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1. Introduction

The name integral-gradient theorem has been introduced by Noll and Virga to

denote a special version of the Gauss-Green formula stated without proof in their

paper [3]. Their formula involves a class of domains which they call fit regions and

which they show to be appropriate for the description of regions in space occupied

when continuous bodies undergo classical deformations [1, Sect. 2].

In [1] we considered a larger class of deformations which includes such non-

classical deformations as the formation of macroscopic fractures, as well as the

occurrence of microscopic changes in structure that we call microfractures. Here

we prove for such deformations appropriate versions of the integral-gradient for-

mula. Technically, this requires us to relax the assumptions on the regularity

of the domain made in [3] in order to allow for the presence of finite unions of



fit regions, which we call piecewise fit regions. By contrast, we are obliged to

strengthen the regularity assumed in [3] for the integrands by requiring that their

restrictions to each of the fit regions forming their domains have Cl extensions to

the whole space.

Our proof is based on the fact that piecewise fit regions are sets with finite

perimeter and that, as proved in Section 3, the integrands considered are functions

of bounded variation. These facts allow us to make extensive use of the definitions

and results developed in [5], [6], starting from concepts in geometric measure

theory. Moreover, we take advantage of the additional regularity enjoyed by our

functions, and not by arbitrary functions of bounded variation, to prove a number

of useful results. Namely, we are able to prove that not only an inward trace is

defined area-almost everywhere on the essential boundary of the domain, but also

that the inward trace is area-summable there. Moreover, when dealing with the

generalization from scalar-valued to vector-valued functions, we prove that the set

of all jump points of each element of our class of vector-valued functions not only

is included in the union of the set of jump points of the components, but also is

area-equivalent to it.

These developments are carried out in Section 3, whose final result is an

integral-gradient formula for piecewise fit regions and for vector*valued functions

with the regularity mentioned above. In Section 4 we first show that this formula

applies directly to the class of simple deformations defined in [1]. We then con-

sider limits of simple deformations and prove a regularity property of the trace

beyond the properties of limits of simple deformations established in [1]. Among



other things, we proved there that, if (K>g,G) is the limit, in the sense of [1, Def.

4.1], of a sequence n •—• (*n,/n) of simple deformations from the piecewise fit

region «4, then $, the X°°-limit of the sequence n •—• / n , has a representative g0

which is continuous on A. Here, we prove that go has an inward trace g$ on the

essential boundary of A which is summable there, and that g$ is the L°°-limit of

the sequence n •—• / + of the inward traces of the functions / n .

This result enables us to establish an integral-gradient formula, equation (4.19),

for limits of simple deformations. We then turn to the class of structured defor-

mations, whose study was the main object of the paper [1]. Each structured

deformation is a triple (*,£,(?), in which {*>,g) is a simple deformation and G

is a tensor field whose properties, as proved in the Approximation Theorem in

[1, Sect. 5], are sufficient to ensure that (/c,p,G) can be identified with a limit

of simple deformations. By repeating the procedure used in [1, Sect. 6] for the

fundamental formula of calculus, in Section 4 of the present paper we compare

the integral-gradient formula for (K,g}G) as a limit of simple deformations with

that for (*,£) as a simple deformation and obtain formula (4.20) for structured

deformations. In Section 5, we give interpretations for the integrals appearing

in the formulae (4.19) and (4.20), and we find that the total deformation due to

microfracture admits the tensor field Vg — G as a volume density. This extends

our earlier result [1, Sect. €] which established Vg—G as a density of deformation

due to microfracture along straight lines.



2. Notation and preliminaries

We denote by S a finite-dimensional Euclidean point space. The associated inner

product space is denoted by V, and LinV denotes the set of all linear mappings

of V into itself. Both V and LinV are made into normed spaces with the norms

\v\ := (t; • t;)*, \H\ := sup J^fl, t; € V, H € LinV. (2.1)

If TV is the dimension of £, we denote by V and A the TV-dimensional Lebesgue

measure and the (N — l)-dimensional Hausdorff measure on £, and we call them

the volume measure and the area measure, respectively. If A and B are subsets

of £, the notations

A*B, A&B, (2.2)

mean that A differs from B by a set of volume zero and by a set of area zero,

respectively. By intA, doA, bdyA we denote the interior, the closure, and the

boundary of ,4, respectively, and by B(x, 6) we denote the open ball of 5, centered

at x and of radius 6.

We now recall some measure-theoretic concepts, for which we refer to [6]. Let

x be a point of 5, and let A be a subset of £. Consider the limit

V{B(x,6)C\A)
fcS V(B(x,6)) ' (2'3)

We say that x is a point of density for A if the above limit exists and is 1, a

point of rarefaction if the above limit exists and is zero, and that x belongs to the

essential boundary of A in any other case, [6, Sect. 4.4.1]. It is dear that the



three sets just defined, which we denote by dens A, rarA, eby A, respectively, are

pairwise disjoint and form a partition of S.

