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ABSTRACT We develop a general thermodynamical description of an evol-
ving interface appropriate to situations far from equilibrium. The theory
represents a broad departure from theories based on classical nonequili-
brium thermodynamics, as we do not assume a linear relationship between
fluxes and forces, and we do not limit our theory to small departures from
equilibrium. Further, we allow for diffusion in both phases without an
assumption of steady-state diffusion in the bulk material; we allow the
composition of material transferred across the interface to differ from the
compositions of either phase, with solute drag included as a special case; and
we allow for heat flow in both phases. As an application of the general
theory, we develop linearized interface conditions for an evolving interface.

1. INTRODUCTION
1.1. BACKGROUND. SCOPE

Understanding the thermodynamic conditions at an evolving inter-
face between phases containing two or more chemical components has been
a central issue in the study of phase transformations, as a knowledge of
these conditions is crucial to the description of the growth kinetics and
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morphological evolution of a phase. The principle used most frequently to
determine the interface conditions is based on an assumption of local
equilibrium in which the interfacial temperature and composition are pre-
sumed given by relations obtained by minimizing the total free energy of
the system. As the interface is not stationary, such a variational approach
can, at best, provide an approximate description; in fact, there are experi-
ments involving large interfacial velocities in which the actual interface
conditions are not consistent with this assumption of local equilibrium.

A number of theories have been proposed to describe the evolution of
an interface that is not in local equilibrium. These theories fall into three
broad categories. The first includes theories that determine the tempera-
ture and the ratio of the interfacial compositions of each phase. Here the
temperature is determined using the energy dissipation-rate and the
composition-ratio is determined using a detailed description of the energy
changes accompanying the motion of atoms across an atomistically sharp
interface [1-4]. The second category includes descriptions based upon linear
combinations of generalized fluxes and forces linked through a condition on
the production of entropy 15-7]. The final category considers the interface
as having nonzero thickness within which certain of the thermodynamic
variables—including, often, a phase-field—exhibit large gradients [8-10].
While the predictions of these theories are far from agreement, they
generally conclude that, as the velocity of the interface increases, the
composition jump across the interface goes to zero, while the temperature
of the interface decreases.

Some theories predict that the solute present in an impure material
will introduce a "drag11 on the interface. The initial treatments of "solute
drag11 dealt with the motion of grain boundaries in single-phase two-
component alloys [11-13], but these have been generalized to two-phase
alloys [2,9,14,15], Solute drag is also present implicitly in the phase-field
models of solute trapping [10].

Underlying solute drag is the contention that the preferential adsorp-
tion of solute to a moving interface acts as a drag force. At sufficiently
large velocities, however, the interface sheds this excess solute and there is
no solute drag. Thus, there is a major difference between the behavior of
the interface at low and high velocities. The effects of solute drag depend
on the concentration profile through the interface and the distance depen-
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dence of the interaction energy between the adsorbing atoms and the phase
boundary. Solute drag has been observed experimentally to influence the
motion of grain boundaries [16] and antiphase-domain boundaries [17],
although recent experiments indicate that solute drag may not be present
during certain solid-liquid transformations [18].

A number of theories for the conditions at a moving interface have
been developed for use in situations involving rapid solidification, but the
diffusion of solute within the growing phase has usually been neglected. In
fact, the effects of diffusion in the growing phase—for models with a sharp
interface—remain controversial; for example, Caroli et al claim that diffu-
sion in the solid is necessary for consistency with Onsagers symmetry-
relations [7], In contrast, Kaplan et al claim that Onsager's relations are
then not valid [19]. Further, a theory that includes diffusion in both phases
would be of particular importance in solid-state transformations, where the
diffusivity of the two phases has roughly the same magnitude. An additio-
nal defect in the sharp-interface theories derived to date is an assumption
of steady-state diffusion in the determination of the interface conditions.

In this paper we develop a general thermodynamical description of an
evolving interface, a description that we believe to be appropriate in situa-
tions far from equilibrium. Our theory is a broad departure from those
based on classical nonequilibrium thermodynamics, as we do not assume a
linear relationship between fluxes and forces, and we do not limit our
theory to small departures from equilibrium. Further: (i) we allow for
diffusion in both phases without an assumption of steady-state diffusion in
the bulk material; (ii) we allow the composition of material transferred
across the interface to differ from the compositions of either phase, with
solute drag included as a special case; (iii) we allow for heat flow in both
phases, an extension that enables us to address the question of whether the
large temperature gradients that accompany rapid solification influence the
thermodynamic conditions at the interface.

1.2. PROCEDURE
We consider a two-phase system consisting of bulk regions separated

by a sharp interface. We base our discussion on balance laws for mass,
energy, and configurational forces in conjunction with an entropy growth
inequality that we use to develop a suitable constitutive theory for the
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interface. We assume that mass transport is characterized by the bulk dif-
fusion of a single independent species, an assumption we make to avoid
notational complications; the generalization to multi-component systems
involves neither conceptual nor analytical difficulty. What is most impor-
tant, to model situations in which the evolution of the interface is rapid, we
allow the chemical potential to have different limiting values on the two
sides of the interface, although the temperature is presumed to be conti-
nuous everywhere. Finally, we neglect deformation.

Our proceedure is as follows:
1. We begin with balance laws for mass, energy, and configurational

forces together with a dynamical version of the second law. Such basic
laws, common to large classes of materials, are carefully kept distinct from
specific constitutive assumptions, which differentiate between particular
materials.

2. Each balance law is equipped with an external supply. These sup-
plies are not specified by constitutive equations, but instead are allowed to
be assignable in any way compatible with the basic laws, just as the body
forces and the heat supply are often left assignable in the more standard
theories of mechanics and heat conduction.

3. The second law is localized and the balance laws—in local form—are
used to eliminate the external supplies. This yields one or more local dissi-
pation inequalities.

