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Abstract
We study the dynamics of pattern formation in the one-dimensional partial differential equa-
tion

utt - ( W ( u , ) ) , - uxst + « « 0 (ti = «(x, I), x € (0,1), t > 0)
proposed recently by Ball, Holmes, James, Pego L Swart [BH JPS] as a mathematical "cartoon"
for the dynamic formation of microstructures observed in various crystalline solids. Here W is
a double-well potential like \((us)

7 - I)2 . What makes this equation interesting and unusual
is that it possesses as a Lyapunov function a free energy (consisting of kinetic energy plus a
nonconvex "elastic" energy, but no interfadal energy contribution) which does not attain a
minimum but favours the formation of finer and finer phase mixtures:

Our analysis of the dynamics confirms the following surprising and striking difference between
statics and dynamics, conjectured in [BH JPS] on the basis of numerical simulations of Swart
L Holmes [SH]:

• While minimizing the above energy predicts infinitely fine patterns (mathematically:
weak but not strong convergence of all minimizing sequences (un,vn) of £[u, v] in the
Sobolev space W l j 7(0,1) x I 2 ( 0 , l ) ) , solutions to the evolution equation of Ball et al.
typically develop patterns of small but finite length scale (mathematically: strong con-
vergence in W ^ O , 1) x I 2 (0 ,1) of all solutions (ti(f),»t(<)) with low initial energy as
time t —• oo).

Moreover, in order to understand the finer details of why the dynamics fails to mimic the
behaviour of minimizing sequences and how solutions select their limiting pattern, we present
a detailed analysis of the evolution of a restricted class of initial data — those where the strain
field ux has a transition layer structure; our analysis includes proofs that

• at low energy, the number of phases is in fact exactly preserved, that is, there is no
nudeation or coarsening

• transition layers lock in and steepen exponentially fast, converging to discontinuous sta-
tionary sharp interfaces as time t - • oo

• the limiting patterns — wkQe not minimizing esergr globally — are 'relative minimizers'
in the weak sense of the calculus of variations, that is, minimizers among all patterns
which share the same strain interface positions.
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1 Introduction
In recent years an expanding and increasingly sophisticated literature has been devoted to the
analysis of minimizing sequences and minimizing Young measures of nonconvex variational integrals
and their role in modelling microstructures in crystals (see e.g. [BCJ], [BFJK], [Bh], [BJ1], [BJ2],
[CK], [DM], [JK], [KM], [KP], [Ma], [Svl], [Sv2], [Zh]).

By contrast, the dynamic processes by which such micro6tructural patterns may be created or
evolve have received little attention, and many of the most basic associated mathematical issues
have not been addressed. The goal of this paper is to study some of these fundamental issues in the
perhaps simplest possible mathematical setting, that of a one-dimensional model equation proposed
for this purpose by Ball, Holmes, James, Pego k Swart [BHJPS]. The key feature of this equation
is that it is an evolution equation with a nonconvex underlying free energy (decreasing with time
along solutions) which energetically favours the formation of finer and finer phase mixtures.

Our analysis confirms several remarkable features of the evolution equation of Ball et al.,
conjectured in [BHJPS] and observed numerically in [SH] but until now largely unexplained, which
may be not only of mathematical but also of some physical interest ([BHJPS, Sec. 7]; [BJ2,
Sec. 10]). Most prominently, while minimizing the free energy predicts infinitely fine patterns
(mathematically: weak but not strong convergence of minimizing sequences in the appropriate
Sobolev spaces), all solutions of the evolution equation with low initial energy fail to nucleate more
and more phases (mathematically: strong convergence as time t —• oo, see Thm 3.1), typically
tending instead to 'relative minimizers' with finitely many interfaces (see Thm 4.1).

In the remainder of this Introduction, we explore in more detail the motivation and agenda of
this work, coming from the area of

(1) nonconvex variational integrals and their role in modelling microstructures in solids,

and comment on some of the mathematical intricacies of associated dynamic models and on our
methods of analysing the mechanisms of pattern formation from the viewpoint of

(2) the geometric theory of dissipative dynamical systems as presented e.g. in [CFNT], [Ha],
P e l ] , [Te].