Let v be a unit vector in V. Consider the closed hemiball

«(*, 6, u) := {y € S | y € do 5(x, 6), (y - x). v < 0}. (2.4)

We say that v is an outward normal to A at x if

^ 7 y ' y 0. (2.5)

An outward normal, if it exists, is unique [6, Sect. 4.5.2]. The set of all points of S

for which an outward normal to A exists is called the reduced boundary of A and

will be denoted here by rby A. It follows from equations (2.5) that, if x € rby A>

then the limit (2.3) exists and equals 1/2, and therefore x belongs to ebyA. Thus,

rby AC eby A. (2.6)

We now consider properties of real-valued functions defined on €. We say that

the real number d is the approximate limit of u : £ —• R at the point x of £, and

write

<f=lim«(y) (2.7)

if, for each e > 0,

[2, Sect. 1.7.2], i.e., if x is a density point for the set {y € £ 11 u(y) -d\<t)



[6, Sect. 4.4.2]. If A is a subset of £, the definition of the approximate limit ofu

at x relative to A

is obtained from the condition (2.8) with B(x,6) replaced by AnB(x,6) [6, Sect.

4.4.2]. Let a be a unit vector in V, and denote by IIo(x) the half-space

{y € S | (y — x) • a > 0}, and by ua(x) the approximate limit

uQ(x):= lim u(y). (2.10)

We say that x is a regular point for u if there exists a unit vector a such that

the approximate limits tia(x) and tx.a(x) exist. If the two limits are equal, their

common value is the approximate limit of u at x, and x is said to be a potnf of

approximate continuity for u. If the two limits are not equal, then a and —a are

the only unit vectors for which the approximate limits in (2.10) exist, x is said to

be a jump point for u, and a and —a are called the determining vectors at x. For

each jump point x with determining vectors a and —a, the vector

Ju(x) := (Ua(x) - ti .a(x))a (2.11)

is called the directed jump of u at x [6, Sect. 4.5*4]. It is clear that Ju (x) does

not change if a is replaced by —a; thus, the vector Ju (x) is defined unambigu-

ously. We extend the definition of directed jump of u to points x of approximate

continuity of u by setting Ju(x) = 0 at those points.

Let A be a measurable subset of £, and let x be a point in the essential



boundary of A. If the approximate limits

«+(*):= lim «(y), «"(*):= l i m u { y ) (2.12)

exist, they are called the inward tract and the outward tract of u at z, respectively.

It can be proved that, if the outward normal v to A exists at z, then the inward

trace exists if and only if the approximate limit u_*,(x) defined by (2.10) exists

and that, in this case, u+(x) = u_,,(x). The same property and the equality

u~(x) = Uft,(x), hold for the outward trace [6, Sect. 5.1.2].

Let A be an open subset of £, and let u : A —• R be given. We say that u is

a function of bounded variation, if u is summable on A and if the distributional

derivative Du of w is a measure [6, Sect. 9.3.1]. The last requirement is met if

and only if

suplju{x)div<p(x)dVx\<peC?(A,V)y |*>(s)|<l Vx€-4><+oo (2.13)

[2, Sect. 5.1]. A bounded measurable set A is called a set with finite perimeter if

the distributional derivative of its characteristic function xA : € —• R is a measure

[6, Sect. 4.2.1]. It can be proved that, if A is a set with finite perimeter, then the

measure D\A is concentrated on eby A [6, Sect. 5.1.1] and eby A is area-equivalent

to the reduced boundary of A [5, Sect. 4]:

eby A 4 rby A. (2.14)



We will use the notation BV(A) to denote the set of all functions u : A —> R

which are functions of bounded variation, and we will use the symbol BV for

BV(E). We list below some properties of the functions belonging to the space BV

which are relevant to our purposes.

(BV1) If u € BV (indeed, if u is summable [6, Sect. 4.4.4]), the points which are

not points of approximate continuity for u form a set of volume zero.

(BV2) If u € £V, the points which are not regular points for u form a set of area

zero [6, Sect. 4.5.5].

(BV3) If u € BV% then for every set with finite perimeter A the inward and the

outward trace of u exist X-almost everywhere on thy A [6, Sect. 5.1.2].

(BV4) If u € BVy if A is bounded and with finite perimeter, and if the inward

trace u+ is summable on thy .4, then

j Du= j u¥{x)v{x)dAx, (2.15)
dens A ebyA

where Du is the distributional derivative of u and i/(x) is the outward normal to

ebyAttx [6, Sect. 5.1.4].