4. Constitutive equations are introduced. The balance laws do not
restrict the constitutive equations, instead they determine the external
supplies needed to support processes related through the constitutive
equations. On the other hand, the dissipation inequalities have no flexibi-
lity, as the supplies have been removed; for that reason the requirement
that the second law hold in all constitutive processes severly restricts the
constitutive equations. (This is the Coleman-Noll 120] procedure as
generalized to multi-phase systems in [21,22].)

5. The basic laws supplemented by the thermodynamically restricted
constitutive equations give the PDEs and interface conditions of the theory.

One might argue with the assumed availability of external supplies,
since it is difficult to conceive of "real physical situations11 in which such
supplies are present and, what is more important, completely controllable.
(For example, we allow for an external supply of mass to infinitesimally
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thin layers of bulk material immediately adjacent to the interface.) The
availability of supplies is essential to our development: it allows for the ar-
bitrary prescription of constitutive processes. In fact, this availibility of
supplies is tacit in many other theories of mathematical physics, although
the assumption is never made explicit. For example, the variational
derivation of field equations or interface conditions from the condition that
an "energy11 be a minimum requires that the underlying variational state-
ment hold for all possible variations of the basic fields; but such variations
will generally not be consistent with the resulting balance laws unless
suitable supplies are, in fact, introduced.

Since our basic approach to the development of a suitable constitutive
theory differs from that common among material scientists, we begin with
the classical theory of single-phase diffusion. This allows us to discuss,
within a familiar context, our treatment of configurational forces as well as
the manner in which we use thermodynamics to restrict constitutive
equations. With this as background we turn toward our chief goal: the
development of a general thermodyamical theory of evolving interfaces far
from equilibrium, a study that occupies most of this paper. Finally, as an
application of the general theory, we develop linearized interface conditions
for an evolving interface, allowing for diffusion in both phases.

1.3. NOTATION
We use notation and terminology standard in continuum mechanics.

R3 is the underlying three-dimensional space. Vectors are elements of R3

and are denoted by lower-case boldface letters. A dot denotes the inner
product. Tensors are linear transformations of R3 into R3 and are
denoted by upper-case boldface letters. Vectors may be viewed as 3*1
column vectors and tensors as 3x3 matrices. 1 denotes the unit tensor (1
is diagonal with ones along the diagonal). For a function F(a,b, .. . ,c) of
scalar or vector variables, we write, for example, dbF(a,b,.•.,c) for the
partial derivative F(a,b,... ,c) with respect to b.

2. REVIEW OF SINGLE-PHASE DIFFUSION
To illustrate our approach to nonequilibrium thermodynamics, before

discussing interfaces we first consider the simpler case of diffusion in a
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single-phase crystalline solid, which we suppose to be a binary substitutional
alloy with no vacancies.

2.1. BALANCE OF MASS
We consider two species of diffusing atoms in a nondeformable crys-

talline solid that occupies a region D in three-dimensional space. We label
the species by i* l ,2 , and write Pi(x,t) for the molar density, per unit
volume, of species i, hj(x,t) for the molar flux of species i, per unit area,
and hj(x,t) for the molar supply of species i, per unit volume. The molar
densities must be compatible with the constraint imposed by the crystal
lattice; namely, Pi + p2mP> with p, a constant, the number of lattice
points per unit volume; consistent with this, we assume that h^ * - h 2 and
h 1 «-h 2 .

We formulate basic balance laws using an arbitrary subregion D of
Q, which we will refer to as a control volume. Balance of mass for D has
the form

{ Jpidv)' * - Jhi-da + Jhidv, (2.1)
D dD D

for i s l , 2 , where da is a vector element of area such that f*da-f*mda
with m the outward unit normal to the boundary dD of D. Here and in
what follows we use a superscript dot to denote the derivative of a function
of t or the partial derivative with respect to t of a function of x and t.

To simplify the theory, we work with concentrations (molar fractions)
c i*Pi/p rather than molar densities. Then, defining hj«hj/p and
hj« h / p , it follows that

ci • c2 « 1 , hi « - h 2 , hi « - h 2 , (2.2)

and, since p is constant, balance of mass becomes

• Jh tdv. (2.3)
D dD D

The lattice constraints (2.2) allow us to drop one of the balance laws (2.3),
but a more symmetric treatment may be obtained by defining
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c « (cx - c2)/2, h * h l f h « h l f (2.4)

in which case (2.3) yields

{ Jcdv)# « - Jh-da • Jhdv. (2.5)
D 3D D

Using the divergence theorem and the fact that D is arbitrary leads
to the local mass balance

c# « -divh • h. (2.6)

2.2. BALANCE OF ENERGY. GROWTH OF ENTROPY
To describe the thermodynamics we introduce the internal energy

£(x,t), the entropy T)(x,t), the heat flux q(x,t), the heat supply q(x,t),
the temperature T(x,t), and the chemical potentials Mi(x,t), with e, T),
and q measured per unit volume, and q measured per unit area. At this
point in the development the temperature and chemical potential are
primitive concepts: |ai represents energy per unit transported mass, so
that iJijhj and Hjhj represent energy carried with the mass flux hj and
the mass supply hj,# analogously, q/T and q/T represent entropy
transported with the heat flux q and the heat supply q. In particular,
the relationship between |ij and derivatives of an energy has not yet been
established.

The first two laws for a control volume D express balance of energy

{ Jt dv}# « - J(q • Zi Hihi)-da * J(r * Z, u^) dv (27)
D 3D D

and growth of entropy

- J(q/T)-da • J(q/T) dv. (2.8)
3D D

In view of (2.2) and (2.4), the definition
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H « ax - \x2 (2.9)

allows us to rewrite the energy balance as

{ Jt dv}# « - J(q • uh)-da • J(q • uh) dv, (2.10)
D dD D

showing that the sum Ui • U2 °* chemical potentials does not contribute to
the energetics, a result consistent with the fact that, due to the lattice
constraint, Pi + p2 does not contribute to the mass balance. We will refer
to \i as the (effective) chemical potential.

The relations (2.5) and (2.10) are also appropriate starting points for
the diffusion of a single interstitial species, with c the concentration and IJL
the chemical potential of the interstitial; our results are therefore applicable
also in that case.

