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Introduction

Terfenol-D is a highly magnetostrictive material. Strains of the order of 2x1 O*3 are achieved at

room temperature under resonably low applied field strengths (1), and this renders Terfenol-D very

promising for applications like active vibration control, precision machining, etc. As it is common

for magnetic materials, the macroscopic properties of technological interest, such as the change of

length of a magnetostrictive rod under the action of an external magnetic field, arise from the

cooperative evolution of microscopic magnetoelastic domains. In order to understand and predict

the macroscopic response of a given specimen to magneto-mechanical loads, it is therefore natural

to try to analyze domain evolution at the microscopic scale, and then to characterize the macroscopic

behavior by a suitable averaging procedure. In essence, our approach to the computation of virgin

magnetization and magnetostriction curves is an attempt to turn the previous statement into an

algorithm based on a precise mathematical formulation of the problem. Our method is based on

micromagnetics (cfr. (2, 3) for a discussion of differences and similarities with other, more

standard procedures): we arrive at predictions of the macroscopic response of a given specimen by

averaging magnetizations and strains corresponding to energy minimizing configurations.

In this paper, we report on preliminary results of our efforts to model the magnetostrictive

response of a Terfenol-D specimen. Typically, this material is grown by the Free Standing Zone

method in the shape of cylindrical rods. When this technique is used, Terfenol-D grows along a

[112] direction in twinned dendritic sheets. Due to the presence of growth-twins, which are

oriented along low symmetry crystallographic directions, the domain patterns corresponding to

stable configurations are rather complex. We study the interplay of crystallographic and magneto-



mechanical properties, and its influence on the macroscopic response to applied magnetic fields and

loads on a model problem: we consider a two-dimensional geometry1, and we assume the

saturation magnetostrictive strains along the [111] and [100] directions to be equal. In particular,

we analyze the role of applied stresses in selecting the energetically optimal domain patterns, and

the implications on the magnetostrictive response. We aim at a quantitative analysis, and the

assumptions above allow us to carry out our program in full mathematical rigor. For Terfenol-D,

however, Xioo « Xni. Hence the material we study is only Terfenol-D-like, and our quantitative

predictions are, at this stage, only qualitative for Terfenol-D.

The energy functional

We describe the state of a magnetostrictive body occupying the region of space Q by a pair of

functions defined on Q: the magnetization m (a vector field of prescribed length, equal to the

saturation magnetostriction ms at the temperature of interest), and the strain E (we recall that

E(JC)=( Vu(x) + VTu(x))/2f where u(x) denotes the displacement of the point x of Q). We are

interested in minimizers of the free energy functional

Fh,s(m,E) = f(q>M(m(x\E(x)) -(jhm(x) + h) • m(jc)-S • E(x))dx ,
o

where h is a uniform applied magnetic field, S is a uniform stress applied at the boundary of Q, hm

is the demagnetizing field and 9>M(m9E) = p(m)+[E-Eo(m)].C[E-Eo(in)]/2 (here q> is the

magnetocrystalline anisotropy energy density, E0(m) is the spontaneous strain corresponding to m,

and C is the fourth order tensor of elastic moduli). We remark that the magnetoelastic energy term

in F M is obtained from more standard expressions (5) by elementary algebraic manipulation.

Moreover, our energy functional does not contain an exchange energy term: indeed, it arises as an

appropriate limit of the energy functional of micromagnetics, suitable for the study of sufficiently

large specimens (6). It is instructive to rewrite the energy F M in an equivalent form, which makes

more transparent the role of the applied stresses in the selection of minimum energy configurations.

For fixed h and S, the energy

GM(m,E) ss I(<pgM(m(x\E(x))~({hm(x) + h)-m(x))dx ,

*This choice allows us to compare our results with those derived from the qualitative model described in (1), and with
the computational results reported in (4): in both papers the authors consider a two-dimensional model.



where <pStM(m ,E ) « 9s(m)+[E-(Eo(m)+Es)]-C[E-(Eo(in)+Es)]/2, E g - C - ' S , and

9s(m)=9>(m)-S.E0(in), differs from FkS by a constant, and hence it leads to an equivalent

minimization problem. However, the expression of GhfS clearly shows that applying the prcstress

S affects the spontaneous strain corresponding to m, but it also effectively modifies the anisotropy

energy term.

