko [20, 21, 24] have

proposed a statistical equilibrium model for two-dimensional MHD

turbulence based upon a Gibbs ensemble theory, which does not

suffer from the defects mentioned above for the classical approach.

Their theory rests upon the assumption that there exists a

meaningful N-dimensional approximation of the two-dimensional ideal

MHD system having N' (N) conserved integrals, where both N' and N-tf'

go to infinity as N-«o. It is this assumption that enables them to

incorporate the complete family of conserved integrals into their

statistical equilibrium model. By appropriately rescaling the

inverse temperature parameters that arise as multipliers for the

conserved integrals, Gruzinov and Isichenko are able to formally

obtain a continuum limit in which the values of the ensemble-

averaged conserved quantities are equal to their finite prescribed

initial values. The key observation is that the inverse

temperatures must be allowed to diverge with N in order to carry

out the limit.

While the Gruzinov-Isichenko approach and our approach are

conceptually different, the predictions of the two models are quite

similar. Indeed, the Gruzinov-Isichenko model also predicts the

emergence of a coherent stationary mean field-flow amidst Gaussian

fluctuations. In -their theory, as in ours, the energy and cross-

helicity are shared by the mean field-flow and the fluctuations,

whereas the flux integrals are determined entirely by the mean

field. We feel that this remarkable agreement of the predictions

of the two models lends additional credibility to them both.



2. A PRIMER ON INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

2.1 Th« Equations of Motion

The equations of ideal incompressible magnetohydrodynamics

(MHD) in nondimensional variables are [17, 25, 37]

H (2.1)

•~ + (V. V) V' (VxB) xB-Vp, (2.2)
ot

V.B=O, V.V=O. (2.3)

£ is the magnetic field, V is the fluid velocity, and p is the

pressure. These quantities are appropriately normalized to

eliminate physical constants. The incompressible fluid medium is

ideal in the sense that the fluid viscosity and the electrical

resistivity are taken to be zero.

We are concerned with the two-dimensional form of these

equations in a spatial domain D C R2, which is simply connected and

bounded, with smooth boundary dD. We assume, for simplicity, that

dD is perfectly conducting, so that the appropriate boundary

conditions are [17]

B.n=0, V.n=0 on dD, (2.4)

where n is the outwardly directed normal to the boundary dD. The

statistical equilibrium theory developed below also applies, with

minor modifications, to the case where D is a fundamental period

domain corresponding to the periodicity of B and V in x2 and x2.

Equation (2.3) implies the existence of a magnetic flux function \p

and a velocity stream function <p such that



(2.5)

.4) - (2.6)
x2 ox1

It is also useful to introduce the scalar current density j and the

scalar vorticity a, which are given by

j=CurlB, (2.7)

<*=CurlV. (2.8)

Note that the operator curl acts on a scalar to produce a vector as

in (2.5) or (2.6), whereas the operator Curl acts on a vector

valued function B=(B1, B2) to produce the scalar function

-4&.
x ax2

In terms of the four scalars \p, <p, j, and o>, the ideal MHD

equations can be expressed as

* ) , (2.9)

in which

is the canonical Poisson bracket in J? [22]. The system (2.9)

8



-(2.10) is completed by the boundary value problems:

- A f=j in D; +=0 on dD,

-A<p=co in D; f>=0 on 3D.

This form of the ideal MHD equations is particularly important

because of its relation to the Hamiltonian structure of the system

[22]. It is therefore useful for deriving properties of solutions,

especially those properties which are related to the conserved

quantities of the ideal dynamics.

2.2 Invariants of the Motion

A classical solution of the ideal MHD equations conserves

energy, flux, and cross-helicity [22, 56]. These conserved

functionals are given by, respectively,

E=lf (B2+V2)dx, (2.11)
2 J D

(2.12)

=[ V.Bf'(t)dx. (2.13)
J D

The function f(s), for s in the invariant range of the flux

function \p, must satisfy certain regularity conditions, but is

otherwise arbitrary. Hence, there is an infinite family of

conserved flux integrals, and an infinite family of conserved

cross-helicity integrals. That these integrals are constants of

the motion follows easily from equations (2.9) -(2.10), the boundary

conditions (2.4), properties of the Poisson bracket, and equations

(2.5)-(2.6). It is generally accepted in the literature that these

are the only conserved quantities, aside from those which may arise

from spatial symmetries corresponding to certain domains and



boundary conditions.

The conservation of flux places important constraints on the

structure of the magnetic field. It is a consequence of equation

(2.9) that each magnetic surface {ifr=o} moves with the flow.

Furthermore, the area within a flux tube, \{i>9)dx, is a constant of

the motion. This follows easily from equation (2.12) with the

particular choice £(s)=I(s>m)t where IA is the indicator function of

the set A. While a given flux tube must preserve its connectivity,

it may become highly distorted and convoluted under the evolution

of the magnetofluid [17].

The invariance of the generalized cross-helicities, in

addition to imposing certain topological relations between the

magnetic field and velocity field, implies that the vorticity

within a given flux tube is conserved. That is, for any real

number a, the quantity Jw>ff)codx is conserved by the dynamics [24].

3. THE STATISTICAL EQUILIBRIUM MODEL

3.1 Motivation for the Modal

The direct numerical simulations of large Reynolds number two-

dimensional MHD recently performed by Biskamp et al. [7, 9, 10, 11]

clearly demonstrate that the evolution of a slightly dissipative

two-dimensional magnetofluid is turbulent. As time proceeds, the

magnetic field and velocity field develop fluctuations on finer and

finer scales, and the field and flow lines are stretched and folded

in a highly convoluted manner. The onset of turbulence is

accompanied by the emergence of large-scale coherent structures

which persist amidst the sea of fluctuations.

Coherent magnetic structures, for example, survive in regions

where the magnetic field is strong, and turbulent current sheets

are concentrated in regions of weak magnetic field. The velocity

field also exhibits persistent macroscopic organized structures as

well as turbulent vorticity sheets localized in regions where the

velocity field is weak. Due to the effects of finite dissipation,

these organized structures, as well as the fluctuations surrounding

10



them, are observed in the numerical studies to gradually decay.

However, it is expected that if the dynamics were truly ideal

(i.e., if there were no dissipation), then the mixing would

continue indefinitely, and would excite infinitesimally small

scales about each point in the spatial domain. Furthermore, the

coherent structures which emerge during the evolution would not be

dissipated. Ne expect, therefore, that under the ideal dynamics,

the magnetofluid will approach some final turbulent relaxed state

consisting of large-scale coherent structures and finite amplitude

fluctuations on arbitrarily small scales about each point in the

domain. The statistical equilibrium model that is developed in

this chapter attempts to predict this final state of turbulent

relaxation, given some initial state (B°(x),V°(x)).