It is convenient to introduce the free energy

$ = e • Tr\. (2.11)

Then, using the divergence theorem and the mass balance (2.5), we can
rewrite (2.8) and (2.10) in the form of a local energy balance

f * -div(q + nh) • q + |ih (2.12)

and a bulk dissipation inequality

V + r\T - ULC* + T^q-VT • h-Vui < 0. (2.13)

Note that neither the mass supply nor the heat supply appear in (2.13).

2.3. CONSTITUTIVE EQUATIONS. THERMODYNAMIC RESTRICTIONS

We view the balance laws for mass and energy and the law of
entropy growth as basic laws, common to large classes of materials; we
carefully keep such laws distinct from specific constitutive equations, which
differentiate between particular materials.

We consider constitutive equations giving +, |i, TJ, h, and q at a
point x and time t when c, T, Vc, and VT are known at (x,t); we
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denote by $ the constitutive response function delivering the free energy,

+(x,t) « 4/(c(x,t)J(x,t),Vc(x,t),VT(x,t)); (2.14)

A A * * A

similarly u, T), h, and q denote the response functions for n, TI, h,
and q. We do not write a constitutive equation for the external supplies h
and q, but instead allow h and q to be assignable in any way
compatible with the basic laws.

Given smooth time-dependent fields c and T, the constitutive equa-
tions may be used to compute fields 4/, \i, TJ, h, and q; balance of mass
and energy, (2.6) and (2.12), then determine the mass h and heat q that
must be supplied to the body to support this constitutive process. The pre-
sence of nonzero supplies h £nd q are essential in this regard, as they
allow for arbitrary prescription of the fields c and T without violating
the basic balance laws. The second law remains to be satisfied in all such
constitutive processes, a requirement we will use to restrict the constitutive
equations. In particular, we assume that

the bulk dissipation inequality (2.13) is
satisfied in all constitutive processes.

Note that we allow all smooth prescriptions of the concentration and tem-
perature; we add no constraints regarding their temporal or spatial rates of
change.

Let

z « (c,T,p,g), p * Vc, g » VT. (2.15)

Substituting the constitutive equations into the dissipation inequality yields
the inequality

Ti(z)}r +

T-*q(z)-VT * fi(z)-V{ji(z)} < 0, (2.16)

where, e.g., dp represents the partial derivative with respect to p. We
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can always find fields c and T such that z, c \ T\ p \ g\ Vp, and Vg
have arbitrarily prescribed values at some chosen x and t. Therefore, for
the inequality (2.16) to be satisfied by all constitutive processes, we must
have Sp^(2)«3g+(z)«0, dc+(z)« £L(Z), dj$(z)« -T|(z). Therefore:

1. The free energy, the chemical potential, and the entropy are
independent of the gradients of concentration and temperature and,
moreover, are related through

u(c,T) * ac4>(c,T), T»(C,T) « -dT*(c,T). (2.17)

2. The dissipation inequality assumes the form

T-*q(c,T,p,g)-VT + h(c,T,p,g)-Vu < 0. (2.18)

An immediate consequence of (2.17) is that in this nonequilibrium
system

V * He- - TfT. (2.19)

Gibbs relations of this form are typically assumed to hold in the more
standard treatments of the thermodynamics of nonequilibrium processes
(cf., e.g., DeGroot and Mazur [23]).

Note that by (2.11) and (2.17), the internal energy is also given by a
function

t « e(c,T) « $(c,T) - TdT4>(c,T). (2.20)

We shall assume throughout that dcji(c,T)>0 for all (c,T), thereby
limiting the theory to systems that are isothermally metastable or stable.
This assumption allows us to consider c as a function

c « c(|i,T), (2.21)

and to consider the mass flux and heat flux as functions

q - q(u,T,Vn,VT), h « h(u,T,Vn,VT) (2.22)
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subject to

T-iq(|i,T,Vn,VT).VT + h(|i,T,V|i,VT).Vn < 0. (2.23)

The next lemma [24,25] facilitates the study of inequalities of the form
(2.23).

Lemma. Let u(w,y) in Rn be a smooth function of w in Rm

and y in Rn, and suppose that

u(w,y)«y < 0

for all w and y. Then for each (w,y) there is an n*n matrix
K(w,y), with K(w,0) positive semi-definite, such that

u(w,y) • -K(w,y)y.

To prove this lemma we fix the argument w and suppress it in what
follows. Then <p(y)«u(y)«y<0 has a maximum at y » 0 , so that
V(p(0)=u(0)*0 and Wip(0)*Vu(0) is negative semi-definite. Since u(0) = 0,
we have the identity

1
u(y) - (JVu(sy)ds}y , (2.24)

o

and the desired conclusions follow upon setting K(y)*-{ . . . } .

This lemma with iMh.T^q), w»(n,T), and y*(Vu,VT) yields the
following reduced constitutive equations for the fluxes:

h - -K a Vn - K12VT, (

q - -K21Vu - K22VT.

with coefficient matrices Kij«Kij(|i,T,V|i,VT) consistent with (2.23), and
with the matrix (of matrices) with rows Kijdi.T.O.O) and T-1K2j(|J,T,0,0)
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positive semi-definite. These relations allow for mass transport due to a
temperature gradient (Soret effect) and for heat flow due to a concentration
gradient (Dufour effect).

In the absence of external supplies, the balance equations for mass
and force take the form

c# « -divh, V « -div(q • nh), (2.26)

and these with the thermodynamically restricted constitutive equations
(2.17) and (2.20) form the basic partial differential differential equations of
the theory. These are the most general equations consistent with the
second law and the underlying constitutive assumptions. Particular
problems would then dictate what further simplifications are appropriate.

2.4. CONFIGURATIONS, FORCES1

Configurational forces are irrelevant when discussing defect-free
single-phase materials, but their study within that context provides essen-
tial information regarding their nature.

