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1. INTRODUCTION
Crystal surfaces are often endowed with energies whose dependence on orien-

tation n (outward unit normal) displays "low energy cusps11 at a finite set JL of
orientations;1 such energies lead to crystal shapes that are fully faceted, the
orientations of the facets being the orientations ncTL. A possible model2 for the
planar evolution of such crystals is based on an evolution equation relating the
normal velocity V,(t) and crystalline curvature

Kj(t) « X.UM'1 (1.1)

of each facet Tit where Lj(t) is the length of Fj, while Xx has constant value -1 ,
+1, or 0 according as the crystal is strictly convex, strictly concave, or neither
near F^ this evolution equation has the form

p(nj)Vi(t) « KnPKid) - U. (1.2)

where ^(nl)>0, the kinetic modulus, and t(nj)>0, the Wulff modulus,3 depend
only on the (fixed) orientation rijCTl of Fi9 and where U is the constant bulk energy

*Sl is the set of orientations that appear on the Wulff crystal (the unique crystal that
minimizes total surface energy at fixed enclosed area (in the plane)).
2Proposed independently by Taylor [Ta] and Angenent and Gurtin [AGl (cf. [Gu]).
3 l ( n ) is the length of the facet on the Wulff crystal that has orientation n. For all of our
results, except those of Section 5, we use only the condition l(n)>0; the form of the
underlying surface energy is irrelevant.
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of the crystal relative to its exterior.
In many respects this evolution equation exhibits behavior typical of a para-

bolic PDE,4 and it seems reasonable to ask whether it has an associated
comparison principle. What makes this question especially important is that
comparison can form the basis for weak formulations of the underlying evolution
problem.5

We here establish such a comparison principle:6 we show that if C and C
are admissible evolving crystals with C(0) contained in C(0), then C(t) is contained
in C(t) as long as both evolutions are well defined.

4For example, the curve-shortening equation V«K (V«normal velocity, K«curvature) for
smooth boundary curves; in fact, Girlo and Kohn (QXJ and Girio [Gi] use crystalline evolution
as a method of approximating generalized curve-shortening equations.
5 This issue will be addressed in a forthcoming paper of Giga. For smooth interfacial
energies comparison is a key tool in establishing global existence via the level-set method
[CGG.ES]. An alternative approach to existence is that of Fukui and Giga [FG], who establish
a weak formulation for motion by crystalline curvature using an adaptation of nonlinear
semigroup theory; the study [FG] is limited to U-0 and to an interface which is the graph of
a (spatially periodic) function.

*The comparison theorem (12H) of [Gu) is valid only when restricted to convex crystals.
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2. CRYSTALS
Let C be the closure of an open, possibly unbounded set in the plane. We then

refer to C as a crystal if its boundary dC is a piecewise linear curve; that is, if 3C
is the finite union

SC « U Fj (2.1)

of (closed, maximally connected, possibly infinite) line segments Fj called facets.
We use the following terminology: (2.1) is the facet decomposition of dC; the
point of intersection of adjacent facets is called an edge; the outward unit normal
n to 3C is the orientation of C.

We will study crystals whose orientation belongs to a finite subset Tl of the
unit circle S1; Jl is related to the lattice structure of the crystal and should be
envisaged as representing stable orientations of the crystal surface. The unit
vectors ncTL will be referred to as admissible orientations. The identification of
admissible orientations n with their argument 0£|R/2TTZ through n * (cose,sine)
renders meaningful the term adjacent orientations, or, more precisely, TL-
adjacent orientations, as well as the assertion nm lies between n and p" (for
m,n,pcTl).

Let C be a crystal and let a be a point on 9C. Then C is admissible at a if:
(i) the orientation of each facet containing a is Tl-admissible; and

(ii) for a an edge, the orientations of the two facets that intersect at a are
Tl-adjacent.