The latter area has provided a successful framework in which to study issues like those relevant
here (nucleation, layer dynamics, approach to equilibrium) in PDE's whose underlying equilibrium
problems are elliptic (see e.g. the articles [ABF], [BF], [BX1], [BX2], [CP], [FH] on the one-
dimensional Allen-Cahn and Cahn-Hilliard equations), but due to its focus on evolution problems
exhibiting 'regularity' it has until now remained more or less disjoint from (1).

1.1 Connection of our work with the study of nonconvex variational integrals and
microstructures in solids.

Phase transformations in elastic crystals, induced by imposed stresses, changes in temperature or
applied electric or magnetic fields, often lead to the formation of fine mixtures of spatial domains
with different (or differently oriented) atomic lattice structure. In recent years the presence of such
'microstructures' and various of its features have been successfully explained by the minimization
of free energy in continuum models (see Ball & James [BJ1] and after them e.g. [BJ2], [BCJ], [JK],
[KM], [Bh]). To summarize briefly the main line of thought underlying these studies: Elastic energy
functional for crystals which account for crystallographic symmetry are necessarily nonelliptic1,
and, in certain cases, do not attain a minimum in the appropriate function spaces; the finer and
finer oscillations of minimizing sequences — or the associated Young measures - can be used to
model (various features of) the experimentally observed microstructures. We record here the by
now well-known mathematical structure of the relevant energy functionals:

= / *(Dy(x))dx ( 0 C J T , y : fi - JZ") (1.1)
Jn

1more precisely: neither poly- nor quasi- nor rank-1-convex



where fi is an open and bounded reference configuration, the deformations y satisfy appropriate
(say linear) boundary conditions

vOOIan = F * (F€M"*n) , (1.2)

and the integrand • is a nonnegative function on Mnxn which is zero exactly on a set of several
potential wells

*-l(0)=(jSO(n)Aif (1.3)
tsl

with the Ai playing the role of 'material parameters' reflecting the underlying atomic lattice struc-
ture.

In contrast with an expanding knowledge about variational integrals like (1.1) and their minimi-
sing microstructures (for a state-of-the-art and a recent literature survey see [BFJK]), the dynamic
processes leading to the formation of such fine phase mixtures have as yet largely withstood a suc-
cessful mathematical description. This paper, which continues the work begun by [BHJPS] and
[SH], presents some progress in the direction of such a mathematical description. In contrast with
much of the mathematical literature on dynamic models for nonconvex elastic materials (which
has focused on studying questions of existence, uniqueness and regularity — of course an intere-
sting area in its own right [HS], [NS], [Ry]) the present paper pursues a different agenda, aimed at
understanding the mechanisms of pattern formation in such systems and initiated by John Ball in
his survey article [Ba] (and taken up in [BHJPS], [SH], [Fr3]).

For a discussion of why an understanding of these mechanisms (in the form of answers to
questions like those below for appropriate model equations) may be of physical interest in the
study of phase transformations in crystals, we refer to [Ba], [BJ2, Sec. 10]; we will however discuss
some of these issues from a mathematical point of view (see subsection 1.2 of this Introduction).
Even though the present paper only studies these issues in a one-dimensional situation, we state
them here in the context of any evolution equation with an underlying nonelliptic variational
integral (1.1), a prototype example being equation (1.4) below.

(A) For a given initial state, does the dynamics select a unique limit state as time t —• oo?1

(B) If I[y] does not attain its infimum, can solutions mimic the behaviour of minimizing sequences
and form finer and finer microstructure, or does dynamics act as a mechanism preventing
the nucleation of more and more phases?2

(C) Can we justify a precise version of a variational principle Minimize I[y]y from dynamics?
This would involve determining (i) the exact function class in which typical limit states lie,
and (ii) the exact class of variations with respect to which such limit states are energetically
stable.3

(D) How do transition layers or interfaces between different preferred phases Dy « A, Dy « B
(A, B € *"1(0)) deform and propagate?

(E) At what time scales do solutions relax to equilibrium — is the relaxation process fast and the
dynamics essentially 'quasistatic' or do solutions get stuck in metastable states with a large
lifetime before settling into their final pattern?