We capture the mechanics associated with the addition and deletion
of material at the boundary of a portion of the body using control volumes
D(t) that evolve with time. The boundry dD * dD(t) of such a control
volume is an evolving surface and hence may be parametrized by a func-
tion of the form x«X(ultu2,t); the field v(x,t) * dX(ulfu2,t)/dt then repre-
sents a velocity field for SD(t). Of course, v depends on the parame-
trization chosen for SD(t), but the normal velocity

V * v*m (m « outward unit normal to SD) (2.27)

does not. For $(x,t) a smooth field,

(d/dt){ J$ } « J3#dv • J$Vda, (2.28)
D D 3D

*This section is taken from (26]. Standard forces associated with continua arise as
a response to deformation. That additional configuration*] forces may be needed to
describe the internal structure of the material is clear from Eshelby's work on lattice
defects 127,281
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where

(d/dt){ J f d v } denotes (d/dt){ J$(x,t) dv(x) }. (2.29)
D D(t)

To the classical fields discussed thus far we add four configurational
fields: a stress field S, an internal body force e, a scalar mass flux tt,
and a scalar heating Q. The stress S represents forces that expend power
when material is added or removed from D * D(t) through the motion of
3D « 3D(t); we presume this power to be of the form

JSm-vda. (2.30)
3D

(The body force c does not expend power on D, since it acts internally to
D.) Similarly, the integrals

JttVda, JuHVda, jQVda, J(Q/e)Vda, (2.31)
3D 3D 3D 3D

represent flows of mass, energy, heat, and entropy into D associated with
the motion of 3D.

We now write the form we propose for the basic laws, taking into
account the motion of 3D(t). To focus on the role of the terms (2.30) and
(2.31), we write RMassBal(D), REnergyBal(D), and REntropylneq(D),
respectively, for the right-hand sides of the (more standard) mass balance
(2.5), energy balance (2.10), and entropy inequality (2.8). The basic laws, for
each evolving control volume D*D(t), are then balance of mass

(d/dt){ Jcdv } * RMassBal(D) • JKV da, (2.32)
D 3D

balance of energy

(d /dt ){Jedv) « REnergyBal(D) • J(Q+uX)Vda * JSm-vda, (2.33)
D 3D 3D

growth of entropy
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(d/dt) { Jndv ) > REntropylneq(D) • J(Q/T) Vda, (2.34)
D SD

and a balance law for configuration*] forces

JSda • Jedv « 0, (2.35)
3D D

with th€ stipulation that balance of energy be independent of the parti-
cular local parametrizations used to determine the velocity field v for
SD. Note that , for D stationary (2.32)-(2.34) reduce to (2.5), (2.10), and
(2.8), demonstrating consistency with the more standard formulation of
these laws.

Because of (2.27), changes in parametrization affect the tangential
component of v, but leave the normal component unaltered. In fact, in va-
riance of (2.33) under reparametrization is equivalent to the requirement
that Sm»t«0 on 3D for all tangential vector fields t on dD; thus, since
D is arbitrary, Sm is parallel to m for all m , so that S is a pure
tension T ( S - T D . Further, given a time s, it is possible to find a second
referential control volume D'(t) with D'(s)*D(s), but with V(x,s), the
normal velocity of SD'(s), an arbitrary scalar field on dD'(s); therefore,
applying (2.28) to c, e, and r\ in (2.32)-(2.34) and using the fact that V
is arbitrary, we conclude that

c * H, e * T + Q + uW, T) = Q/T, (2.36)

relations that, when multiplied by V, express balance of mass, energy, and
entropy associated with the addition of material to D. A trivial but impor-
tant corollary of these relations is that the bulk tension T coincides with
the grand canonical free energy to:

S « col (2.37)

with

w « + - ULC. (2.38)
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The relation (2.37) and the configurational force balance will be crucial to
our discussion of interface conditions for a two-phase system. It is impor-
tant to note that our derivation of the relation (2.37) for the configurational
stress was accomplished without recourse to constitutive equations or to a
variational principle; the derivation was based on versions of the mass and
energy balances and entropy inequality appropriate to control volumes
whose boundaries evolve with time.

The divergence theorem applied to to (2.35) yields the local balance

divS ^ e « 0 ; (2.39)

therefore, using (2.37), (2.38), and the constitutive equations (2.17),

e « TJVT • cVu, (2.40)

showing that internal configurational forces arise as a response to inhomo-
genieties induced by nonuniformities in the temperature and chemical
potential.

2.5. THEORY WHEN THE MATERIAL DOES NOT DIFFUSE MASS
Often in problems involving a solid in a liquid melt, diffusion in the

solid is negligible compared to diffusion in the liquid. To model the solid
phase in such situations we consider a class of materials consistent with the
constraint

h « 0. (2.41)

In this case the local expressions for balance of mass and energy and the
bulk dissipation inequality take the forms (2.6), (2.12), and (2.13) with h*0.
The constitutive theory does not involve an equation for h, but otherwise
is not essentially different from that of the previous section. In the absence
of external supplies the resulting equations are

V « -divq, c# « 0, (2.42)

in conjunction with the constitutive equations (2.17), (2.20), and
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q « -KVT, (2.43)

with coefficient matrix K«K(T,VT) consistent with q^VT<0, so that, in
particular, K(T,O) is positive semi-definite.

3. TWO-PHASE SYSTEMS
We now consider a two - phase system consisting of bulk phases oc and

p separated by a sharp interface, with the motion of the interface accom-
panied by mass and heat transport in the bulk material. Surface transport
along the interface as well as deformation in the bulk phases will be
neglected.

3.1. THE INTERFACE
We model the interface s(t) as an infinitesimally thin two-

dimensional surface that divides the body into two regions, Da(t) and
Qp(t), the former occupied by a, the latter by p. We orient s(t) by
choosing its unit normal field n(x,t) to point into p, and we denote by
V(x,t) the normal velocity of s(t) in the direction n(x,t). (Cf. [21,22] for a
discussion of the geometry of evolving interfaces.)