C is admissible if C is admissible at each point of dC We will also use a local
definition of admissiblilty: C is admissible near a if there is an open set W con-
taining all facets containing a such that C is admissible at every point of WH3C.
Here is is important to note that, since facets are (relatively) closed, if an open set
W contains a facet F, then W contains all facets adjacent to F.

For acR2 and ncS1 , let

H(a,n) - { xcR2 : (x-a)-n < 0 ) (2.2)

denote the halfspace whose boundary contains * and whose outward unit normal
is n; for n an admissible orientation, H(a,n) furnishes a trivial example of an ad-
missible crystal.

Given a crystal C, let F be a facet of C, let n be the orientation of F, and let L
denote the length of F. The transition number X for F is defined as follows: for
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acF,

X * "1 if the facets adjacent to F belong to H(a,n);
X s +1 if the facets adjacent to F belong to M(a,-n);
X • 0 otherwise;

Roughly speaking, X is -1 or +1 according as C is convex or concave near F (Figure
1). In fact, we say that C is convex if the transition number of each of its facets
is - 1 .

Finally, the crystalline curvature K of F is defined by

K « XL'1 if L< oo;
K « 0 if L « «o.
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Figure 1. The set 51 of admissible orientations and a corresponding crystal C. The
transition numbers are Xi»+1. X2"X«-0. XS-X4-X5»X6«X7»-1.
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3. MAXIMUM PRINCIPLE
A classical maximum principle—for smooth real functions—asserts that if f < f

in a neighborhood of x0 and if f(x0) « F(x0) *y0 , then
(i) f(x0) « f'(x0).

(ii) f"(xo)<f"(xo).
The first condition asserts that the graphs of f and Fhave a common normal at
(xo,yo), while (ii) compares curvatures of the two graphs.

We now derive an analogous result for crystals. Let C and C be crystals. We
say that dC touches 9C at a from inside if ac 9CH9C and if there is an open
neighborhood W of a such that:
(a) W contains all facets of C that contain a or all facets of C that contain a; and
(b) COW C COW.
There are four possibilities for the touching of C and C (Figure 2):
(1) facet-facet: a belongs to a facet interior of each crystal;
(2) edge-facet: a belongs to an edge of one crystal and a facet interior of the

other;
(3) proper edge-edge: a belongs to an edge of each crystal and, near a, C and C

intersect only at a;
(4) improper edge-edge: a belongs to an edge of each crystal, but the touching

at a is not proper.
The next result is an analog of the classical maximum principle.

MAXIMUM PRINCIPLE FOR CRYSTALS. Let C and C be crystals with C and
C admissible near a. Assume that dC touches SC at a from inside. Then:
(i) There are facets F and F of C and C such that acFOF and such that the

orientation off equals that of F. Moreover, if a is a proper edge-edge
touching, then the set of orientations of facets of C meeting at a equals the
corresponding set for C.

(ii) // F and F are facets of C and C with acFnF and with the orientation
of F equal to that of F, then the curvatures K and Ko/F and F satisfy

K < K. (3.1)

/ / K « K * 0, then dC « dC in some neighborhood of F and F.

Proof. For a facet-facet touching the definition

"3C touches SC at a from inside" (3.2)
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Figure 2. The four types of touching at a.
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implies that the facets of C and C whose interiors intersect at a must have the
same orientation, for otherwise they would cross. Consider next an edge-facet
touching with F and e, respectively, the facet and edge in question. Then (3.2)
implies that the orientation of F must lie between those of the facets G and H of
the other crystal that meet at e. But, by admissibility, the orientations of G and H
must be Tl-adjacent. Thus the orientation of F must coincide with either that of G
or that of H.

For an improper edge-edge touching there are facets F and F of C and C such
that acFHF and such that, for some bcFHF, dC touches 3C at b from inside, with
the touching of facet-facet type; thus, as above, F and F must have the same
orientation.