(BV5) Let u € BV and let A be a bounded set with finite perimeter. Then for

every X-measurable subset B of eby A,

j Du =j KwOr) - u^x){x))v(x)dAx =j Ju(x) dAx (2.16)
B B . B

[6, Sect. 5.1.4].
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(BV6) For every u £ BV and for every set B of area zero,

/ Du = 0 (2.17)
B

(6, Sect. 4.5.5].

(BV7) If u is a C1 function on E with bounded support, then u £ BV

[3, Sect. 2].

(BV8) If h and u are in BV, are bounded and have bounded support, then the

product hu is in £V, is bounded and has bounded support [3, Sect. 3].

We conclude our preliminaries by recalling that a fit region is a subset A of €

satisfying the following properties [3]:

(i) A is bounded,

(ii) intdoA = A,

(iii) A is a set with finite perimeter,

(iv) V(bdyA) = 0,

and that & piecewise fit region is & finite union of fit regions [1].

3. An integral-gradient theorem for a class of piecewise Cl

functions

In this section we prove a result that is a starting point for establishing an integral-

gradient theorem for structured deformations. We begin by defining a class of

9



piecewise C1 functions which satisfies the assumptions of the statement (BV4) in

the preceding section.

Lemma S.I. Let A be a piecewise £t region, and letviA—tRbeaC1 function

satisfying the following requirement: there is a finite cover {Aj | j € {1, ..J}} of

A consisting of fit regions, such that the restriction V\AJ ofv to each Aj has a Cl

extension to £. Then the function u : E —> R defined by

= f v(x) ifxeA
1 0 ifxi

is a function of bounded variation. Moreover, u has an inward trace on the

essential boundary of A which is A-summable there.

Proof. First of all, we observe that there is no loss in generality in assiuning that

the C1 extension of each V\AJ to € h&s compact support. Indeed, if it is not so,

it is sufficient to multiply the given extension by a real-valued Cl function with

compact support which takes the value 1 in do A to get a C1 extension with

compact support. Denote this extension by Uj. Consider next the sets £,-, defined

recursively by

C*m Au Cj := Aj\ tf Cp, j € {2,... J } . (3.2)

They form a partition of Ay and each Cj is included in the corresponding region

Aj. Moreover, each Cj is a set with finite perimeter and the interior of each Cj is
i i

a fit region. This can be proved by observing that (3.2) implies ( J ( ^ =

10



for all j , and, therefore,

intCj wtt intiAAA,), (3.4)

and

and by recalling that the interior of the difference of two fit regions is a fit region

and that the intersection of fit regions is a fit region [3, Sect. 5]. Cj is a set with

finite perimeter because it differs by a set of volume zero from intCj, which is a

fit region and, therefore, a set with finite perimeter.

If we denote by \j the characteristic function of Cj, we see that the function

ti: £ —• R defined by

u(x) := £ UJ(X)XS(*) (3.5)

coincides with the function u defined in (3.1). Each function Uj is of class Cl

with boimded support, and therefore, by (BV7)> belongs to the space BV. The

same holds for the function Xh because the characteristic function of a set with

finite perimeter belongs to BV. In view of (BV8), we deduce that each product

XjUj belongs to BV, and, therefore, the sum of these products, i.e., the function

ti, belongs to BV as well.

We now use (BVZ) and the fact that a piecewise fit region is a set with finite

perimeter to deduce that u has an inward trace ti+ j4-almost everywhere on eby A.

To prove that u+ is summable on eby A, we will show that each term Uj\j of the

sum in (3.5) has an inward trace with respect to A that is summable on eby A.

11



Because u, : £ -+ R is of class C1, it has a limit at every point of ebyA equal

to the value of u at that point, and we conclude that the inward trace uf with

respect to A equals Uj\ebyA * Moreover, uf is bounded and measurable, because

fj \doA is bounded and Uj is continuous. We next wish to verify that, for A-almost

every x in eby Ay

1 if x€ebyAC\ebyCj
(3.6)

0 if x£ebyA\ebyCj.

(

[
Equivalently, we wish to show that for j4-almost every x in eby A.

Xj{X) = XebyCjnehAi*)- (3.7)

To this end, we first note that a lemma of Volpert [5, Sect. 2.5] implies that, for

i^jy the set eby & 0 eby Cj O eby A has area zero. Therefore, for A-almost every

x € eby «4, there exists only one j(x) € {1, • • •, J} such that x € eby C,(x) D eby A.

The same lemma also implies that the outward normal Pj(x)(x) to C,(x) at x and

the outward normal v{x) to A at x agree for almost every x in eby A. Therefore,

for j4-almost every x in eby A^

1 if ; = i ( x )
lim

This relation implies the desired relations (3.6) and (3.7). Relation (3.7) tells us

immediately that xf ls measurable, because ebyCj D eby A is an A-measurable

subset of eby A. Therefore, we have

) (3.9)

12



for yl-almost every x in eby A> which shows that (UJXJ)+ is bounded and measur-

able. Because A(ebyA) < +00, it follows that (tijXj)* is summabld

We are now ready to state the integral-gradient theorem for the piecewise C1

functions v which form the object of the preceding lemma.