Our theory is characterized by: (1) bulk fields defined in Qa(t) and
Qi(t) for all t, and allowed to suffer jump discontinuities across the
interface; and (2) interfacial fields defined on s(t) for all t. For $ a bulk
field, we write $~ and $+, respectively, for the limits of $ as the
interface is approached from the a and p phase regions, and [$] for the
jump in $ across the interface:

I$] « $• - 3-. (3.1)

We will again make use of an arbitrary control volume D, which, in
this case, is fixed in Q. When D contains material in both phases, the
portions Da(t), Dp(t), and d(t) of D that lie, respectively, in the oc phase,
in the p phase, and on the interface, will be functions of time. We will refer
to Da(t) and D (̂t) as interactive control volumes. For lf«oc or Jf«p the
boundary of Dy(t) will have two components: the portion d(t) that lies on
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the interface and the portion OD)r(t) that lies in the bulk material of
phase If (Figure 1).

3.2- BALANCE OF MASS.
Basic to our discussion of the interface is a scalar field C(x,t) that

represents the composition of bulk material currently situated in the inter-
face, or equivalently, the composition of bulk material currently being
transferred across the interface. (Consistent with (2.2), for a binary system
C«(C1-C2)/2, Cx+C2

ml.) It may happen that C«c~ or C*c\ but this need
not be so, although one might assume that C lies between c and c*.

We also introduce, in addition to the bulk mass flows of Section 2,
interfacial fluxes jy(x,t) and interfacial external mass supplies H,(x,t),
where, for *«a,p, j r represents the mass flow per unit area by diffusion
out of the interface and into phase If, while H, represents an external
supply of mass per unit area to an infinitesimal layer of phase t adjacent to
the interface. Thus there are net mass flows into an interactive control
volume D¥(t), from the bulk material of If,

-Jh-da, (3.2)

from the interface by diffusion,

-J j y da, (3.3)
d

from the interface due solely to its motion,

±JCV da (3.4)
d

with the plus of minus chosen according as V*oc or Jf«p, and from the
external supplies,

• Jhdv. (3.5)
d D,

We will formulate balance of mass for the control volume D as well as
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for the interactive control volumes Dr(t); the latter will help to charac-
terize the interaction between phases. Balance of mass for D is the
requirement that

{ Jcdv}# « -Jh-da • Jhdv • J(Ha*H,)da, (3.6)
D dD D d

while balance of mass for each interactive control volume Dy(t) yields

{Jcdv}# « -Jh-da • Jhdv * J(jr± CV + Hy)da. (3.7)
D, OD)y D, d

The mass flows Ja
 + CV and jp-CV do not appear in (3.6) as they are

internal to D.
Applying (3.6) to control volumes D that exclude the interface leads

to the the bulk mass balance (2.6), which is now required to hold in each of
the bulk regions for all time. On the other hand, if we shrink D to the
interface, the left side of (3.6) approaches the integral over d of -[c]V, the
first term on the right tends to the integral over d of -[h]-n, and the
second term gives no contribution; we are therefore led to the interfacial
mass balance

[cjV « [ h ] - n - H a - H , . (3.8)

If we apply the same procedure to (3.7) with *«a, we find that the
left side approaches the integral over d of c"V, while the first term on
the right tends to the integral over d of h"*n; similarly, for **£ the
analogous terms become -c*V and -h*-n. Thus we are led to the addi-
tional balances

j a + CV « c-V - h--n - Ha, j p • CV « -c*V * h*-n - H,; (3.9)

hence, by (3.8),

jp • -J a • J- (3.10)

The interfacial field j represents the mass flow by diffusion across the
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interface in the direction n. We envisage the interface as modelling an
actual interface having a small but nonzero thickness, with j the diffusive
mass flux through this thickness. By (3.9) and (3.10),

j « (C-c-)V • Jr-n • Ha « (C-c*)V • h^n - Hp, (3.11)

so that, for

Ha « H, * 0, (3.12)

an assumption we will make for the remainder of the section,

j « (C-c-)V • h"-n * (C-c*)V • h*-n. (3.13)

The concentration C can always be written as a weighted average of
c~ and c*; indeed, X defined by

X « (C-c-)/[c] (3.14)

yields C * Xc* + (1 - X)c-, and, interestingly, by (3.13),

j « Xh"-n • (l-X)h--n. (3.15)

Thus j is a weighted average of the bulk diffusive fluxes at each side of the
interface with weight equal to that giving C in terms of c* and c*.

Consider the limit, relevant to rapid solidification, in which the grow-
ing phase, say phase a, does not diffuse mass; then V must be positive and
h"»n « 0. In this limit, (3.13) becomes

j « (C-c-)V. (3.16)

Since the composition of the a phase is c~, and since a does not diffuse
mass, the mass flux into a is c~V. By (3.16)f if the composition C of the
material passing across the interface is equal to c~, then the diffusive flux
j within the interface vanishes:
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j « 0 when C « c~. (3.17)

Similarly,

j « iclV when C « c+. (3.18)

Summarizing: when C«c" there is no diffusion in the interface; when C«c*
there is maximal diffusion within the interface. Here it is important to note
that (3.16) is a consequence of balance of mass; it does not involve consti-
tutive assumptions other than the presumption that phase a not diffuse
mass.

4. BALANCE OF FORCES AND ENERGY. GROWTH OF ENTROPY
4.1. FORCES

We now generalize the configurational force balance to account for the
interface. We consider, in addition to the bulk stress S and bulk internal
force € defined in Section 2.4, an internal force n and an external force
f, per unit area, applied to the interface. The force rr is an interfacial
counterpart of the bulk configurational force e, and, while € is generally
unimportant, n is essential as it represents dissipative forces associated
with the kinetics of the interface. We will refer to

TT « ivn (4.1)

as the normal internal force. The external force f is an analog of the
supplies introduced previously.