In our calculations, we take a to be the two-dimensional domain shown in Fig. 1, and we

assume that m always lie in the plane of Q. The picture shows that Q consists of thin2 growth-

twinned parallel platelets, and the orientations of the crystallographic axes and of the magnetically

easy directions are shown in the inset for both the parent and the twin phase- With the exception of

the values for the saturation magnetostriction (we take Xioo-^in =L2xlO*3), we essentially take

for the material parameters the values reported in the experimental literature for Terfenol-D (7). The

applied field is parallel to the [112] direction, and the only non-zero component of S consists of a

compressive normal stress a along the same direction.

We close this section with a crucial observation, due to James and Kinderlehrer (8). Due to

the absence of the exchange energy, it may be energetically advantageous for our system to let the

size of the magnetoelastic domains shrink to zero. This is, for example, the case for h=0 and S*0,

and the inset in Fig. 1 shows schematically the corresponding magnetic domains (their width is

proportional to 1/k, with k a positive integer). As k tends to infinity, the energy tends to its

infimum Io,s, and there is no "classical" magnetization-deformation pair whose energy is exactly

Io,s* Thus energy minimization may lead to microstructures, i.e., infinitely refining minimizing

sequences (parametrized by the width of the domains) or, in a language reminiscent of N6el's

terminology (9), microscopic mixtures of magnetic phases. This is not surprising: GM captures the

limiting behavior of increasingly larger bodies. It is well known that, typically, as the size of a

specimen tends to infinity, the ratio between the size of the domains and the size of the specimen

tends to zero. Since in our approach this limiting process is observed by mapping the domain

patterns on a reference body of fixed size (6), infinite refinement occurs. For the purpose of

analyzing energy minimizing microstructures, a quantity of interest is the (limiting) local average

<m> corresponding to a given sequence of magnetizations {mk}, i.e., its weak limit. This is

obtained, at each point x of Q, by taking the average of m* over a ball of radius p centerd at JC,

then by letting k tend to infinity, and then p to zero. For a "classical" magnetization field m, which

can be identified with the trivial sequence {nik=m} identically, clearly <m>=m.

2In each platelet, we take the demagnetizing factors to be zero in the [ 112] direction, and one in the orthogonal
direction.



Energy minimizing microstructures

In the computation of energy minimizing microstructures, several issues need to be

addressed Here we will focus on the least technical of them, namely, the evaluation of the

anisotropy energy associated with an energetically optimal microstructure, which is also the most

relevant issue in assessing the influence of applies stresses on the magnetostrictive response.

Indeed, <ps is defined only on a sphere of radius m$, i.e., only for classical magnetizations.

Introducing the convexification <ps ̂  of q>S9 we can compute the lowest anisotropy energy density

attainable by a microstructure with a given local average magnetization. More precisely:

where X=1X* and, moreover u and Vj axe in the plane of ft (here we are using the fact that, in the

problem at hand, the restriction of <ps%tff to the plane of £1 coincides with the convexification of the

restriction of <ps to the same plane). Using the results of (3,6), we find that the local average

magnetization of energy minimizing microstructures satisfies the equation

where p is a Lagrange multiplier and h<m> is the demagnetizing field generated by <m> (note that

we needed to pass to a formulation in terms of microstructures in order to find a meaningful version

of the Euler-Lagrange equations of our problem). The equation above takes two different forms in

the parent and in the twin phase. However the solution in the twin phase is easily obtained from the

one in the parent phase by symmetry, and in what follows we will concentrate on the parent phase

only.