Theorem 3*2. Let A be a piecewise fit region, and let v : A —> R be a function

satisfying the assumptions of Lemma 3.1. Denote by T(v) the set of all jump

points ofv and by Vv the gradient ofv. Then Vv is V-summabie on A, and

JVv{x)dVx = - J Jv(x)dAx + j v+{x)p(x)dAx. (3.10)
A T(v) Thy A

Proof. We have just proved that the function u defined by (3.1) satisfies the

requirements made in (BV4)y so that equation (2.15) holds for u. We now claim

that

J u+(x)v{x)dAx = j v+(x)v(x)dAx. (3.11)
thy A rbyA

Indeed, because u and v agree in A, the inward trace of v on eby A exists and

coincides with that of u. The equality (3.11) then follows from the fact that,

by (2.14), rbyA differs from eby A by a set of area-measure zero. Comparison

between (2.15) and (3.10) then shows that what remains to be proved is

J Du =JVv{x)dVg+ J Jv(x)dAx. (3.12)
densA A I»

To prove this, we invoke again the lemma from [5, Sect. 2.5] which tells us that,

for the finite partition {C, | j € {1,..., J}} of A defined by (3.2),

dens A « ^U densCj) U (J^ T*), (3.13)

13



where

Tu := rby Ck C\rlyCt\ (3.14)

moreover, all the sets appearing in the right member of Eq. (3.13) are disjoint.

Thus, by (BV6) and by the additivity of the measure Du,

J t J

I
t J t J r

We claim that

/ Du = [Vv(x)dVs, (3.16)

and that
J . t

I Du = I Jv(x)dAx. (3.17)

To prove our first claim, we use formula (3.2) in [6, Sect. 5.1.3] to write, for each

+ XhDuh, (3.18)

where a superimposed bar denotes the average value as defined in [6, Sect. 4.5.6].

Let us evaluate the measure D(uhXh) *t the set densCj, for a fixed j € {1,..., J } .

The fact that the distributional derivative of a characteristic function is concen-

trated at the essential boundary, together with the fact that eby Ch H densCj = 0

for all sets Cj,Ch in the partition (3.2), tells us that D\h evaluated at densCj is

zero for all h. It is also true that, for all x €

{ (3.19)
0

14



so that, from (3.18),

t J r

] Z^KXfc)^ j DUJ. (3.20)
densCj *** densCj

Consequently, by (3.5),

j Du= j Dtij= J Vuj(x)dVx, (3.21)
densCj densCj densCj

the last step coming from the fact that Uj is of class C \ and, therefore, its distri-

butional derivative is absolutely continuous with respect to volume. We can now

use the fact that intCj is a fit region, and, therefore, that intCj » cloCj, to assert

that dens Cj « intCj. Moreover, by (3.1) and (3.5), the equality Uj{x) = v(x)

holds for all x € intCj, and this yields the desired equality (3.16).

To prove the remaining equality (3.17), we observe that each set Tkt is A-

measurable. Indeed, for each region Cj the essential boundary is yl-measurable, be-

cause Cj is a set with finite perimeter, and the reduced boundary is ^-measurable,

because it differs from ebyCj by a set of area zero. Therefore, by (3.14), Tkt is

the intersection of A-measurable sets and therefore it is ^-measurable. We can

invoke the formula (2.16) to assert that

J Du =J Ju(x)dA9 =J Jv(x)dAXJ (3.22)

where in the last step we take advantage of the fact that the inward traces of u

and v relative to each of the sets Cj coincide. It remains to prove that, to within

sets of area zero, the set F(t;) of all jump points of t; is included in the union of

the sets Tkt and is A-measurable. The first assertion rests on the observation that,

15



by its very definition, a jump point for v is a density point for its domain A and

that, because t; is continuous in each fit region intCj, no density point of Cj can

be a jump point for u. Thus, relation (3.13) tells us that, to within a set of area

zero, the set T(u) is included in the union of the sets F*/. The immeasurability of

T(v) follows from the relation T(v) = T(u)\eby A\ indeed, eby A is immeasurable

because A is a set with finite perimeter, and T(u) is ^-measurable because it is

the set of jump points of a function in BV [6, Sect. 5.1.6]. •

We now wish to establish a version of the integral-gradient formula (3.10) for

vector-valued functions u : A —* W, where U is a finite-dimensional inner product

space. First of all we note that the definition of approximate limit, given by

relations (2.7), (2.8) and (2.10), can be extended to vector-valued functions u,

with the only change that the symbol | • | in (2.8) now denotes the norm in U

instead of the absolute value. The same observation applies to the concepts of

a point of approximate continuity of u, a jump point for u, and traces of u. By

contrast, we modify the definition (2.11) of directed jump at a jump point x as

follows:

Ju{x) := (ua(x) - u-a(x)) ® a. (3.23)

We collect together some properties of vector-valued functions in the following

proposition.