The existence and regularity of solutions of the evolution

equations of ideal MHD do not appear to be well understood. The

best results known to us along these lines concern existence and

regularity for only a finite time [47]. These theoretical

difficulties, as well as the intricate behavior demonstrated by the

numerical simulations for the slightly dissipative dynamics,

strongly suggest that the evolution equations should be viewed as

governing the microscopic state of the ideal MHD system. The

microstate Y(x,t):=(B(x,t),V(x,t)) then provides a fine-grained

description of the system. The pressure is ignored in the state

variable Y because it is determined instantaneously in response to

the incompressibility condition, V*V=O. Unfortunately, this

microstate is not very useful for describing the long-time behavior

of the system due to its highly complicated behavior and its

tendency to develop fluctuations on increasingly fine scales as

time proceeds.

In order to gain an understanding of the long-lived large-

scale organized structures which emerge during the course of the

evolution of the MHD system, we introduce a coarse-grained, or

macroscopic, description of the system, which only partially

encodes the intricate small-scale behavior of the microscopic

state. A macrostate is taken to be a local probability

11



distribution on the values of the microstate Y(x) at each point x

in the domain D. He now proceed to define microstates and

macrostates more precisely.

3.2 Microscopic and Macroscopic Descriptions of the MHD System

As the ideal MHD system evolves from some initial state, the

magnetic field and velocity field may very well develop

singularities. However, since the total energy is conserved, we

know that Y(x,t) must remain bounded in L2(D:Sf) for all t.

Consequently, a microstate is defined to be any function

Y(x)eL2(D:Bf). At a given point x in the domain D, such a

microstate could theoretically take on any value in S4. We are,

therefore, led to define a macrostate as any local probability

measure px(dy) on It for almost every xeD. We interpret px(dy) as

the probability that (or frequency with which) Y takes values in dy

when sampled at points infinitesimally close to x. Intuitively,

for any Borel subset T C Sf

J J ' < r ) ' l i m " J — T O T •• <3-1)

where Ne(x) is a neighborhood of x satisfying diam N((x)<i.

Equation (3.1) establishes a many-to-one correspondence

between microstates and macrostates. The macrostate px varies

slowly in x, while the microstate Y fluctuates rapidly in x. For

any cell dx, over which p is effectively constant, Y(x) behaves

like a random variable having distribution px. The macrostate has

the virtue that it encodes only partially the infinitesimal-scale

fluctuations of the microstates, as it ignores the extremely

intricate local spatial configurations realized by these

fluctuations.

The local probability distributions px(dy) are referred to in

the literature as Young measures [14, 41], and, as mentioned above,

have been employed recently in the statistical equilibrium theories

12



of Robert et al. [33, 40, 42] and Miller et al. [34, 35] for two-

dimensional ideal hydrodynamics. In the context of hydrodynamics,

the Young measure px(dy) represents a local probability distribution

on the values of the fluctuating scalar vorticity v>(x) . In the

Robert theory of two-dimensional hydrodynamic turbulence, the most

probable macrostate is found by maximizing an appropriate entropy

functional subject to constraints on macrostates which are derived

from the conserved quantities of the two-dimensional Euler

dynamics. in the next section, we demonstrate how the energy,

cross-helicity, and flux constraints on the microstates Y translate

into corresponding constraints on the macrostates p, and in Section

(3.4), we propose a maximum entropy principle for determining the

most probable macrostate which satisfies these constraints. First,

we give a more mathematically precise definition of the macroscopic

states•

He have defined macrostates to be local probability measures

or Young measures px(dy) on Bf for almost every xeD. At a given

point xeD we no longer have a well determined value of Y(x) , but

only a probability distribution on the values (yeR*) of Y(x).

Technically, a macrostate is a measurable mapping p:x-+px from D to

the space Mj(Sf) of Borel probability measures on S4 endowed with the

topology of weak convergence associated with bounded continuous

functions [4, 6]. Such a measurable map defines a positive Radon

measure on DxR* (which we also denote by p) by the relation

{ff(x,y)px(dy))dx, (3.2)

for all feCe(DxB?), the space of compactly supported continuous

functions. In equation (3.2), dp=dx&px(dy). For feCJD), there

holds

~ f(x)dx.
D

13



That is, the projection of p on D is Lebesgue measure dx.

Conversely, given any bounded Radon measure p on DxB4 whose

projection on D is dx, there is a measurable map x-+px, unique dx -

almost everywhere, such that (3.2) holds [33, 41]. In what

follows, we refer to both p, and the corresponding map x->p, as the

macrostate or the Young measure, and we denote by M the space of

Young measures on

3.3 Constraints on the Macrostatcs

As discussed in Chapter 2, the energy, cross-helicity, and

flux are conserved by the dynamics of ideal two-dimensional MHD,

and the conservation of these quantities places important

constraints on the microstate of the system. Indeed, since the

actual evolution of the field-flow state Y is extremely complicated

and impossible to predict after a certain period of time, these

constraints furnish, for all practical purposes, the only useful

source of information about the state of the system in the long-

time limit. We suspect that there are corresponding constraints on

the macrostate. Here we concern ourselves only with the following

conserved functionals:

The total energy:

±f B2+V2dx, (3.3)

The quadratic cross helicity:

H=f B.Vdx, (3.4)
J D

and an arbitrarily large but finite collection of flux integrals:

Fim[ fiWdx-Ff.i-l.^.n. (3.5)
J D

14



where the ft are chosen from some appropriate basis. We may assume

as in [15], for example, that \fi(s)\^c\s\
t for some t>0, and that

the f/ are linearly independent. We point out that it is quite

natural from an analytical point of view to interpolate the

infinite family of flux constraints on a finite basis in order to

surmount some of the mathematical difficulties associated with the

continuously infinite family. Due to the smoothness properties of

\p, as opposed to B itself, this interpolation approximates the

exact constraints quite accurately [51].

In considering only the quadratic cross-helicity, (3.4), we

are simplifying considerably the actual statistical equilibrium

problem which incorporates an arbitrary finite collection of cross-

helicity integrals (see equation (2.13)). This full problem, which

is rather lengthy and highly technical, will be addressed in a

future investigation. The simplified problem that we consider here

has the virtue that it captures the essence of the effects of

magnetic-kinetic correlations, while it yields nicely to a rigorous

mathemat i ca1 treatment•

In order to carry out our program, it is desirable to replace

the energy and quadratic cross-helicity functionals by an

equivalent pair of conserved quantities, namely M^E-H and N=E+H.

From (3.3)-(3.4) it is easy to see that these functionals take the

forms

#=ir (B-V)2dx, (3.6)
2 J D

N=±f (B*V)2dx. (3.7)

It will become clear later why we have made this technical

modification. The variables U=B-V, W=B+V are the well known

Elsasser variables of magnetohydrodynamics [7].

We suppose that some initial state Y°(x) = (B° (x) ,V° (x) ) is

given, which fixes the values Mp~JE0-fr°, NO*E°+H°/ and Ff,i=l, .. .,n

15



of the functionals M, N, and F|/i«2/.. .,n, respectively. Here,

J?°and H° are the initial values of energy and cross-helicity. In

order to determine corresponding constraints on the macrostates, we

examine more closely the connections between the microscopic and

macroscopic descriptions of the ideal MHD system.