For a proper edge-edge touching there are two subcases to consider; to state
these let W be an open set that contains a and intersects only those facets of C
and C that contain a. Case a: WndC and WndC are contained in a halfspace K
with acdH. Case :̂ there is a halfspace K with a£3K such that Wn3C is contained
in K and WH3C is contained in the closure of the complement of H. These two
cases are shown in Figure 3 and in either case the requirement that na and n2 not
lie between Si and n2 and that rii and n2 not lie between ni and n2 implies that
ni « rii and n2 • n2, so that the set of orientations of facets of C meeting at a
equals the corresponding set for C.

(ii) We assume first that both F and F are finite. Let X and L denote the
transition number for—and length of— F, and let X and L denote the correspon-
ding quantities for F. Suppose that K > 0 so that X s 1. By (3.2), either X s 0 or X s 1
and L> L. In both cases K< K and in the latter case equality holds only if L= L, so
that 3C * dC in some neighborhood of F « F. The case K< 0 is treated analogously. If
K* 0, then X • 0 and X *0, so that K < K. Finally, if F and F are infinite, then
K«K«0; if F is infinite and F finite, then K«0 and X<0, so that K<K, and
similarly for F is infinite and F finite. D

Remarks.
1. If in (i) of the Maximum Principle, a is an improper edge-edge touching,

then the set of orientations of facets of C meeting at a may not equal the corres-
ponding set for C (Figure 2).

2. The edge-facet and improper edge-edge touchings are essentially facet-facet
touchings; that is, there are points b arbitrarily close to a such that dC touches

at b from inside with b a facet-facet touching.
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Figure 3. Proper edge-edge touching.
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4. EVOLVING CRYSTALS. COMPARISON THEOREM
Our final step is to establish a comparison theorem for crystals C(t) that

evolve with time t. The set 71 of admissible orientations is fixed throughout the
discussion.

By an admissible evolving crystal C (of duration T«TC) we mean a one-
parameter family C(t), 0<t<T, of admissible crystals such that, writing

SC(t) « U Fi(t) (4.1)

for the facet decomposition of dC(t):
(i) N is independent of t,

(ii) each facet Fj(t) has orientation nx that is independent of t,
(hi) the position vector of each edge varies smoothly in t.
C is convex if C(t) is convex for 0<t<T. Implicit in the definition of an admissible
evolving crystal is the requirement that a facet present at some tc[0,T) is present
for all tc[0,T), so that facets are neither created nor destroyed.

We say that an admissible evolving crystal C corresponds to data {pJ .U}
if:

(i) p(n) > 0 and t(n) > 0 for every admissible orientation ncTL,
(ii) each facet Fj(t) evolves on (0,Tc) according to the evolution equation

p(ni)Vi(t) * Kni)Ki(t) • U, (4.2)

with nj the orientation, Vj(t) the normal velocity in the direction nif and K2(t)
the crystalline curvature of Fj(t).

Here p is the kinetic modulus, t is the Wulff modulus, and U is the bulk energy.
For our first comparison theorem the two crystals correspond to the same

moduli, but the bulk energies are different. In stating this theorem note that, for
C and C admissible evolving crystals, the distance

dist (8C(t),dC(t)) * inf { Ix- II; xcdC(t). xcdC(t)} (4.3)

is actually attained, since each crystal has a finite number of facets.

FIRST COMPARISON THEOREM. Let C and C be admissible evolving crystals
of equal duration T. Let { M , U } and ^ , t , U ) denote the data corresponding to C
and C, with U > U. Assume that
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C(O)cC(O). (4.4)

Then:
(a) C(t)cC(t) ZoraJitclOJ).
(b) dist (3C(t),9C(t)) is a nonincreasing function of t.

Proof. The proof will proceed in a series of steps.
1. Admissible evolving crystals are translation invariant: if C(t), 0<t<T, is an

admissible evolving crystal corresponding to data {p,t,U} and r is a vector, then
C(t) + r, 0< t<T, is an admissible evolving crystal corresponding to the same data.