Proposition 3.3. Let U an n-dimensionaJ inner product space, A and C subsets

of£, x € Af and u : A —• U be given. For each ortbonormal basis {cf |

i € {!,•••*n}} oftt, let u,, t € {!,•••>"}* denote the components ofu. Then:

16



(i) u has an approximate limit relative toCatx if and only if for all

i € {l,...,n},Ui has an approximate limit relative to C at x.

(ii) u has an inward trace u+(x) [outward trace u~(x)] at a point x € eby C

if and only if, for all i € {l,.. . ,n}, txt has an inward trace u?(x) [outward

trace tit~(x)] at x; in this case,

ut(x)e\ (3.24)
•si

«-(*) = £ «r(*y, (3.25)
•si

(111) x is a jump point ofu with determining vectors {a,—a} if and only ifxis

a regular point for every component ofu,xisa jump point for at least one

component ofu, and all components ofu having x as a jump point have the

same pair {a, —a} as determining vectors at x.

(iv) If x is a jump point ofu, then the directed jump Ju defined in (3.23) and

the directed jumps Jut of the components ofu, as defined in (2.11), satisfy

n

•M*)=]£ ef® Ju,(x). (3.26)

Proof. Item (i) follows immediately from the definitions of approximate limits

for u and ut- and from the inequalities |ut| < \u\ <T |ut|, and item (ii) follows
•si

from the definition of approximate limit relative to C. To verify item (iii), we

assume first that x is a jump point for u with determining vectors {a, —a}. Then

the approximate limits limits uQ{x) and u_a(x) both exist but are not equal. It

17



follows from item (i) that, for all s € { l r . . ,n} , the approximate limits (ut)a(x)

and (ui)_o(x) both exist, so that x is a regular point for every component of u.

Moreover, because ua{x) ^ u-*(x), we have (ut)a(x) ^ (ut)_a(x) for at least

one i € {l,.. . ,n}. For every t € {l,...,n} at which (ut)a(x) = (ut)_o(x), ut-

is approximately continuous at x. This verifies the "only i f part of item (iii).

To prove the "if part it suffices to observe that the three conditions on the

components of u specified in item (iii) imply that there is a single pair of unit

vectors {a, —a} for which the one-sided approximate limits (u,)(x) and (u,)_a(x)

exist for all s € {l,.. . ,n}. By item (i), uQ(x) and u_a(x) both exist. However,

because there is at least one component of u that has a jump point at x9 it follows

that {a,—a) is the only pair of vectors for which both uQ(x) and u_o(x) exist.

Thus, xi has a jump point at x. This completes the proof of item (iii).

Lastly, to prove item (iv), we assume that x is a jump point for u and use the

definition (3.23) to write

Ju(x) = (ua(x) - u_a(x)) ® a

= t (M*) • e*)e* - («-«(*) • «V) ® <*
•si

(3.27)

a.

The last equality above follows from the relation

18



which is valid whenever u has an approximate limit with respect to C at x. Rela-

tions (3.27) and (2.11) immediately yield (3.26).•

Item (iii) of Proposition 3.3 provides the following relation between F(u), the

set of jump points of u, and {r(u,)|t € {1,..., ^}}, the sets of jump points of the

components of u:

T(u) C U TK). (3.29)

Again, according to item (iii), in order that a point x € S satisfy

x € U r(u t)\F(ti), it must be either that x is not a regular point for at least one
•sl

component of u or that there are at least two components of u having jump points

at x with different pairs of determining vectors. We prove below that Q F(ut)
•sl

and T(u) are area-equivalent.

Proposition 3.4. Let A be a piecewise fit region, and let u : A —• U be a

vector-valued function satisfying the following requirement: there is a finite cover

{Aj J j € {1,..., J}} consisting of fit regions such that, for each j € {1,..., J} , tie

restriction u\^ ofu to Aj has a Cl extension to €. Moreover, let an orthonormal

basis {c*ji € {I,—,**}} of U be given. The jump sets F(u) and r(u,), t €

{l, . . . ,n}, then satisfy not only (3.29), but also

T(u) 4 (J T(ut) (3.30)
•sl

Proof. For each u , : A —• R, we have from Lemma 3.1 that the function

m(x) for x € A
(3.31)

0 for x € €\A

19
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is of bounded variation. By (BV2), the set of points of € which axe not regular

points of u? form a set of area zero. Because the points in dens A that are not

regular points for ut* also are not regular points for u*, it follows that the set 5 t

of points of dens A that are not regular points of u» has area zero. Consequently,
n
U Si has area zero. The observation following the proof of Proposition 3.3 tells