There is an obvious connection between these two levels of

description, at least for a finite period of time. For each time

t, one may define the trivial macrostate pf, which, for each xeD,

is a Dirac mass at Y(x,t). That is, for any Borel subset T C R4,

we have

The macrostate pr, in particular, contains all of the information

supplied by the invariance of the flux integrals, the energy, and

the cross-helicity. In fact, it is easy to see that

-Jf (B(x, t)-V(x, t))2dx=M(pt) , (3.8)
ZJD

-|f (B(x,t)*V{x,t))2dx'N(pt) , (3#9)

z J D

Fi(p
t) tUlt...,n . (3.10)

where for a Young measure p, we have defined the functionals

-!f (fmd(t>-v)
2px(dy))dx=±f (b-v)2dp, (3.11)

±f (f(b+v)*px(dy))dx=±f (b+v)*dp, (3.12)

F± (p) -ft£ (f(x))dx. (3.13)

16



Here, y=(b,v), where JbcjR2 and vc*2 run over the ranges of the

magnetic field and the velocity field, respectively. In equation

(3.10), Jp is the mean flux function corresponding to the (local)

mean magnetic field B(x) , defined by the relation

(3.14)

Some care must be taken in defining If, since for an arbitrary

peM, it need not be the case that B is divergence free, nor is it

necessarily true that B*n vanish on dD. However, we can associate

with B a unique divergence free field P#B which satisfies

PaB.nl^-O. PH is the projection of L
2(D:&) onto the subspace H of

L2(D:S?) defined below, which consists of divergence free fields

whose normal components vanish on dD [49]. The mean flux function

\f is then defined by the relation

?=curl-1 PgB. (3.15)

The operator curl'1 is a compact operator from the space

H={UeL2(D:B?) :V*U=0,U*n\bD=0}

to the Sobolev space Ho
2(D) [1, 49]. The flux Jf defined by (3.15)

necessarily satisfies \p=0 on dD. Of course, for the trivial

macrostates Pr, we have B'(x)=B(x,t)eH, and \p(x) «^(x, t) .

The macroscopic description is really intended to capture the

long-time behavior of the MHD system, and is therefore

conceptualized as a possible long-time limit of the Dirac masses p.

The natural mode of convergence for the p is that of weak

convergence. Indeed, from the conditions M(p)**M°, N(Pf)^N°, it

follows easily (see [27]) that the family {p} of bounded Radon

measures on DxB4 is tight, so that each sequence contains a

subsequence that converges weakly to some bounded Radon measure p

on D*B? [5, 6]. As the space of Young measures on DxB4 is closed in

the space of bounded Radon measures on DxB4 with respect to the

17



topology of weak convergence [33, 40], p must itself be a Young

measure on DxR*. Thus, it is justifiable to model the long-time

behavior of the MHD system by a local probability distribution on

the values of the fluctuating field-flow variable Y(x) for each

xeD.

He can now pose constraints on the macrostates in a manner

that is consistent with the weak convergence of subsequences of the

p. It follows from the analysis of Section 5.1 that if a

subsequence of the p converges weakly to a macrostate p then p must

satisfy

Af(p)s«°, (3.16)

(3.17)

j/,...,*. (3.18)

We remark that if p is a weak limit of some subsequence of

{p'}, then the mean magnetic field B defined by (3.14) corresponding

to p necessarily is divergence free, and satisfies B*n\BD-0.

However, we will find it mathematicaly convenient to allow

arbitrary Young measures that satisfy (3.16)-(3.18) to compete in

the variational problem (HEP) (posed in the next section), which

characterizes the most probable macrostates. Therefore, we define

the admissible set of macrostates,

W={peMxM(p) zht ,N(p) ztf ,F± (p) -F/ , i-1, ...,22h

The constraints (3.18), which can also be written as

iDfi(\p)dx^lDfi(^°(x))dx, where tf° is the inital flux function, have

the important interpretation that the mean field satisfies the same

flux constraints as the initial field. In other words, ^ is a

rearrangement of the initial flux function \p9 [12]. Since only the

mean field, and not fluctuations, contributes to the flux
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integrals, we might say that mean field theory is exact [33]. This

conclusion might also have been reached by noticing that the

compact operator curlml:B^ tends to damp fluctuations, so that

there are no fluctuations in the flux function, even though the

magnetic field itself exhibits fluctuating behavior.

It is also worth commenting on the constraints (3.16)-(3*17)

on macrostates. It may seem a bit troublesome that these

constraints are in the form of inequalities rather than equalities.

The interpretation is that, under the weak convergence of

(subsequences of) the p to a possible long-time limit macrostate

p, important information about the system could be lost. At any

finite time t, the complete information about the conservation of

energy and cross-helicity is easily extracted from p/. Indeed, if

we define the energy E(p) and cross-helicity H(p) of a macrostate

by the formulas

-Jf (f (b2+v2)px(dy))dx=±{M{p)+N(p)) , (3.19)

(f b-vpx(dy))dx=± (N(P)-M(p)), (3.20)

it then follows readily that E(p?)=E° and H(p?)=H° for all finite t.

However, if all we know about a macrostate p is that it is a weak

limit of some sequence of the pr, then the only information

concerning the energy of the system that we can obtain from p is

that E(p)<E°. Furthermore, p may tell us nothing at all about the

cross-helicity of the system, since H(p) is, a priori, undetermined

(except for the necessary inequality \H(p) \£E(p)) . The problem, of

course, is that the functionals H(p) and E(p) (or H(p) and N(p))

are not continuous under the weak convergence, since the functions

gfbfVj^tf+v2 and h(b,v)**b*v are not bounded on S4. We will see

shortly that these potential difficulties are not as severe as they

may seem. The most probable macrostate p* that satisfies the

constraints (3.16)-(3.18) actually satisfies M(p*)=M° and N(p*)=N°,
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and consequently it satisfies E(p*)=E° and H(p*)=H°. Therefore,

the information provided by the conservation of energy and

(quadratic) cross-helicity under the ideal dynamics, as well as the

conservation of the flux integrals, can be extracted from p*. Of

course, we must explain the notion of most probable macrostate.

That is the topic of the next section.

3.4 Most Probable Macrostates: The Maximum Entropy Principle

Now that we have defined an admissible class of macrostates,

namely those which satisfy the constraints (3.16)-(3.18), we seek

to determine the macrostate from this class which is most probable,

or most likely to be observed. For this purpose, we introduce the

Kullback-Liebler entropy of a Young measure p [13, 33, 40, 41, 53]

dp.-[ (f logf¥*(y)px(dy))dx, (3.21)
JD *r Git

where n° (dy) is a probability measure on S4, n is the Young measure

on DxB4 defined by it=dx®n°, and dpx/dn° is the Radon-Nikodym

derivative of px with respect to tr°. If px is not absolutely

continuous with respect to TT° for almost every xeDf or if | log

dp/dn | is not in L2 (p), then K(p:n) is set equal to -«. We remark

that p«n if and only if px«n° for almost every x, and when such

is the case, dp/dn=dpx/dn° n - almost everywhere [38].