2. An admissible evolving crystal C corresponding to ^ . t , U } has its evolution
governed by a system of coupled ODE's7 (one equation for each facet) and from
the theorem on smooth dependence on data for this ODE system one can show
that for each e there is an admissible evolving crystal C£ that satisfies CE(0) = C(0),
corresponds to the data {p,t,U + e}, and is such that: (i) its duration T£ satisfies
TC-*T as e->0; and (ii)

distOee(t),dC(t)) -> 0 as e->0

uniformly for t in any closed interval of [0,T).
3. Our next step is to show that, granted (a), d(t) -= dist (SC(t),dC(t)) is nonin-

creasing. It suffices to show that d(0) < d(t), 0<t<T. There is a vector r with length
d(0) such that C(0) + r is contained in C(0). By Step 1, C(t) • r is an admissible
evolving crystal, and appealing to (a) for this translated crystal, we conclude that
C(t) + r is contained in C(t). Thus d(0) < d(t).

4. We turn now to the proof of (a). Assume that C(t) is not contained in C(t)
at some tc(OJ). Then

0 < t0 :* sup{t; C(t)cC(t)} (4.5)

satisfies to<T. Further, in view of the Maximum Principle and Remark 2 of
Section 3, C(to)cC(to) and there is a point bcC(to)nC(to) such that 9C(t0) touches
3C(to) at b from inside with b either a facet-facet touching or a proper edge-edge
touching; and such that:

(a) for b a facet-facet touching, if F and F are the relevant facets of C and C,
then F and F have common orientation, n say, and the normal velocities V and V
of F and F in the direction n satisfy

7Cf. (10.18) of [AG]( (12.29) of [Gu].
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V(t0) * V(t0); (4.6)

(p) for b a proper edge-edge touching, b is an edge of adjacent facets Fi and F2

of C and an edge of adjacent facets F̂  and F2 of C, and (renmumbering if
necessary), for i-1,2, Fj and F* have the same orientation nj and

V^to) > V^to) or V2(t0) > V2(t0). (4.7)

where Vj and Vj are the velocities of Fj and Fj in the direction rij.
5. Assume that U > U. Consider (a) of Step 4. By the Maximum Principle, the

crystalline curvatures corresponding to F and F satisfy K(to)<K(to). Thus, applying
the evolution equation (4.2) to each of the crystals, we find, with the aid of (4.6),
that U<U, a contradiction. An analogous argument yields a contradiction for (p>) of
Step 4. Thus (a) is proved for U > U.

6. Our final step is to prove (a) for U « U. In place of C we use the admissible
evolving crystal C€ corresponding to U + e (> U) discussed in Step 2. By Step 5,
Cc(t)cC(t) for 0<t<Tc and letting e->0 we conclude that C(t)cC(t) for 0<t<T. D

Remarks.
1. If U > U, C(t) is actually contained in the interior of C(t) for 0<t<T. Indeed, if

not there is a tj > 0 such that 9C(ti) touches dC(ti) at some b from inside. Since
C(t)cC(t) for all t>0 and since ti>0, we have the same speed relations of facets
near b as described in Step 4 of the proof of the First Comparison Theorem, an
observation that yields, via the argument of Step 5, a contradiction to U > U.

2. The standard proof of comparison for the heat equation does not require
differentiability of the initial data. Within our framework differentiability is
analogous to admissibility. Our assumption of admissiblilty of the initial crystal
allows for the simple argument given in Steps 4 and 5. If we drop this assumption
(but continue to assume that the crystal is admissible for t >0), then, letting t0 be
as defined in (4.5), there is a ti>t0 and a point bcC(ti)\C(ti) such that

dist(b,SC(ta)) * dist(x,dC(t!)) for all xcC(t), 0 < t < t4.

One can compare orientations, curvatures, and speed around b and reach a con-
tradiction to U > U as in Step 5. This argument furnishes a proof for nonadmissible
initial data but requires U > U as well as continuity of C(t) and C(t) (as sets) up to
t« 0. For the case U * 0, our argument of Step 6, which utilizes the corresponding
ODE system, does not apply directly, as this system is not well defined for facets of
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zero length. We will not consider this question in the present paper.