•si

us that (3.30) is satisfied if the set

{ there are at least two components 1
x € dens A of u having jump points at x with > (3.32)

different pairs of determining vectors J

has area zero. In order to verify that V has zero area, we consider the partition

{Cj \j € {l , . . . ,«0} °f ^ obtained as in (3.2) with the scalar-valued function t;

there replaced by the given vector-valued function u, and we again use the lemma

[5, Sect. 2.5] cited prior to (3.13) to write
A J J

dens A « | J densCj U |J T*/, (3.33)

with Tkt given by (3.14). Moreover, according to the same lemma, at all points

x0 in Tki the outward normals P*(XO) and *v(x0) to C* and Ct satisfy

%(«*) +%(*o)«0. (3.34)

We observe that, at each density point of C,-, u is approximately continuous,

because ti|tnjc, extends to 5 as a C1 function. Therefore, no component of u

can have a jump point in U densCj. Consequently, the intersection of V and

U densCj is empty. To complete the proof, we only need to prove that the
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intersection of V and U Tkt is also empty, i.e., that

J
U (r^nD) = 0. (3.35)

Moreover, the fact that each Tut is a subset of the reduced boundaries of both

Ck and d and the fact that u\ck and u\ct each extend to € as a C1 function

imply that each component ut of u has approximate limits with respect to both

Ck and Ct at every point in Tkt> Therefore, (3.34) permits us to conclude that every

point xo in Tki is a regular point for each component u«, and {i/±(z0), vt{xo)} =

{^(^o)>—^(^o)} is a pair of determining vectors for each u,-. Consequently, all

components of u share a pair of determining vectors at x0, and this implies that

V and Tiu are disjoint. •

R e m a r k 3.5. By ^ i n g the f&ct that, iftiie BV, then the set F(u t) is a set of

the class T as defined in [6, Sect. 5.J.5], one can prove that the relation (3.30)

holds for all mappings u:E -*U whose components are in BV [4].

We are now in a position to extend Theorem 3.2 to vector*valued functions.

Theorem 3.6. Let A be a piecewise fit region, and let u : A —>U be a vector-

valued function satisfying the smoothness condition in Proposition 3.4. Then

=-Jju(x)dAx+ J u+{x)®p{x)dAx. (3.36)
T(u) rbyA
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Proof. We choose an orthonormaJ basis {c*\i € {l, . . . ,n}} of U and note that

each component u, = u • e' of u satisfies the hypothesis of Theorem 3.2. Writing

(3.10) for each u,-, taking the tensor product with e\ and summing the resulting

equations, we obtain:

(3.37)

By (3.30), we have

r(«*») C j j T(UJ) & I\u), (3.38)

and we note that yt-almost every point of r(u)\r(u t) is a point of approximate

continuity for u,. Therefore, Ju{(x) = 0 for j4-almost every x in r(u)\F(ut). Thus,

T(ui) can be replaced by T(u) in (3.37), and (3.36) follows from (3.26) and the

relations

~ )> (3.39)
tsl

tssl

4. Integral-gradient formulae for structured deformations

Integral-gradient formulae appropriate for the classes of deformations introduced

in [1] can be deduced easily from Theorem 3.6. Here we consider the classes of
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deformations Sid, LirnSid, Std defined in [lj, and for each of them we write the

appropriate integral-gradient formula.

According to Definition 3.2 in [1], a simple deformation from a piecewise fit

region A is a pair (*,/), where K is a subset of A of volume zero such that

A\K is a piecewise fit region, and / , the transplacement associated with the given

simple deformation, is a Cl mapping of A\K into € which, among others, has the

following property: there is at least one finite cover of A\K by fit regions Aj such

that the restriction of / to each Aj has a C1 extension to €.

For the point-valued mapping / : A\K —• £, one can define approximate limits,

traces and the directed jump as done for vector-valued functions. If we choose a

fixed arbitrary point o of S and define u : A\K —• V by

«(*) := /(») - o, (4.1)

we can relate the gradient, the inward trace and the directed jump of / with those

of u by

V/(x) = Vu(ar), /+(*) = o +«+(*), Jf(x) = Ju(x). (4.2)

For a simple deformation {*, / ) , tt satisfies the assumptions of Theorem 3.6, and

therefore Eq. (3.36) holds. Note that the fact that K has volume zero implies

A « A\K and rbyA = rby(A\K), so that Eq. (3.36) can be written with A

instead of A\K. This equation, together with relations (4.2), yields

s + J (/+(*) - o) ® v{x)dAx. (4.3)
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This is the integral-gradient formula for simple deformations. Note that the last

integral in the formula is independent of the choice of the point o.