As an integral over y, K(p:n) admits either of the standard

interpretations as a measure of (the logarithm of) the number of

microscopic realizations of p, or as a measure of the uncertainty

of p [3]. The functional I(p:n)~-K(p:n) is the Kullback-Liebler

information functional, and can be interpreted as the statistical

distance from p to the spatially homogenous macrostate n [13, 30,

40]. The form of K(p:n) as an integral over x implies that the

local fluctuations at two separated points in D are treated as

independent. This implicit assumption reflects the ergodicity of

the local mixing of the microscopic field-flow system, and is
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adopted as a hypothesis of the model. The most probable macrostate

(actually, the set of most probable macrostates) is found by

maximizing the Kullback-Liebler entropy functional subject to the

constraints (3.16)-(3.18), once an appropriate reference measure n

has been chosen.

The assumption of ergodicity in the dynamic evolution of the

field-flow state Y(x,t) implies that, in the absence of information

that constrains spatial variations of the macrostates, the most

probable macrostate should be spatially homogeneous. It is easy to

see that the constraints M(p)£M° and N(p)£N° impose no particular

spatial structure on the admissible macrostates. The flux

constraints, on the other hand, do impose spatial structure on the

macrostates. For these reasons we choose n to be the macrostate

whose local distribution is for all xeD

(b+v)2)dy. (3.22)

n is the most probable spatially homogenous macrostate in the sense

that it maximizes the Boltzmann-Gibbs-Shannon entropy functional

[3],

subject to the constraints M(p)£M° and N(p)£N°, (see [27]). We

point out that n actually satisfies M(n)**M° and N(n)**N°, and,

therefore, E(n)=*E° and H(n)**H°. Thus, in the absence of flux

constraints, the most probable macrostate is a spatially

homogeneous Gaussian distribution with mean zero, whose energy and

cross-helicity are equal to the initial values of these quantities.

Of course, n does not satisfy the flux constraints (3.18). To

determine the most probable macrostate which satisfies all of the

constraints (3.16)-(3.18), we solve the following constrained

entropy maximization problem:
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K(p:jr)-+max, subject to pew. (MEP)

We ©ay sometimes indicate the dependence of W and n on the

constraint values M° and N° by writing W=W(M°,N°), n^nM^., and

ir°ssir°M.pfr. The maximum entropy principle (MEP) selects those

admissible macrostates that minimize the distance to the most

probable spatially homogenous macrostate n. Unlike n, however, a

macrostate which solves (MEP) exhibits spatial variations

characteristic of a coherent structure.

By appealing to Robert's Concentration Theorem for Young

measures [33, 40, 41], we can give a more exact meaning to the

statement that solutions of (MEP) are most probable. That is done

in Chapter 5. There, we also examine the existence and uniqueness

of solutions to (MEP). In Chapter 4, the predictions based upon

this model of MHD turbulence are discussed and compared with the

results of the numerical simulations of Biskamp et al. [7, 9, 10,

11].

4. PREDICTIONS OF THE STATISTICAL EQUILIBRIUM MODEL

4.1 Some Existence and Uniqueness Results for Solutions to (MEP)

Our primary goals in this chapter are to present and discuss

the predictions of the statistical equilibrium theory which was

developed in the previous chapter, and to compare these results

with the known behavior of a slightly dissipative two-dimensional

magnetofluid as simulated numerically. In this section, we state

some results concerning the existence and uniqueness of solutions

of the maximum entropy principle (MEP) proposed in Chapter 3. We

are mostly concerned with conditions under which solutions with

finite entropy exist, since such solutions can be explicitly

caluclated, as in Section 4.2, by appealing to the Kuhn-Tucker

theory.

Concerning the existence of finite entropy solutions of (MEP),
we have the following result.
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Theorem 4.1
Assume that:
(a) The functions fi9 and the constraint values
F,°, 1=2,.. .,n, are given so that there is at least one
critical point BeeH of the magnetic energy functional

subject to the flux constraints

In addition, assume that E° and H° satisfy either

(Jb) \lf\>2Em,

or

(c)

where Em is the minimum value of E(B) subject to the flux
constraints; then there is a solution of the constrained
optimization problem,

(MEP) K(p: *r)->max over W.

Furthermore, any such solution p* satisfies

Some comments are in order concerning conditions (a)-(c) in
the theorem. The significance of the hypothesis (a) will become
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clear in the next section when we appeal to the Lagrange multiplier

rule to calculate the solutions of (MEP). It should be noted that

any critical point of E(B) subject to the constraints Fi(B)^Fi° 9

1=2,..., n takes the form [22]

or equivalently,

where G is the Green operator on D, corresponding to Dirichlet

boundary conditions. Thus, condition (a) is equivalent to the

condition that there exists a solution (X,.••,\,$), with \eS, and

^€HQ(D), of either of these equations.

Conditions (b) and (c) both imply that E°>Em9 and that

E°>\H°\, which are quite natural from a physical standpoint. In

fact, the initial energy E° must be larger than the minimum energy

Em consistent with the constraints on flux if the initial velocity

field is to be nonzero. Also, unless the initial magnetic field B°

and initial velocity field V° satisfy BO=±V°, it follows that

2\B°<VO\<(BO)2+(VO)2, and, consequently, that |ff°|<J?°. When |H°| is

small, £°>|H°| does not necessarily imply E°>Em. This partially

explains (c). The limits E°-+Em and E°-+\H°\ are interesting to

examine, and we will do so later in this chapter.

We should point out that when \H°\£2Em, the condition

E°>Em+(H°)
2/4Em is not, in general, necessary for the existence of

finite entropy solutions of (HEP)• It appears to be a difficult

problem to determine necessary conditions. This difficulty is

closely related to the open problem of classifying all the critical

points of the magnetic energy functional E(B) subject to the flux

constraints Fi(B)^Fi
9 for a given domain D. See also the discussion

in Section (4.4) for more consents on condition (c). Under certain

circumstances, there is a unique critical point BceH. When this is
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the case, we have the following uniqueness result for solutions of

(MEP).

Corollary 4.2

If there is a unique critical point of the functional E(B)

subject to the constraints FtfBJ-Ff ,1*2, .. .,n, and if either

of the conditions (b) or (c) of Theorem 4.1 are met, then

there is a unique finite entropy solution of (MEP).

The uniqueness part of Corollary 4.2 will follow from the

analysis in Section 4.4. The existence follows, of course, from

Theorem 4.1, which is proved in Chapter 5.

4.2 Calculation of the Equilibrium States

Any solution p* of (MEP) under the conditions of Theorem 4.1

has finite entropy, so that p*=p* (x,y)n°, where the density p*(x,y)

satisfies p*£0, and

4P*U,y)*°(cfy)=l,

for almost every xeD. For densities peL!(n)9 we introduce the

notation

Sip) =K(pnm) — f (f P(x,y) log p{x,y) n° (dy)) dx.

To avoid introducing any further notation, we will simply write

M(p), N(p), and Ft(p) for M(pn), N(pn) and Ft(pn) , respectively.