We neglect other configurational forces, such as surface tension, that
act within the interface. Balance of forces therefore requires that

JSda • J«dv • Jnda • Jf da « 0 (4.2)
3D D d d

for all control volumes D. We do not write a force balance for interactive
control volumes. To do this would require additional structure; the resulting
theory would be unchanged.
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Applying (4.2) to control volumes that exclude the interface yields the
bulk relation (2.39), while (4.2) applied to control volumes that include the
interface yields the interfacial balance

{Sin + n + f - 0. (4.3)

Since S has the specific form (2.38), the normal part of (4.3) is therefore
given by

loo] + n • f-n « 0. (4.4)

As we shall see, only the normal component of n will enter the
dissipation inequality for the interface; consistent this, we leave as indeter-
minate the tangential component of tr, and therefore concern ourselves
only with n, f*n, and the normal component (4.4) of the configurational
force balance (4.3).

Basic to the theory is the manner in which forces expend power.
Consider a fixed control volume D that contains a portion of the interface.
The stress S does not expend power on D, because it acts on 3D, which is
stationary, and the forces n and e do not expend power on D, as they
act internally to D. On the other hand, the external force f acts on the
interface, which evolves with time, and a basic assumption of the theory is
that f expends power over the velocity of the interface. We are therefore
led to the following expression for the power expended on D:

Jf-nVda. (4.5)
d

4.2. BALANCE OF ENERGY. GROWTH OF ENTROPY
We add to the (bulk) thermodynamic fields described in Section 2.2 an

interfacial heat supply Q(x,t), which represents an external supply of heat
per unit area to the interface. A basic assumption of our theory is that

the temperature T is continuous across the interface, (4.6)

but we do not make a similar assumption for the effective chemical poten-
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tial, as we arc interested in situations in which there is "local equilibrium"
for heat transfer, but not for mass transfer. Then, arguing as before, we
are led to the following versions of balance of energy and growth of entropy
for a stationary control volume D:

{ Je dv}# « - J(q • uh)«da • J(q • nh) dv •
D dD D

J(Q • n'Ha + \i+Hp + Vf-n) da, (4.7)
d

{ Jr\dV Y * - J(q/T)-da + J(q/T) dv • J(Q/T) dv. (4.8)
D 3D D d

The first two integrals on the right sides of (4.7) and (4.8) are identical to
those of (2.10) and (2.8), as they represent heat, energy, and entropy flows
in the bulk material. Thus using control volumes that exclude the interface
allows us to recover the results (2.12) and (2.13). The presence of an
interface results in the remaining terms on the right sides of (4.7) and (4.8);
these represent energy, heat, and entropy supplied to the interface and
power expended on the interface.

If we shrink D to the interface using (4.4), (4.6), and an argument
analogous to that leading to (3.8), we arrive at expressions for balance of
energy and growth of entropy at the interface:

-U lV « -Iq * uhl-n * Q • uTHa * n*H, - (n + [co]) V,

- Q)/T.

If we combine (4.9) using the free energy (2.11), we find that

(TT - [cuDV * [uh]-n - n-H« - n*H> < 0. (4.10)

This and (3.11) yield the interfacial dissipation inequality

( n - C l n D V * j[ul< 0. (4.11)

It is convenient when choosing constitutive laws to define an auxiliary
field
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TT .« n - Clul; (4.12)

(4.11) then becomes

TTV* jiu] s 0. (4.13)

As before, the external supplies of heat and mass are not present in the
dissipation inequality.

An alternative form of the dissipation inequality follows from (4.11):

ttV + Jiu] < 0, (4.14)

where

J « j - CV (4.15)

is the net mass flux across the interface. The constitutive relations that
follow from (4.14) are not as transparent as those which can be derived
from (4.13), chiefly because the flux J is not purely diffusive: it involves an
accretive component CV.

4.3. EFFECTIVE DRIVING FORCE
When the external force f vanishes, the normal configurational force

balance takes the form

lo>] - CM • TT « 0, (4.16)

where we have used (4.12). Thus, writing

E • t|i+ - <|r • u*(C-c*) - ur(C-c-). (4.17)

and appealing to (2.38), we see that

- U-), (4.18)
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and hence the normal force balance takes the simple form

E • TT « 0. (4.19)

In the dissipation inequality (4.13) the force TT is conjugate to the normal
velocity V and, as we shall see, is purely dissipative. The relation (4.19)
balances configurational forces represented by E, which work to equilibrate
the system, with dissipative forces represented by TT. We will refer to E
as the effective driving force. The relation (4.19) for the driving force is
general; in particular, it is independent of specific constitutive assumptions.

An assumption of local equilibrium with respect to mass transport
would yield the continuity of JJ across the interface, in which case E is
simply the jump in co across the interface. The additional term C(|i+- IJT)
is a direct consequence of a lack of local equilibrium. Since u represents
energy per unit transported mass, (u*-|jr)C gives the additional energy
required to transfer (a unit volume of) material of composition C from a
of composition c~ to p of composition c*.

5. CONSTITUTIVE EQUATIONS. THERMODYNAMIC RESTRICTIONS
We consider bulk constitutive equations for each phase If of the form

described in Section 4.2, so that, in particular,

4>(x,t) « +y(c(x,t),T(x,t),Vc(x,t),VT(x,t)) (5.1)

gives the free energy at an arbitrary point x in phase If at time t.
Similarly, fry, fiy, h y , and qy denote the remaining response functions
for phase If.

To these bulk relations we add interfacial constitutive equations giving
the composition C of material currently at the interface, the diffusive
mass flow j , and the normal configurational force n as functions of the
normal n , the normal velocity V, the limiting values c± of the
concentration, and the temperature T (cf. (4.6)):

C « C(e), j « 3 (0 , TI « fr(C). (5.2)
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where C * (n, V.c,c*.T). Note that, by (4.17) and (4.12), the bulk and
interfacial constitutive equations yield an auxiliary constitutive relation
TT*fT(e).

We do not write constitutive equations for the external fields h, Ha,
H ,̂ q, Q, and f, nor for the stress S, but instead allow them to be
assignable in any way compatible with the basic balance laws.