1 Energy miniminimizatian typically predicts a large collection of possible minimisers or minimising
'microstructures*.

2Or, more generally: does the dynamics favour particular geometries or length scales?
* The emphasis here is on 'precise1. As for (i): For nonconvex variational problems the choice of function space

in which to seek minimiiers is a delicate issue and may not be physically obvious*. Just how dramatically the
class of minimizers may depend on this choice was demonstrated in recent work of Muller, Sverak and Dolunann
[MS], pM] on the two-dimensional two-well-problem (n=N=2 in (1.1), (1.3)): While in [MS] a large class of
minimixers y 6 Wl'°° (0; A3) with complicated geometry is constructed (consisting of infinite rank laminates), in
[DM] it is shown ([taking up earlier ideas of Fonseca [Fo]) that under the seemingly mild additional assumption
Dy € BV(Q; M2 **) each minimfccr must locally be a simple laminate. — Regarding (ii): For example, are the limit
states 'absolute* or 'relative* minimizers?



(F) Do the limiting patterns selected by the dynamics depend in a hysteretic manner on the
initial states? If so, can this be used to explain the hysteretic behaviour of macroscopic
quantities in response to changing control variables (like: stress versus strain) as universally
observed in specimen?

These are hard questions. Answering them seems to lie beyond the scope of existing mathema-
tical methods — even in the case of the mathematically simplest models like the equations of
viscoelasticity of Kelvin-Voigt type in three dimensions [Ry], [SH]

o (n c fe3 , y : n x [0,00) - J J 3 ) . (1.4)

Here p, /? are positive constants (the density in the reference configuration and the viscosity).
These equations, while ignoring e.g. temperature fluctuations and the requirement of dynamic
frame indifference, are perhaps the mathematically simplest evolution equations associated with
the energy functional (1.1) which are thermodynamically and mechanically consistent, in the sense
that (i) the total free energy E[y> yt] = / n $y}+I[y] decreases along solutions and (ii) the equations
are derived from the law of balance of linear momentum pytt = DivTby a constitutive assumption
for the stress tensor T, T = f f ( # y ) + fiDyt (which we rewrite here for later purposes as

where 6/6(Dy) denotes the functional derivative with respect to the L2(Q; Mnxn) inner product).
While the initial-value-problem for (1.4), (1.2) is well-posed under reasonable hypotheses on •
consistent with the potential well structure (1.3) [Ry], for these equations it is not even known
whether solutions converge in any sense to a limit state as time t —» oo, not even if the minimum
of I[y] were attained. This situation led Ball et al. [BHJPS] to introduce a simplified version of
(1.4) in which the space dimension is reduced to one but the key qualitative feature of finer and
finer phase mixtures being energetically favourable is captured. We briefly recall the derivation of
this model in [BHJPS]: prescribing the boundary condition (1.2) in weakened form via an energy
penalty, the variational integral (1.1) becomes

I[y] = / *(Z>y(x)) dx + i / \y(x) -Fz\7 ( e > 0 small),
Jn € Jan

and by considering boundary data F = »<fj*», a domain fl = [ 0 , l ] x f l ( ( ) c JR""1), and deforma-
tions independent of X2,...,xn (y(xi, . . . ,xn) = (xi +ti(xi),X2,... ,xn)) which satisfy the boundary
condition

«(0) = «(1) = 0, (1.6)

one calculates

l
with a = 21221 ^ W(uXl) = |Q|*(£>y(x)). Correspondingly, after replacing the constitutive
assumption (1.5) by its analogon T = |^£4 + fiuxi} (1.4) becomes

+ on = 0. (1.8)