It follows that p* maximizes S(p) on the subspace of L*(n)

defined by the constraints
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p(x,y)*O, f p(x,y)n°(dy)=l dxa.e., (4.1)

(4.2)

(4.3)

(p) *( fi (?) dx=Fd
o, i-1,...,n. (4.4)

The equilibrium equations for (MEP) then follow from a formal

application of the Lagrange Multiplier Rule, or, more precisely,

the Kuhn-Tucker Rule [23, 57] (see [27] for a rigorous treatment).

These equations are

S'(p*) ̂ Fa^ip*) +aM'(p*) +i;N/(p*), (4-5)

on the subspace of variations Sp which satisfy \6p (x,y)dy=O. The

multipliers a,, a, and t? are real numbers, and are analogous to the

inverse temperatures of usual statistical mechanics. The

multipliers a and rj satisfy the side conditions [23, 57]

17*0, (4.6)

O. (4.7)

In particular, if a>0 and ij>0, then M(p*)=M° and N(p*)=N°, and, as

a consequence, E(p*)«E° and Hfp*;«H°. We will see shortly that

this is indeed the case.

The functional derivatives appearing in (4.5) are easily found

to be
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5'(p*)—(1+logp*),

where ^- curl^PjP is the mean flux function corresponding to the
mean magnetic field

bp*(x,y)n*(dy) .

These equations, together with (4.5), yield the following form for
the equilibrium state:

where the partition function,

Z(x) = f exp{-4o(b-v)2--|rj (b+v)*-bEa±curlGf[(?))n° (dy),

enforces the normalization constraint (4.1).
After a straightforward, calculation, we arrive at the

following expression for the local distribution
Px* (dY) -P * (x, y) n * (dy) :

where

--| (v-V(x)) 2-y(jb-BU)) -(v-V(x) ))dy,

(4.8)

27



1' (4.9)

and the mean field and flow satisfy

(), (4.10)

with the constants X, and p given by the formulas

(4.11)

Notice that \\L\<1 by definition. Also, notice that B and V are divergence

free, and that the mean field-flow is a stationary solution of the ideal

MHD equations. It is a further consequence of (4.10) that £ is a critical

point of the magnetic energy functional E(B) subject to the constraints

Fi(B)^Fi°,i^l, ...,n, which explains the necessity of condition (a) of

Theorem 4.1. As a result, there holds

£(!)*: I f &)2dx*Em. (5.12)

We are now in a position to prove the following essential result

concerning solutions of (MEP).

Theorem 4.3

Under the hypotheses (a) and either (b) or (c) of Theorem 4.1, any

solution p* of (MEP) satisfies

and as a result
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Proof:

By the conditions (4.6) and (4.7), it is sufficient to show that a>0 and

T)>0. Using (4.8) and (4.9) we calculate

(4.13)

l [ (B+V)2dx+(lff)+\D\)-1\D\rf>. (4.14)

If it is assumed that o=0, then (4.13), together with the fact that p* is

an admissible macrostate, yields

which can hold only if B(x)=V(x) for almost every xeD. Now, (4.10) and the

fact that \n\<l imply that this is possible only if B=0 almost everywhere.'

However, it is impossible that B=0 almost everywhere since (4.12) must

hold. We have, therefore, arrived at a contradiction; it must be that o>0.

The proof that rj>0 follows along similar lines using equation (4.14).

•
Recall that the possible macroscopic descriptions p of the system have

been conceptualized as long-time weak limits of (subsequences) of the Dirac

masses tf=6Y(xt) and that the constraints M(p)£M°, N(p)£N° and Ft(p)^F^ on

admissible macrostates have been formulated so as to be consistent with the

information afforded by the conservation of energy, cross-helicity, and

flux under the weak convergence. Theorem 4.3 has the important consequence

that the most probable admissible macrostate p* contains all of the

information furnished by the conservation of energy, quadratic cross-

helicity, and flux, since E(p*)=E°, H(p*)=H°, and Fi(p*)~Ff. By

considering constraints on M(p) and N(p) in our maximum entropy principle

(rather than on E(p) and H(p) themselves), we have been able to recapture

the full information provided by the invariance of energy and quadratic

cross-helicity under the ideal dynamics. As was discussed in Chapter 3,
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if p* converges weakly to p, then all we know# offhand, about E(p) is that

it cannot exceed E°, and nothing at all can be said about H(p). The

constraints M(p)<M° and N(p)£N°, which are valid under weak convergence of

p» to p, contain more information about admissible macrostates than the

single constraint E(p)£E°. The difference turns out to be crucial. Using

the complimentary conditions (4.7) in the Kuhn-Tucker Rule, we have been

able to conclude that M(p*)=M°, N(p*)=N° for the entropy maximizer p*.

4.3 A Further Analysis of Equilibrium States

It is evident from equation (4.8) for the most probable states p*

that, for each xeD, the magnetic field B(x) and the velocity field V(x)

have Gaussian distributions with means B(x) and V(x), respectively, given

by (4.10), and with variances and correlations satisfying

VarBjix) "VarVjM^P'Hl-tx2)-1,] =1,2, (4.15)

corriBjix) ,Vj(x))^n, j=l,2. (4.16)

The other components of B(x) and V(x) are independent (since these

components are Gaussian and have correlations equal to 0)• We emphasize

that the correlations and variances are independent of xeD only for the

simplified problem we consider here, which accounts for only the quadratic

cross-helicity constraint. When generalized cross-helicities are

incorporated into the theory, the variances and correlation depend on x in

a nontrivial fashion. This more general problem will be undertaken fully

in a future investigation. See also [50].

While the flux Ft° is contained entirely in the mean field, the energy

E° and the cross-helicity H° are shared by the mean field-flow and the

fluctuations. Indeed, direct calculations yield the energy and cross-

helicity of a macrostate:
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(4.17)

(4.18)

The integral of the right hand side of (4.17) is the energy of the mean

field-flow Y=(B,V), and the second term is the contribution of the

fluctuations to the total energy. In fact, it follows from (4.15) that

2\D\fi-1(l-»2)-1=±f T (VarBAx) +VarVAx)) dx.
2JD££

We remind the reader that the variance of a random variable is a natural

measure of the expected magnitude of its fluctuations about its mean. In

equation (4.18), the first term on the right hand side is evidently the

cross-helicity of the mean field-flow. Recalling the formula

cov(U,W)=corr(U,W) (VarW)1/2(VarU)1/2 for the covariance of random variables

U and W, we see that the contribution of the fluctuations to the cross-

helicity can be expressed as

2/i\D\0~1 (1-JI1) ~ 1 S / J C coviBj (x) , Vj (x)) dx.

Using the relation V=fiB, equations (4.17) -(4.18) can be rewritten as

(l-/ia)"1f (4.19)

l-|iJ)-1. . (4.20)

The contribution of the magnetic field to the total energy,
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satisfies

and the kinetic energy,

is given by

By virtue of the fact that |/i|<*# w e s e e that, in equilibrium, the ratio

of kinetic to magnetic energy is less than one. Since the initial value

of this ratio can be arbitrarily large, this prediction about the turbulent

relaxed state is an especially useful test of the model. We will have more

to say about this in Section 4.5 when we compare the predictions of the

model to those of numerical simulations.