An important special case of these constitutive relations occurs when
C • (V,c-,c*,T) and defines an isotropic interface; another special case is
when C « (n,c*,c\T) and defines a weakly kinetic interface. Note that, by
(3.11), this latter definition does not yield interface conditions that are
independent of V.

Suppose we are given a smooth motion of the interface together with
compatible prescriptions of the fields c and T representing the concen-
tration and temperature. Then the bulk and interfacial constitutive
equations may be used to compute the bulk fields u, +, and h, and the
interfacial fields C, j , and TT; the balance laws for force, mass, and
energy can then be used to determine the fields h, Ha, H ,̂ q, Q, and f
needed to support the process. The second law remains to be satisfied in all
such constitutive processes, a requirement that will result in restrictions on
the constitutive equations. We assume that:

the bulk and interfacial dissipation inequalities (2.13)
and (4.11) are satisfied in all constitutive processes.

For the bulk material we recover the results shown previously for a
single-phase material: for each phase V, the functions ^ , T\M , and fry,
are independent of Vc and VT,

U,(c,T) « Sc+r(c,T), f|y(c,T) « -

and, assuming as before that dciir(c,T)>0 so that c* cr(|i,T),

h « -K

q « - K m V n - K,22VT,
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where the coefficient matrices Krij« Kyij(uJ,Vu,VT) in (5.4) are consistent
with the assertions following (2.25).

If we substitute the interfacial constitutive equations into the
dissipation inequality (4.13), we find that

fr(c)v • 3(e)lul * o. (5.5)

Since c«cr(|i,T), we can replace the constitutive variables c* and c* by
\T and | i \ Thus, since a knowledge of IJT and \x* is equivalent to a

knowledge of the jump l|i] and the average2 <u>*(|i*+ \sr)/29 we may
consider j(C) and TT(C) as functions j(n,(li),T,V,[(i]) and
TT(n,<U>,T,V,[n]); hence (5.5) becomes

TT(n.<U>J.V.luDV • J(n,<JJi>J,V,[u])[n] < 0. (5.6)

We can always find a motion of the interface and compatible concentration
and temperature fields c and T such that n# (\x)$ T, V, and l\i] have
arbitrarily prescribed values at some chosen point of the interface and some
chosen time. Therefore applying the lemma of Section 2.3 to (5.6) with
u« (TT,j), w * (nXn),T), and y * (V,lu3), and then converting back to the
constitutive variable C, we conclude that there are functions b(C), B(C),
a(C), and A(C) such that

T7(C) « -A(e)V- a(C)lut], ( 5 7 )

3(0 « -b(C)V -B(C)[nl,

where the diagonal coefficients are given by capital letters and the cross-
coupling coefficients are given by lower case letters. Moreover, the
coefficient matrix

(5.8)

must satisfy the inequality found by substituting (5.7) into (5.5):
2In Section 7 w« will us* the symbol <> to denote a certain weighted average.
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yB(C)yT< 0, (5.9)

where the superscript T denotes the transpose. If B(C) is independent of
y, or for small deviations about equilibrium where y « 0 , 8(C) must be
positive semi-definite to be consistent with the second law. Our thermody-
namical development does not require that B(C) be symmetric, although
other physical hypotheses might.

Note that thermodynamics places no restrictions on the constitutive
equation C«C(C). In particular, the theory does not rule out a dependence
of C on velocity (cf., e.g., the model of Eckler et al [29]).

For a weakly kinetic interface the argument C is independent of V;
thus, since V is arbitrary, we may conclude from (5.5) that

TT(C) « 0, (5.10)

and, since 3(C)M*0, we must have b(C)sO and

j * -B(e)Iul (5.11)

with B(C) > 0, so that diffusion across the interface is driven by a jump in
chemical potential.

For most problems of interest there are no external supplies of mass,
energy, or force. In this case

h « Ha * H, « q « Q * 0, f « 0, (5,12)

and, by (4.19), the interfacial constitutive equations (5.7) assume the form

E « A(C)V •

J « -b(C)V •

(or E« 0, j«-B(C)[|i], for a weakly kinetic interface). The relations (5.13),
the central results of our theory, are valid in the general case in which
there is diffusion in both phases. Here A characterizes the mobility of the
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interface, while B is the mobility of atoms within the interface. What is
interesting and important about (5.13) is that—even though we do not
assume isothermal conditions—the temperature T appears in (5.13) only as
a parameter. Tracing back the steps leading to (5.13), we conclude that,
granted (5.12), the entropy T produced by the interface per unit area is
given by

r * (EV - j [ | i ] ) /T* 0. (5.14)

Thus, in general, both the mobility of the interface and diffusion across the
interface dissipate energy.

In view of the bulk constitutive equations we can express E in the
form

E • t|T - r • 9 c ^ ( c M ) ( C - c i - dc4>a(c-,T)(C-c-). (5.15)

This yields the tangent-to-tangent construction of Baker and Cahn [30].
For lii]<0, which might be expected during rapid solidification with a the
growing phase, the magnitude of E decreases as the composition C of
material being transferred increases. The effects of this decrease are easy to
see in the limit where A is a constant and a*0. Using (5.13) we see that,
in this case, the velocity of the interface must decrease. This decrease in
velocity induced by an increase in material being transferred corresponds to
what has been termed, in other contexts, flsolute drag".

Assume now that the external supplies of mass and energy and the
external force vanish. Then the free-boundary problem of the general
theory consists of the bulk balance equations (2.26) and the bulk consti-
tutive equations (5.3) and (5.4) in each phase in conjunction with the
interface conditions

U]V « [ q u

E«-A(C)V-a(C)[n], (5.16)

(C-c-)V • h"-n « (C-c*)V • h^n « -We)V • B(C)lul,

supplemented by the constitutive equation OC(e). The more standard
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condition [c]V «[h]*n is a consequence of (5.16)3.
These conditions along with (2.11), (4.11), and (5.10) yield the inter-

facial entropy balance (cf. the second of (4.9)):

T-Mql-n- I\ (5.17)

with F the interfacial entropy production (5.14).