In Fig. 2 we have schematically shown the level curves of the function q>B ̂  of the parent

phase for several values of a. Moreover, for a * 0 and for G = 5 MPa, we have plotted the local

average magnetization in the parent phase for the energetically optimal microstructures

corresponding to field strengths in the interval [0,*©)# The magnetization curves, shown in Fig. 3

are immediately obtained from these plots by averaging the [112] component of <m> over the

whole specimen. Moreover, we can use the plots of Fig. 2 to reconstruct those features of the

xnicrostructures which are necessary for the computation of the magnetostriction curves. The points



on the circles represent saturated states, and for each of them the corresponding minimum energy

deformation is E=E0(m)+Es. The local average magnetizations whose representative points fall in

the interior of the circles correspond to nricrostructures. Using the level curves of <pSt# we can find

for each of them, say <m>, points on the circles, say mi, such that (lA)2^p s(
m i)-Ps t4r(< m >)»

and (lA)2^imi=<m>. Thus we can generate a microstructure with anisotropy energy density

<pStf(<m>) by constructing suitable arrangements of magnetic domains with magnetizations mi

and local volume fractions (asymptotically equal to) XJkt and by letting the size of these domains

tend to zero- In each domain, we take E=E0(mi)+Es, and we compute the magnetostriction curves

by taking averages of the [112] components of the strains over the whole specimen (Fig. 4).

In concluding this section, we briefly mention some of the more technical issues underlying

our analysis, which will be discussed elsewhere in more detail If no additional energy (either

demagnetizing or magnetoelastic contributions) arises from the presence of discontinuities of the

magnetization within each of the growth-twinned lamellae, then the procedure outlined above

correctly leads to the computation of the "minimizers" of Gkt$. In particular, we observe that in the

previous developments the magnetoelastic contribution is always zero, since we have taken

E(x)=E0(m(jc))+Es everywhere in the specimen. However this is admissible only if E0(m)

satisfies the kinematical compatibility conditions of linear elasticity. This is the case in our

problem3, precisely because we have assumed Xioo =Xin.

Discussion

We have presented a quantitative analysis of the effect of applied stresses on the macroscopic

response to applied magnetic fields of a growth-twinned magnetostnctive specimen. Our method is

based on a rigorous minimization procedure, and it is an attempt at bridging, at least partially, the

existing gap between theoretical predictions and experimental observations of the behavior of

Terfenol-D. Our ideal material shares many of the properties of Terfenol-D, and its response

exhibits marked similarities with the experimental observations reviewed in (1). However, the two-

dimensional character of our computed domain patterns, and the assumption Xioo s ^ n i lead to

magnetostriction curves in directions orthogonal to [112] in contrast with experimental observations

(11): the [ I I I ] curve for the loaded specimen is obtained from the [112] curve by a change of

sign. The conclusions we draw from our analysis are the following. Our material achieves strains

3We note that kinematic compatibility across die groth-twinned boudarics is satisfied asymptotically (10): we
construct transition layers whose width shrinks to zero when the width of die domains in the platelets tends to zero*
and whose energy contribution becomes negligible in the limit



comparable with those of a Terfenol-D rod, even though we take for Xm a comparatively small

value, in agreement with the belief that reducing the anisotropy of Terfenol-D would lead to

improved performance (12), Moreover, the sharp difference in the magnetostrictive response at low

and high levels of prestress is explained by a change of symmetry of the anisotropy energy <ps f4#.

The essentially cubic symmetry of the top two graphs in Fig. 2 degenerates into the essentially

uniaxial symmetry of the lower two as a increases. In fact, the magnetostriction curve for the

loaded specimen shown in Fig. 4 is typical of uniaxial specimens, when a field is applied along a

direction intermediate between the easy and the hard axis (2). Some preliminary calculations

suggest that assuming Xioo«Xm, as it is more realistic for Terfenol-D, and allowing for

genuinely three-dimensional domain patterns should lead to predictions in better agreement with the

experimental observations, although through more elaborate computations.
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Fig. 1. The geometry for our problem. In the insets, the magnetically easy axes and the
crystallophic directions for parent and twin phases, and a schematic representation of the magnetic
domain patterns corresponding to the optimal microstructures for h=0 and o*0. The width of the
domains is proportional to 1/k, and the representation becomes "exact" in the limit as k tends to
infinity.
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Fig. 2. A schematic representation of the level curves of (ps<t* in the parent phase, for several
values of the prestress. The dashed lines correspond, for eacn o\ to the minima of <pK^. Also
shown are the plots of the local average magnetization in the parent phase for a = 0 and 5 MPa, and
field strength in the interval [0,«>).
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Fig. 3. [112] virgin magnetization curves.
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Fig. 4. [112] virgin magnetostriction curves, and a schematic representation of the underlying
magnetic domain structures for a s S MPa
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