It is also interesting to observe from equations (4.21)-(4.22) that

there is an equipartition of fluctuating energy between its magnetic and

kinetic components. This is reminiscent of the prediction of the classical

statistical equilibrium theory for MHD that the smallest scale energy

contributions are divided equally into magnetic and kinetic parts [19].

4.4 Complete Determination of the Equilibrium state for a Simple Case

In order to determine the most probable equilibrium states completely,

it is necessary to solve for the Lagrange multipliers a, r\, and

aifi=l, . • .,n. In view of equations (4.9) and (4.11), it is equivalent to

solve for the constants 0, p, and \,i=l, .. .,n. In the case when there is

a unique critical point of the (deterministic) magnetic energy functional

E(B) subject to the flux constraints Ft(B)=Fi* ,i=l, ...,n, the \ are uniquely

determined. We shall assume for the remainder of this chapter that this

is the case. Accordingly, there holds E(B)-Em, with Em defined as in

Theorem 4.1 to be the minimum value of the functional E(B) consistent with
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the constraints on flux. Equations (4.19) and (4.20) become

l-ti2)-1. (4.23)

-li1)-1. (4.24)

which provide two simultaneous equations for 0 and ft. We recall that fi

must be positive by definition (see equation (4.9)), and also that the

correlation ft must satisfy \fi\<l (see equation (4.11)). However, equations

(4.23)-(4.24) furnish us with additional information about the correlation

ft. It has the same sign as H°, and must also satisfy

(since fi>0). In particular, if H°=0, then ft=O, and (31 is determined

uniquely by (4.23). In the next section, we will discuss the zero cross*

helicity case in detail.

Assume now that H°&0. Upon multiplying equation (4.23) by ft and

comparing the resulting equation (4.24), we discover the following

interesting dependence of the correlation ft on Em9 and on the given values

of total energy E° and cross-helicity H°:

E^3- (Em+£?) p+If =0. (4.25)

The following result, whose proof is elementary, shows that either of the

conditions (b), (c) of Theorem 4.1 is sufficient to guarantee a unique

solution ii of (4.25) which satisfies all of the properties mentioned

following equation (4.24).

4 # 4

(1) If E°>Ho>0, then there exists a unique ne(O,l) which satisfies

(4.25). If, in addition, E° and H° satisfy E°>Em+(H°)
2/4Em, then

li<min(l,H°/2Em).
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(2) If E°>-H°>0, then there is a unique ne(-l,O) satisfying (4.25).

If, in addition, E*>Em+(H*)
2/4Em, then max(-l,H*/2Em)<fi<0.

(3) If tf°=O, then n=0 is the unique solution of (4.25) over the

interval [-1,1).

We remark that the condition E*>Em+(H*)
2/4Em is equivalent to the

condition

2Ba

Also, note that if n exists which satisfies (4.25), then necessarily

-2ftEm) *fi (E° -1+/*
2) Em) .

The lemma guarantees that when either of the conditions (b), (c) of Theorem

4.1 holds, a unique y. exists which satisfies (4.25), sgn p=sgn H°, and

]!? —E —

Therefore 0;>O is given consistently, when ff°^O, by

P'x*
2]D\

We thereby have a unique solution pair (M/0*J) of (4.23)-(4.24), which

satisfies all of the necessary conditions as mentioned above.

We now know that if there is a unique critical point of the functional

E(B) subject to the constraints Ft(B)—Ff,i~l, . • .,n, and if either condition

(b), (c) of Theorem 4.1 holds# then the statistical equilibrium macrostate

p*, which solves (MEP), is uniquely determined. Consequently, the

uniqueness assertion of Corollary 4.2 has been established by the analysis

of this section.
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4.5 Equilibrium states Without Magnetic-Kinetic Correlations: Comparison
with Numerical Simulations

Most of what is known of the behavior of a slightly dissipative two-

dimensional magnetofluid comes from direct high-resolution numerical

simulations. The best computations of this kind are reported by Bisk amp

et al. [7, 9, 10, 11]. Those authors focus much of their attention on

cases where the initial ratio of quadratic cross-helicity to total energy

is small. In some of their simulations, this ratio is taken to be as small

as 0.1. They observe local Gaussian distributions on the magnetic and

velocity fields, and they verify the direct cascade of energy to small

scales, and an inverse cascade of flux (with f(s)**%s2) to large scales,

resulting in the emergence of large-scale coherent magnetic structures

amongst the turbulent fluctuations. Most remarkably, however, they find

that Ekiti/Emag relaxes to a value less than one, even when the initial ratio

is as large as 25 [10].

As we have already seen, our model also predicts local Gaussian

distributions on the field and flow, as well as an equilibrium value of

Ejan/Emag which is less than one, whatever the initial ratio, and regardless

of the initial values of energy and cross-helicity (as long as they satisfy

either condition (b) or condition (c) of Theorem 4.1). To gain a more

complete understanding of the predictions of the statistical equilibrium

model in the regime of small H°/E°, we examine the limit H°-*0. For the

sake of clarity, we shall assume that the hypotheses of Corollary 4.2 are

met. Then the analysis and the formulas of Section 4.4 are valid.

Fix E° and f^Ff ,i=l, .. .,n. Given H°&0, denote by p*° the unique

solution of (MEP), and by pH*(x,y) its density with respect to Lebesque

measure dx®dy on DxJ? (pP* is given by equation 4.8). From Lemma 4.4 and

from equation (4.25) it follows that

2Em

Thus, as H°-*0, the correlation p converges to 0. Equation (4.23) gives for

/S the expression
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p= 2\D\
(1-H2) (E*-(!+»*) Em)

We also have 7=-/3/x. Hence, when H°-O, fi converges to fi0, where

Em)-
1. (4.26)

and y converges to zero. As a result, the density p"' converges pointwise

on DxB* to the density p, where

exp[(bB(x))*-l^v*). (4.27)
Air2 2 2

Scheffe's Theorem [5] implies that p"° converges weakly to the measure p on
DxB4 defined by

p (A) «J p (x, y) dxdy,

for Borel sets ACDxR*. The measure p is a Young measure on DxB4, whose
local distribution px has density p(x,y) with respect to Lebesgue measure
dy on S4.

It is readily verified by the analysis in Sections 4.2 and 4.3, that
p is the unique solution of the constrained entropy maximization problem,

K(p:t

subject to

(See the discussion immediately following the statement of (MEP) in Chapter
3 for an explanation of the notation W(E°,E°), ir£%E..) In fact, p maximizes
K(P :J[E*£*) ove** t**e larger set
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ipeM:E(p) *E?,Fd(p) -F/,i =1,...,r&.

In this limit of zero cross-helicity, then, we see from (4.27) that

B(x) and V(x) have Gaussian distributions for all x, each component having

variance

(4.28)

However, now B(x) and V(x) are independent for all x, the local mean

velocity field V(x) is identically zero, and the mean magnetic field B(x)

is given by (4.10). We also have E(p)=E° and, of course, H(p)=0.