(1.8), (1.7), (1.6) are the evolution equation, elastic energy and boundary condition of Ball et al.
Note that the above reduction procedure has preserved thermodynamic consistency as the one-
dimensional free energy f?[u, ut] = f$ £u? + J[u] decreases along solutions. For the details of why
the one-dimensional stored-energy function W becomes a double-wtll-potential like \{ulx — I)3 if
xi is chosen in a particular crystallographic direction, e.g. orthogonal to a martensitic twin plane,
we refer to [BHJPS, Sec. 7]. Without the boundary term f u2 in (1.7), the evolution equation



would reduce to the equation of one-dimensional viscoelasticity (studied notably in [Da], [An],
[AB], [Pe]) but the feature of finer and finer phase mixtures being energetically favourable would
be lost. However, thanks to this boundary term the minimum of J[u] is not attained, minimizing
sequences striving simultaneously to achieve uXl € {±1} and u = 0 which is impossible. The
functional J[u] is perhaps the simplest example exhibiting this behaviour, and is well-known in
the mathematical literature (see Young who studies an almost identical example in his monograph

[BHJPS] showed that the initial-value-problem for (1.8), (1.6) is well-posed in the natural phase
space (u,ti*) € W7

0
1>oo(0,1) * L7(0,1), and proved the interesting result that no solution minimizes

the total free energy E[u> ut] globally as time t —• oo. However, the issues listed above remained
largely open. In particular, while the above result suggested that solutions may fail to form finer
and finer microstructure and while the article [BHJPS] has since its appearance inspired several
related investigations1, the central issue (B) remained unanswered.

Our analysis is limited to the dynamics at low energy and in particular excludes the interesting
issue of nudeation of phases from the unstable equilibrium state uz = 0; however, at low energy
(i.e. us « ±1 in most of the interval (0,1)) we obtain a fairly complete picture including nudeation
(or rather: the failure thereof) and an answer to (B), layer dynamics, and the important question
of variational stability of limit states. In detail: regarding questions (A) and (B) see Thm 3.1, and
for contributions to (C)-(F) see Thm 4.1.

1.2 Mathematical peculiarities of the evolution equation of Ball et al. and related
models, and some comments on our methods of analysis.

For evolution equations with nonelliptic free energy like the model problem (1.8), standard tech-
niques for analyzing the dynamics seem difficult to apply. Here we comment on two aspects, the
behaviour as time t —• oo and the evolution of transition layers.

1.2.1 Behaviour as t —• oo. From the viewpoint of the geometric theory of dynamical systems
prominent in this journal, (1.8) is a dynamical system with a Lyapunov function and so it is na-
tural to conjecture that solutions should in some sense settle to equilibrium as time t —• oo. More
precisely, understanding the large time dynamics should reduce to understanding the underlying

• equilibrium states

and their

• linear stability properties

(and perhaps their connecting orbits for a complete picture).2 But here we have already arrived
exactly at what is the crux for models like (1.8). In the absence of regularizing contributions to
the free energy from interfacial energy, on top of the issue of possible microstructure formation the
set of equilibria of nonconvex variational integrals is typically geometrically very complicated (and
form a noncompact, infinite-dimensional, non-smooth, multiply connected set), and associated
evolution equations are not C1 with respect to the natural topologies (in fact the dynamics of the
linearized and the nonlinear equation are typically topologically different).

For the evolution equation (1.8), (1.6) studied here, let us state these peculiarities precisely.
For simplicity we take W = £(u* — I)3 and a = 0, and drop the subscript of x\.

Remark 1. (See [AB]) The set of 'stable' equilibria, {u € Wof0°(<U) : W(«,(*)) s const,
W"(u,(x)) > 0 a.e.}, and the set of 'unstable' equilibria, {u € Wfr*°(Qt 1) : W'(u,(x)) == const,

1 Swart L Holmes [SH] present careful numerical studies of (1.8) suggesting convergence to 'relative mmimit
with finitely many interfaces; Lin & Pence [LP] study the issue of dynamic energy minimization for a simpler,
Riemann type problem involving energy dissipation through phase boundary propagation; Kalies k. Holmes [KH]
analyse (1.8) with a strain gradient term 3**1*1 "dded * ° t h e fre* energy density and show — following earlier work
of [HM] — how the global attracior becomes increasingly complicated as 7 —• 0; Brandon, Fonseca II Swart [BFS]
investigate the evolution of Young measures under (1.8).

3 A well-known example where this can be made rigorous are one-dimensional parabolic equations ut — <?uSx +
/(*) « 0 [He2], {BFl]t pF2].