Let A be a piecewise fit region of S. According to [1, Def. 4.1], a limit of

simple deformations from A is a triple (#c,£,G) with K C *4, g € L°°(A,€), G €

L°°(AyLinV)y for which there is a sequence n «-• (/cn,/n) of simple deformations

from «4, called a determining sequence for (*,£,C7), such that:

oo oo

K SB liminf /cn = M f | *cn, (4.4)

\ (4.5)

Urn \\G - Vfn\\L~(AJAnV) « 0. (4.6)

It can be proved [1, Theorem 4.10] that K has volume zero and that g and G

have representatives <7o,Go which are continuous in A\K. Moreover ([1, Lemma

4.11]), n*-> fn and n *-+ V / n converge to go and Go uniformly, in the sense that

for every e > 0 there is an nc € N such that, for all n > ne,

sup |/n(*)-*o(*)|<e, (4.7)
\ ( )

*)-Go(*) |<e. (4.8)

We now prove an analogous property of uniform convergence for the inward traces

of the functions fn on the essential boundary of A.

The proof of Theorem 3.6 shows that each of the functions

un(z) := /n(s) — ° has an inward trace u+ defined j4-almost everywhere and

Bummable on eby (A\Kn) = eby A. By (4.2), the same holds for / + , the inward
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trace of /n . We denote by Tn the domain of /+, i.e. the set of all points x € eby A

at which the trace f£(x) is d<

We also denote by To the set

at which the trace /+(x) is defined, and we observe that Fn&tbyA by (BV3).

To := 0 *>, (4.9)

which also is a subset of thy A with full area measure.

Theorem 4.1. Let A be a piecewise fit region and Jet n •-* (*n» /n) be a sequence

of simple deformations from A. Assume that the sequence n n / n has a uniform

limit go : A\K —* E in the sense of relation (4.7), with K given by (4.4). Then the

sequence n *-* f+ of the inward traces of the functions /„ on eby A has a uniform

limit defined over the set To defined in (4.9). Moreover, this limit is summable in

eby A and is the inward trace of go on eby A.

Proof. Let c > 0, n € N, x € Tn be given. For every S > 0, define

Vt(n, x, 6) := {y € B(«, 6) n «4\(«n U K) \ |/+(x) - /n(y)| < e } . (4.10)

It is clear from the definitions of approximate limit and of trace given in Section

2 that

Now let * € To and m,n € N be such that rn,n > ne, where nc € N is such

that the inequality (4.7) holds for all n > nc. We also choose S such that the set

Z>c(m,z,£) n 2>c(n,x,£) has positive volume; in view of (4.11)9 this can be done
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by choosing S such that

min { V(P«(m, *, S))t V(Pt(n, x, 6))} > ±V(A n B(x, 6)). (4.12)

We then choose y € 2>t(m,x,^) n Z>((n,z,6) and consider the inequality

- go(y)\
(4.13)

+ My) -/»(y)l + l/»(y) -/+(*)!

which, by (4.10) and the property (4.7) of uniform convergence o f n M /n(y)>

allows us to write

^o. (4.14)

This implies that for every x € T* the sequence n •-• /+(x) is a Cauchy sequence

and, therefore, converges to a point which we call fo(x). In this manner, we have

constructed a mapping fo: fo—> £ such that the sequence n H-> / + of the inward

traces converges pointwise to /0 . Moreover, the inequality (4.14) tells us that the

convergence is uniform on To, because ne does not depend upon the point x in

To* Finally, /o is summable because it is the L°°-limit of a sequence of summable

functions. It remains to prove that /o is the trace on eby A of the limit go of the

sequence n *-+ fn. First of all we note that the uniform convergence of n •-• / + to

/o on To implies that for every e > 0 there is an n[ € N such that n>n't implies

\f+(x) - / 0 (x) | < e Vx € To. (4.15)
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For a fixed c > 0, we then choose x € To and n > max {n«, n'€]. We also let S > 0

be given and choose y € Vt{n,x,6), to get the inequality

\f*(x) - /n(y)| + |/n(y) - »(v) | . (4.16)

In the right-hand side, we have \fo(x) - /+(x)| < e by (4.15), |/w(y) - #>(y)| < e

by (4.7), and |/+(x) - /n(y)| < c by (4.10). We then conclude that

l / o (* ) -* (* ) !<& V x € ^ o , V»€P.(n,» f«), (4-17)

and we deduce from (4.11) that the set T>t(n,x,6) is sufficiently large to ensure

that fo(x) is the inward trace of g0 at x.t

It is now easy to obtain an integral-gradient formula for limits of simple defor-

mations. Indeed, if n i-» («„,/„) is a determining sequence for the limit of simple

deformations (*,£, G), writing the integral-gradient formula (4.3) for each («„, /„)

] Vfn(x)dVx m - J Jfn(x)dAs + J U*(s) - o) ® u{x)dAs, (4.18)
* T{Jn) rh»A

in the limit as n —» oo we obtain from Eqs. (4.6) and (4.15)