As before, the flux is contained entirely in the mean field, and the

energy splits into mean and fluctuating parts. The formulas for the

magnetic and kinetic energy are

B^,-Bm+\D\fi?. BuflDlfi?. (4.29)

It is evident, therefore, that the difference between E°=Em+2 \D\Qo
1, the

given initial energy, and Em, the minimum energy consistent with the given

constraints on flux, resides in the local fluctuations, where it is divided

equally into magnetic and kinetic parts. Using equations (4.28) and (4.29)

we arrive at the particularly simple expression for the ratio of kinetic

to magnetic energy

"kin

As before, it follows that this ratio is less than one, which is in accord

with the numerical simulations.

Biskamp et al. [9, 10, 11] also study the difference between the low

energy regime (E°/Em*l) and the high energy regime (E°/Em»l), for the case

of small cross-helicity. In the low energy regime, the fluctuations are
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small, while a distinct coherent magnetic structure emerges in the mean

field through the process of quasi-static coalescence of flux tubes. The

high energy regime is characterized by large fluctuations, extending

uniformly over the domain, which obscure the spatial structure of the mean

field-flow. In this sense, the high energy regime resembles homogeneous

turbulence•

The statistical equilibrium model captures these qualitative

properties of the low and high energy regimes. When E°-*Em, it follows from

(4.28) that the variance fi0'
2 tends to zero, so that the fluctuations in B

and V disappear, and there results a deterministic nonturbulent

magnetostatic equilibrium with B=B and V=V=O. As a matter of fact, it is

an easy exercise to show that the macrostate p given by (4.27) converges

weakly in this limit to a Dirac mass at (E(x),O) for all xeD. On the other

hand, for large values of E°, equation (4.28) shows that the variance is

large, so that there are large fluctuations about the mean field-flow.

Also, when E°-**, the ratio E^/E^ tends to one, as the turbulent energy is

equipartitioned globally between its magnetic and kinetic constituents.

Thus, as E° is taken larger and larger, the equilibrium state resembles

more and more a state of homogeneous turbulence, as is predicted by the

numerical simulations of Biskamp et al. [9, 10, 11].

4.6 Equilibrium States With Aligned Field and Flow

Having already discussed the zero cross-helicity limit, we now look

at what happens as \H°\/E°-*l, its largest possible value. It is the regime

of large \H°\/E° in which the effects of magnetic-kinetic correlation are

most vivid. To illustrate this limit, we assume that E°>2Em is fixed, and

allow H° to approach the fixed value E°. It is a result of equation (4.25)

that the correlation p must converge to one as H°-tE°. By virtue of (4.23)

and (4.24), the variance p1 (l-p2)1 tends to the limiting value (£°-

2Em)/2\D\. The marginal distributions of B(x) and V(x) converge weakly to

the same Gaussian measure, which has mean B(x) (the unique solution of the

variational problem E(B)->min subject to FrfB)^?,!-!,. • .,n), and finite

variance (E°-2Em) /2\D\. However, the limiting macrostate is degenerate

since corr(Bi(x),Vi(x))^l. In other words, the field and flow are
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statistically indistinguishable in the limit H°/E°-+l. This remarkable

effect is confirmed by numerical simulations in which the magnetic field

and velocity field are observed to align when the initial ratio of

quadratic cross-helicity to energy is taken above a certain threshold value

[31]. Similarly, when H°/E°-* -2, it follows that jr* -2, and we might say

that B and V become antialigned.

5. A MATHEMATICAL ANALYSIS OF THE MAXIMUM ENTROPY PRINCIPLE

5.1 Proof of the Existence Theorem

In this section, it is assumed for convenience that |-D|-1. Then, the

macrostates are probability measures on DxR*. (We could define, for each

macrostate p, the normalized macrostate pH^l^p, a n d work with the p

instead.) We begin by showing that the class W of admissible macrostates

is closed in the weak topology. Since the family {p} is contained in W,

it is an immediate consequence of this result that, if p is a weak limit

of a sequence of elements in {&}, then p satisfies the constraints (3.16)-

(3.18), which justifies the form of these constraints on the admissible

macrostates.

Lemma 5.1:

The constraint set,

/: M(p) 4bf, N(p) Zlf, Ft (p) -F

is closed in the space of Radon probability measures on DxR* in the

weak topology.

Proof:

Let p*, /c«2/2/... be elements of W, and assume that p* converges

weakly to p. We must show that peW. As mentioned above, we know that

peM. Now, by the Skorokhod Representation Theorem [4, 5, 6], there

is a probability space (ft/^g), and random elements Zk, Zonfl taking

values in DxB*, with distributions rf,p respectively, such that

*Z(<*) for all wen. Let us write
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with X, X*:fW>, £.,£:&*£, and £, 2*:n-^. Then, there
holds,

If {b-v)*dp

zliminfk -|

The second line of the above calculation follows by a change of

variables. Fatou's lemma gives the third line, and the final

inequality follows from the fact that M(pt)<M° for all k and a change

of variables. We have shown, therefore, that M(p)<M°. An identical

argument yields the result N(p)<N°.

We next show that the local mean magnetic fields B* corresponding

to the measures p* converges weakly to the local mean magnetic field

B corresponding to the macrostate p. Let g(x)-(g1 (x) ,g2(x)) be an

arbitrary function in Ck(D:JP), the space of bounded continuous

functions on D taking values in -fi2. For any k, and any a>0, there

holds

where X1, B_* and g are defined above. Now,
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2gmaxi^ /vN 12

Consequently, the random variables g(&).£* are uniformly integrable
[5, 6]. Moreover, since g(\X*J .£* converges pointwise to gfXj.g as
veil, there holds

Changing variables once again, we find that

.bdp.

and therefore,

g(x) .JP(x)dx=[ g(x) .B(x)dx. (5.1)
D J D

Since (5.1) holds for all g in the dense subset Cb(D:lf) of
L2(D:&), and since P is bounded in L2(D:S?), it follows that B*
converges weakly in L2(D:lf) to B [54]. (That V* converges weakly to
V in L2(D:SF) follows by an identical argument, but we will not make
use of this fact)•

Of course, pj& also converges weakly to pji in L2(JD:lf) as p*
converges weakly to p. The compactness of the operator curl"1 :H+H0* (D)
together with the Sobolev Embedding Theorem implies that \p converges
strongly in Lr(D) to ^ for 2£r<»# where ^curl^P^?, and
[1]. Thus, as IT-MO, there holds
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F/ -Fj <"**) -Fj (?) , i «1,..., n.

We have shown, therefore, that W is closed.

•
We now turn to the main result of this section, namely the proof of

Theorem 4.1.

Proof of Theorem 4.1,

We remark that for peM, K(p:ir) can also be written in the more

familiar form [13, 40]

K(p:n)=[ log&dp, if pc*r, and |log•&|eLJ(p)
Jo**4 ait ait

K(p: it) *-~ otherwise.