W"(ux(x)) % 0 a.e.}, are noncompact in W ^ O , l ) (l^P^ °°)- E v c n w o w e » t h e w e a k * dosure
in Wo|00(Of 1) of either set contains the unit ball in W0

1>oo(0,1).

To see this, note that the set of stable (and resp. unstable) equilibria contains - among other
elements - all states with strain us(x) € {±1} a.e. (resp. tix(x) € {±1, 0} a.e. with |{x :
ur(x) = 0} | > 0), arranged in arbitrary spatial patterns with arbitrarily many jumps in u r , only
subject to the minimal constraint that the proportion of the phases ±1 must be equal, to ensure
u(0) = u(l) = 0. (In the case a ̂  0, the set of equilibria behaves qualitatively the same, the only
difference being that inbetween jumps the strain ux of equilibria is no longer constant but satisfies
the ODE (W'(us))s = crti, see [BHJPS, Sec. 2.2]).

In the language of dynamical systems, this lack of compactness and regularity of the equilibrium
problem prevents the equation from being 'asymptotically smooth* in the sense of Hale [Ha] or
from possessing finite-dimensional attracting sets or inertial manifolds. In the language of partial
differentia] equations, Remark 1 implies that one cannot pass to the limit t - • oo in (1.8) via a
'soft' argument: to pass to the limit would require precompactness of orbits u(t) in a topology with
respect to which the nonlinearity W(ux) is continuous (like the strong topology of WliP), but the
available a-priori estimates [BHJPS] only give precompactness in the weak* topolgy of Wl'°°.

A further difficulty arises from the fact that the equilibrium states are not isolated but form
a multiply connected set in Wlj>: even if precompactness of an orbit u(t) in WliP were known,
it is not clear whether it stabilizes to a unique limiting pattern. More technically speaking, it
would not be clear whether its a>-limit~set {u 6 W0

1|P(0,1) : 3 tj —• oo such that u(tj) —• u)
must consist of a single equilibrium. As a well-known example loosely akin to equation (1.8)
where such connected continua naturally arise, even when the equilibrium problem is elliptic,
we mention the one-dimensional continuum of travelling waves for nonlinear diffusion equations
tit — c2u,* + /(u) = 0 on the whole real line, arising from the translation invariance of the equation.
As shown in [FM1], [FM2], [FM3], typical solutions nevertheless converge exponentially fast to a
unique travelling wave (or standing wave in the Allen-Cahn case f(u) = ti3 — ti). More generally
[HaM], [HaR], [Pe2], convergence to a unique equilibrium remains true in dynamical sysems whose
set of equilibria forms a smooth hyperbolic manifold; however, problems like (1.8) lie beyond the
scope of these results, due to Remark 1 and due to the lack of differentiability of the dynamics to
which we turn now.

While the evolution via (1.8) is C1 with respect to the Wl*°° norm (allowing dynamic stability
analyses via linearization in small Wlt°° neighbourhoods of equilibria [Pel], [BHJPS]), such infor-
mation is of limited interest: most solutions do not converge in W1*00 (i.e. the strain ux(t) does
not converge uniformly) as time t —• oo. This is a consequence exactly of one of the oustanding
'physical' aspects of (1.8), its modelling of the formation of discontinuous patterns of the strain ux

from smooth initial data. On the other hand, in weaker norms like WltP (1 < p < oo) in which
typical solutions converge as t —• oo, the evolution is no longer C1 (the mapping ux •-• W'(ux) or
more generally mappings w >-+ <r(w) from IP - • IP are nowhere Frechet-differentiable, for every
a : JR —• R which is not affine). And more:

Remark 2. Let uo be an equilibrium state with (uo)r € {±1} a.e. Then under the dynamics of
the linearized evolution equation in W0

1>p(0,1) (1 < p < oo), u0 is globally asymptotically stable
(Lemma 4.1 below). However, every WQ'(0 ,1 ̂ neighbourhood of uo contains other equilibria of
the nonlinear equation (1.8). In particular, in every neighbourhood of wo the dynamics of (1.8) is
not topologically equivalent to the linearized dynamics.