6. THEORY WHEN ONE PHASE DOES NOT DIFFUSE MASS
We now consider the limit, relevant to rapid solidification, in which

the growing phase, say phase a, does not diffuse mass. Then, assuming
there are no external supplies of mass, energy, or force (cf. (5.12)), the
interface equations consist of (5.16) with h~»n« 0:

U]V « [q]-n

[c]V « h*-n,

E « - A ( e ) V -

(c-c-)v « -b(e)v -

Here OC(C), with no thermodynamic restrictions placed on this relation.
A number of consitutive assumptions have been employed for C, ranging
from a constant with the value c- or c+ [2], to a continuous function of
the velocity V [29]. A simple generalization of the former, ensuring that C
lie between c* and c+, is furnished by the relation

C • Xc* • (1 - X)c-, X • constant, 0 £ X £ 1. (6.2)

Here X is a constitutive modulus characterizing the degree of solute drag:
X«0 corresponds to C«c and no solute drag, while increasing X corres-
ponds to increasing solute drag, with X«l associated with C«c*.

In standard formulations of rapid solidification problems, the inter-
facial temperature follows from (6.D3 and the velocity dependence of the
distribution coefficient, c-/c+, from (6.D4. As is clear from (5.15), the
temperature of the interface will depend on the degree of solute drag, as E
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depends on C. In addition, for a(C) nonzero, (6.D3 yields a kinetic
influence on the driving force. As with most other sharp-interface models
for rapid solidification, the velocity dependence of the distribution coefficient
will depend on the mobility B(C) of the atoms within the interface and the
jump in the chemical potential across the interface. However, it is clear
from (6.D4 t^at the distribution coefficient can also depend on the degree of
solute drag, due to the presence of C on the left hand side of (6.D4. In fact,
it is therefore possible to construct a general model for the interfacial tem-
perature and distribution coefficient using (6.1)3#4; some progress has been
made along these lines [31].

7. ISOTHERMAL THEORY IN WHICH BOTH PHASES DIFFUSE MASS; SMALL
DEPARTURES FROM EQUILIBRIUM

We now restrict attention to isothermal situations and develop an
approximate theory—appropriate to small departures from equilibrium—
that accounts for diffusion in both phases. The bulk fields of the equilibrium
state are denoted by a superscript e and are constant in each phase.
Further,

Ioo€] « 0, Iu t] « 0, (7.1)

and the constant values of the equilibrium concentration c€ are related to
U€ through the general expression (2.21) for each phase If:

c€ * c,(u«). (7.2)

(Here and in what follows we omit mention of the temperature.)
As we have restricted attention to a theory valid close to equilibrium,

we compute the concentration away from equilibrium using the linear
approximation

c - c€ « Kyu, (7.3)

where K * dcr(|i)/dn at \x « n t (or equivalently, K * {d* i|>r(c)/dc2}-i at
c«c€) and
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u « H - Û . (7.4)

Finally, we assume that the composition C has the form (6.2) with X a
prescribed constitutive modulus.

For convenience, we introduce, for any function <p defined near the
interface, the (X-weighted) interfacial average <q>> and its conjugate <<p>*:

<cp> *X<T • ( l-X)qr, <<p>« « X(p- • (1-X)<T; (7.5)

we then have the useful identity

Itppl - <<P>tel + [<pl<p>\ (7.6)

and, what is more important, (6.2) yields

C««<ct>. (7.7)

(In our discussion of constitutive equations, for example in (5.6), <<p> was
used to denote (7.5)j with X*l/2.)

Our first step will be to obtain an approximate expression for the
effective driving force E; for this calculation it is most convenient to write
the expression (4.18) for E in the form

E • 1+] * !(C-c)ul. (7.8)

Expanding [t|>] about equilibrium we conclude, with the aid of (5.3) that

It|»] - W • In,(c - c«)] + h. o. t., (7.9)

>rhere "h. o.t." is shorthand for terms of order higher than one in Ic* - ct*l.
Thus, by (7.1) and (7.4),

E - [u(C«-c,)]*h.o.t. (7.10)

Therefore, writing

v - [cj (7.11)
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and using (7.5M7.7), we may conclude that

E « -v<u>« • h.o.t. (7.12)

Since we have restricted attention to isothermal situations, we omit
the interface condition (5.16)1 expressing balance of energy. Further, be-
cause of the specific form (6.2) for C, the interface conditions (5.16)2,3

 a r *
best expressed in terms of <h«n> and lh*n]. Thus, neglecting higher-order
terms in (7.12), and assuming that the moduli A, a, b, and B are
constant, we are led to the following approximate form for (5.16)34:

v<u>* « AV • atu],

<h-n> « -bV - Blu], (7.13)

[h-n] * -uV,

where (7.13)2 follows upon using (6.2) and (5.16)2 in (5.13), and where, in
writing (7.13)3, we have approximated Ic]V by vV.

Note that these linearized interface conditions, which allow for
diffusion in both phases, do not include an explicit expression for the
velocity dependence of the distribution coefficient k« c*/c*. The usual
expression for k is replaced by an expression for the average value of the
bulk fluxes at the interface. Further, although C does not appear explicitly
in the interface conditions, solute drag still influences the interfacial condi-
tions through the X dependence of the averages <u>* and <h«n>.

For the bulk material, we take the constitutive relation (5.4) for the
flux h in the form

h « -K,Vu (7.14)

for each phase *« a,p, where the tensors Ky are constant. Thus, neglecting
the external supply of mass, the diffusion equation to be satisfied by u in
bulk follows from (7.3) and the local mass balance (2.6):

- « div(KrVu) (7.15)
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in each of the bulk phases *« oc.p.
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Figure Caption

Figure 1. The control volume D, which contains material in both the oc
and p phases. The intersection of D with the interface is a
surface d with boundary curve dd. Also noted are: the
interactive control volumes Da and D ,̂ which are the portions
of D in a and p; the boundary dD of D; and the portions
OD)a and OD)P of dD that lie in a and p.
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