J G{x)dV. = - Hm J Jfn(x)dAs + J (g+(x) - o) ® u{x)dA,. (4.19)
* T ( ) rt4

Note that, whereas the limits of the first and third integral in (4.18) take an

explicit expression in terms of the limiting fields G and g^, the same does not

occur for the second integral. Nevertheless, Eq. (4.19) tells us that the limit of

the second integral exists and is determined by the two remaining integrals in

(4.19).
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In [1, Sect. 5], a structured deformation from a piecewise fit region A has

been defined to be a triple (*,£,(?), in which (*, y) is a simple deformation from

A and G is a tensor field defined on A\K and subject to appropriate regularity

assumptions. The Approximation Theorem, also proved in [1, Sect. 5], shows that

every structured deformation is a limit of simple deformations. Consequently, for

a structured deformation both formula (4.3) for simple deformations and formula

(4.19) for limits of simple deformations hold. Subtracting (4.19) from (4.3), with

/ replaced there by <7, leads to the equation

J(Vg(x)-G(x))dV, = - f Jg(x)dAx + Jim j Jfn(x)dAx. (4.20)

5. Applications to continua undergoing fracture

In this section we review our earlier interpretation [1] of simple deformations,

limits of simple deformations, and structured deformations as mathematical ob-

jects that describe geometrical changes in a continuous body undergoing macro-

scopic fracture (macrofracture) and microscopic fracture (microfracture). The

integral-gradient formulae of Section 4 then permit us to identify measures of to-

tal deformation due to fracture, total deformation due to microfracture, and total

deformation due to macrofracture, as well as a volumetric density of deformation

due to microfracture.

We consider in a three-dimensional Euclidean space a continuous body that

occupies a given piecewbe fit region A. The points of (int doA)\A are viewed

as pre-existing crack sites or unopened cracks. Each simple deformation (*, / )
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from A is viewed as introducing new cracks in the body at the points of K and

then moving each material point x in A\K to the point fix) in f{A\n). The set

of jump points T(f) is included in ic U ({int doA)\A), the points on the new and

on the pre-existing crack sites. At a point x in F(/), the determining vectors

{f(x), — v(x)} distinguish the two sides of the crack, and f^){x) — /-*(*)(*) gives

the displacement of points near x on the +i/(x)-side of the crack, relative to points

near x on the — i/(x)-side of the crack. Of course, there is no reason to choose as

the reference for measuring displacements one side (here — v{x)) over the other.

The tensor Jf(x) = (/*(*)(*) — /-*<*)00) ® Kx) keeps track of the relative dis-

placement without the necessity of making a choice of one side of the crack site

over the other, and we call Jf(x) the tensor of deformation due to macrofracture

at the point x in T(f). The area integral / Jf(x)dAx then represents a net
r(/)

or total deformation in A due to macrofracture for the simple deformation (*, / )

from A. At a point x in A\K, f is differentiate, no fracture occurs, and we call

V/(x) the macroscopic deformation at x. Similarly, we call / V/(x)<fVi the total

macroscopic deformation in A. The integral-gradient formula for simple defor-

mations (4.3) can be interpreted as follows: for a simple deformation, the total

macroscopic deformation of A plus the total deformation in A due to macrofrac-

ture is determined by the displacements of the boundary of A.

Next we consider a limit of simple deformations (#c, g, G) along with a determin-

ing sequence of n •-* (**, fn) of simple deformations. Because G = lim V/n and

measures deformation away from sites of fracture, we have called G the tensor
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of deformation without fracture, [1, Sect. 6], and we here call / G(z)dVx the total

deformation in A without fracture. Similarly, we call the limit lim / Jfn(x)dAx

the total deformation in A due to fracture. The integral-gradient formula (4.19)

for limits of simple deformations then admits the interpretation: for a limit of

simple deformations the total deformation in A without fracture plus the total

deformation in A due to fracture is determined by the displacements of the bound-

ary of A.

For a structured deformation (*,£,G), not only is (*,£) a simple deformation

but also (*, <7, G) can be regarded as a limit of simple deformations. The integral-

gradient formula (4.20) results from subtracting the two corresponding versions,

one for simple deformations and one for limits of simple deformations. In par-

ticular, the displacements on the boundary of A do not appear in (4.20). The

right-hand side of (4.20) is the total deformation in A due to fracture minus the

total deformation in A due to macrofracture; therefore, we interpret the difference

lim / Jfn(x)dAx- I Jg(x)dAx

r(/n) ru)

as the total deformation in A due to microfracture. Relation (4.20) now yields

the result: the total deformation in A due to microfracture has a volume density

which is given by the tensor M :=Vg — G.

In [1], we have called M the Burgers microfracture tensor, and we showed

there that M is a density of deformation due to microfracture along lines. The

present analysis extends the interpretation of M from a one-dimensional density

to a three-dimensional density.
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