It is well known [13, 40] that K is nonpositive upper

semicontinuous, and has compact level sets in the weak topology, and

therefore, I attains its maximum over any nonempty closed set. That

W is closed is been established by Lemma 5.1. That it is nonempty

follows because pfeW for any t. Consequently, K attains its maximum

over W.

When conditions (a) and either of the conditions (b), (c) of

Theorem 4.1 hold, there are elements of W which have finite entropy.

As a result, any solution of (MEP) must have finite entropy. Indeed,

the macrostates constructed in Section (4.4) are such elements.

(Whether or not there is a unique critical point of E(B) subject to

FifB)^0,i=l, ...n. let B=Bm, where Bm satisfies the flux constraints,

as well as E(Bm)=Em. Solve for ji by (4.25) and use (4.23) or (4.24)

to find ft. But note that when this critical point is not unique, the

corresponding macrostate may not maximize the entropy).
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5.2 Large Deviations and the Concentration Property for Young Measures

While it may be considered conventional wisdom that the maximizers of

Kullback-Liebler entropy are, in some sense, most probable, Robert's

Concentration Theorem for Young measures [32, 33, 41] allows us to give a

more precise mathematical meaning to the statement that solutions of (MEP)

are the most probable elements of the set W of admissible macrostates.

This theorem is simply a convenient restatement of some results from the

theory of large deviations [13, 53]. Indeed, it is a consequence of

Baldi's large deviations theorem [2], which in turn is a generalization of

a theorem of Ellis [13]. We begin, therefore, with a statement of the

large deviation property for a family of probability measures in an

appropriately abstract setting for our purposes.

Let X be a locally convex Hausdorff topological vector space, and let

Hh, h>0 be a family of probability measures on X. We say that the family

fih has the large deviation property [13, 53] with constants a(h) and rate

function I if and only if:

(a) a(h)>0, and lim*^ a(h)=*>.

(b) 0<I(x)<*> for all xeX, and I*».

(c) J is lower semicontinuous on X.

(d) I has compact level sets; that is, for each real number c, the set

{x:I(x)<c} is compact in X.

(e) For each open subset 17 of JT, there holds

liminf ^a(h)'1 log nJU)* -inf,€l; I(x).

(f) For each closed subset C of X, there holds

limsup ^a(h)'1 log iih(C)< -inf^cl(x) .

Baldi's Theorem [2, 33] gives general conditions under which the large

deviation property holds. The rate function J is often called the

information functional, and the functional K=-I is referred to as the

entropy functional.

The notion of concentration is defined by means of measurable step

functions. We denote by £ an equipartition of Dj that is,

£={D2,D2,...,Dm(V}, where DtC D, {D^Dl/n^), (JD^D, and Dt fl Df& if i*j.

Here, n(£) is the number of elements in £. We also denote by d(Z) the
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diameter of £:

d(£) « sup idi&m(Di) ,
where diam (Dt) =sup{ \ x-x' \:x,x' eDJ.

Given Yi,y2, •. .,ym€S?r where imn($) , consider the step function

where IA is the indicator of the set A. Of course, any microstate
YeL2(D:Bf) can be approximated in L2 norm to within any given degree of
accuracy by such a step funciton. Let Si be the Young measure which is a
Dirac mass at gr Thus, Si is given by

Now, we think of the y, as being chosen independently from S4 according to
the density n°. Then, 6^ is a random element taking values in M. We
denote by fii the distribution of 6it and write

for a Borel subset A of M. We can now state:

Theorem 5«2

When d(%)-*0, the family ^ has the large deviation property with
constants n(£) and rate function
I(p:n)**-K(p:n) .

A general version of this theorem is proved in [33]. As the proof is
very technical, we will not include it here. The Concentration Theorem
below follows from Theorem 5.2. Let us now define precisely the notion of
concentration [33, 40, 41, 42].
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Let A,A* be subsets of M, and let U,U', and U* denote open

neighborhoods of the origin (for the weak topology) in the space of bounded

Radon measures on DxR*. Let us ntroduce the notation A^fA+U)^. Av is an

open neighborhood of A in M. We say that Sk concentrates about A*

conditionally to A if:

(i) liminf^^n^) ̂ logProbidfEA^) >-~,

for all V,

(ii) Given U*, there exists a>0 and U such that for all U',

for all eguipartitions with d(£) sufficiently small.

While this definition is quite technical, it has the intuitive

interpretation that, if Si takes values in a neighborhood of A, then, with

very high probability, 8^ will be in a neighborhood of A*. Since Probf^cA;

need not be defined for an arbitrary set A, we widen the sets into open

neighborhoods. Even for a Borel set A, Probff^eAj could be zero.

Condition (i) guarantees that Probf^eA^) does not become too small as

The Concentration Theorem [33, 40, 41, 42] can now be stated:

Theorem 5.3 (Concentration Theorem)

Let A be a nonempty closed subset of M, and let A* be the (nonempty,

closed) subset of A where K(p:n) attains its maximum value on A; then

6i concentrates about A* conditionally to A.

Before proving Theorem 5.3, we state the following corollary, which is of

particular interest to us.
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Corollary 5,4

Let W* be the subset of W where K(p:n) ; then fff concentrates about W*

conditionally to W.

The corollary means, heuristically, that the vast majority of

piecewise constant measurable functions that are in a neighborhood of W are

actually in a neighborhood of the entropy maximizers(s) in W (in the sense

that their corresponding Young measures lie in these neighborhoods) . This

lends a nice interpretation to the statement that maximizers of the entropy

over the constraint set W are the most probable admissible macrostates.

The notion of concentration depends upon the choice of the spatially

homogeneous measure n. We have made the appealing choice of it to be the

most probable spatially homogeneous macrostate consistent with the

onservation of energy and quadratic cross-helicity.

Proof of Theorem 5.3

We follow the argument in [33].

Let us simply write I(p) for I(p:n). We also introduce the notation

I(A)=inf{I(p):peAJ.

Let A and A* be as in the statement of the theorem. As I is lower

semicontinuous and has compact level sets, A* is nonempty.

Assume, for now, that I(A)<*>. Then, by condition (e) of the

large deviation property, there holds

liminf n(() { a

WU)

so that condition (i) of the concentration property holds.

Next, let V* be given. Let r be a positive real number such that
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(It is clear that such an r always exists. Note that we use the
convention

We now make use of the following lemma, the proof of which
follows from Lemma 2.3 of [33].

a 5.4
Let C,F be closed subsets of M; then as 0-K), we have I(C f]

FV)-+I(C f\F).

We apply Lemma 5.4 to conclude that there exists a>0 such that,
for open neighborhoods U of the origin that are sufficiently small,
there holds

a \ ^ V ) >* for allu'.

By condition (f) of the large deviation property, we have

whereas condition (e) of the large deviation property gives

liminf n(()^logProb(6^A^)*-I(Aa/) .

Now, we have

^-liminf n (() ̂ log Prob (S^A^)

From which there follows
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This gives condition (ii) of the concentration property.

In the case when I(A)***> it must be that A*=A. We nay say, by

convention, that 6± concentrates about A* conditionally to A when such

is the case.
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