A useful extension of the comparison theorem allows the moduli of the cry-
stals to differ.

SECOND COMPARISON THEOREM. Let C and C be admissible evolving crys-
tals of equal duration T, with either C or C convex. Let C and C correspond
to data ( M . U ) and {£,1,0}, with

U/p > U/p, t/p > I /p. (4.7)

Assume that

C(0)cC(0). (4.8)

Then:
(a) C(t)cC(t) for all tz[0J).
(b) dist (9C(t),9C(t)) is a nonincreasing function of t.

We omit the proof, which is similar to the proof of the first comparison
theorem.

We now give a weaker notion of an evolving crystal By a weakly admissible
evolving crystal C corresponding to the data (p . l .U) we mean a one-para-
meter family C(t), 0<t<Tc , of crystals such that:
(i) C(t) is continuous in t on [0,Tc) as a set-valued function [AF];

(ii) there are finitely many times to= 0< ta< t2< ...<tM <TC such that C is an
admissible evolving crystal corresponding to {p,t,U} on each [tj,tj+1)f

J-0 .1 .2 . . . . .M-1.
This definition allows for the disappearance of facets at the times t l ft2 , . . .<tM .1 .

THEOREM. The two comparison theorems hold without change for weakly
admissible evolving crystals.
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5. BOUNDS ON CRYSTAL GROWTH
We now use the second comparison theorem to establish bounds on crystal

growth.8 We assume we are given a bulk energy U, a kinetic modulus ^(n) > 0,
and a Wulff modulus t(n)>0, with both moduli defined for every ncTl. We assume
further that the Wulff modulus correspond to interfacial energy f(n)>0, ncTl.
Precisely, we assume that the discrete set ffn)"1!!, ncTL, lies on the boundary of
its convex hull, so that the Wulff crystal

A « {x : x-n < f(n) for all ncTl) (5.1)

is convex and fully faceted with 3ft as its set of orientations; l(n) is then the length
of the facet on A with orientation ncJl.9 Granted this, if £(n) satisfies

f(n)p(n) = K * constant (5.2)

and if z(t) is a solution of the differential equation

Kz-(t) = -[U + z(t)-i] (5.3)

on a maximal time-interval [0,T) with z(t) > 0, then10

C(t) - z(t)A is an admissible evolving crystal
corresponding to the data {p,J,U}. (5.4)

For U> 0, C(t) shrinks to a point in finite time; for U<0, C(t) will shrink to a point
or grow without bound according as z(0) < IUI or z(0) > IUI.

Let C be an admissible evolving crystal corresponding to the data {p,J,U}, and
let Zo~ >0 and Zo*>O denote the largest and smallest numbers such that, for some
vectors b~ and b*,

-) C C(0) C zo*(A + b+). (5.5)

Further, let K+>0 denote the smallest constant such that £+(n):« K+ftn)"1 > p(n) for
all ncTL, and let K">0 denote the largest constant such that p"(n):« K'fdi)"1 < ̂ (n)
for all ncTl, and let z±(t) with z±(O)«Zo± denote the solution of (5.3) with K« K±.
8Cf. Soner [So], who uses analogous ideas to bound the growth of smooth crystals.
9Cf. S12 of [Gu].
10!Ta] for U«0; (12G) of [Gu] for the general case.
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Then, by (5.4) and the second comparison theorem,

b-) c C(t) c z+(t)(A + b+). (5.6)

Thus for U > 0 or for U<0 and IUI sufficiently small, C(t) lies between convex
crystals that each shrink to a point in finite time; for U<0 and IUI sufficiently
large, C(t) lies between convex crystals that grow without bound.
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FIGURE CAPTIONS

Figure 1. The set TL of admissible orientations and a corresponding crystal C. The

transition numbers are Xi«*l. Xa'Xa"0* X*mX4uX*mXtwX7m-l-

Figure 2. The four types of touching at a.

Figure 3. Proper edge-edge touching.
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