To summarize, when wanting to prove results like Thm 3.1 (strong convergence in WlJ> to a unique
limit state as t —* oo) and Thm 4.1(P6) (exponentially fast convergence in Wl>p), even for a sin-
gle initial configuration with a 'nice' transition layer structure, one has to overcome the following
obstacles:

• to prove that ti(t) stays in a compact set of Wlj> as t —• oo (which is, as already emphasized
several times, energetically unfavourable)

• to prove that the u^limit-set of ti(<), {ti € Wo (0,1) : 3 tj -* oosuch that u(tj) - • ti},
consists only of a single equilibrium, without being able to appeal to geometric results like

6



those of [HM], [HR], [Pe2]

• to prove that the convergence is exponential without being able to 'linearize' the dynamics.

The first two difficulties are overcome here largely by patience and attention to detail, and our
arguments appear to be of limited use in a more-dimensional situation. The proofs build upon
the techniques developed in [A6], [Pel], [BHJPS] and involve in addition: (i) sharpened versions
of various a-priori estimates of [BHJPS] (Thm 2.1); (ii) an appropriate parametrization of the
set of equilibrium patterns via a 'phase function' and a first integral of the equilibrium equation;
(iii) a comparison principle for solutions of the nonelliptic equilibrium equation (W(uz))x = crti;
(iv) an argument related to the lock-in of transition layers discussed below which gives orbit
precompactness for all initial data with low energy (Lemmas 3.2, 3.3).

Regarding the third difficulty we present a more general tool, which may perhaps also be of
use in different situations like the full 3D equation (1.4) or the viscous Cahn-Hilliard equation
studied in [NP]: a new lemma on the abstract parabolic equation zt +Az = /(*, z) which extends a
conclusion of Henry [Hel] to nonlinearities which are not Frechet-differentiable (Lemma A2 in the
Appendix), thus allowing to analyse the speed of convergence of smooth functions to discontinuous
patterns (Remark 5 in Section 4).

1.2.2 Layer dynamics. In contrast with the above complications, the behaviour of transition
layers under (1.8) turns out to be 'simpler' than in problems with a regularizing interfacial energy
contribution to the free energy. In problems like the one-dimensional Allen-Cahn or Cahn-Hilliard
equation with small O(e) interfacial energy, the energetic favourability of 'coarser' equilibria mani-
fests itself as a tiny O(e~df{) driving traction on transition layers exerted by neighbouring layers
with distance O(d) (for careful studies of the resulting dynamics see [CP], [BX2]). By contrast, in
equation (1.8) the energetic favourability of 'finer' eqilibria does not lead to any traction on layers.
Instead, the behaviour of neighbouring layers decouples as time i —• oo and each of the layers
simply 'locks in' and steepens up exponentially fast, converging to a stationary sharp interface
close to its initial position.

Regarding the proof: While tracking layer positions via constructing approximate invariant
manifolds and estimating the error appears to be forbidden by Remarks 1 and 2, it is possible to
conclude here via the construction of a dynamically invariant region in which transition layers are
trapped (Claim 1 in Section 4).

For a more detailed discussion including connections with earlier work of Pego [Pel] on one-
dimensional viscoelasticity and the work of Abeyaratne k Knowles [AK] in the mechanics literature,
we refer to Section 4.

2 Existence and a-priori estimates
We study the initial-value problem

— 0u**t H
tl|x=0 = «

= ti0, tl | |

-crti = 0 (*€(0,l), <€(0,oo))
(<€[0,oo))
(x € [0,1])

(2.1a)
(2.1b)
(2.1c)

where fi > 0 and a > 0 are constants, <r = W\ and W (the stored-energy function) is throughout
this paper required to satisfy the following hypothe

(HI) W €

(H2) W(z) —> ±oo a82 -» ±oo (superlinear growth).

Throughout Sections 3 and 4 we will also assume

(H3) W is a double-well potential, that is, there exist x_ < z\ < 0 < z* < z+ such that
W(z±) = 0, W > 0 elsewhere, W"(0) = 0, IH(«.,.,> < 0> W " W i . * d > °-



We remark that any nonmonotonic, cubic-like stress-strain function a = W satisfies (H3) if the
co-ordinate system is chosen so that the Maxwell stress and the unstable strain state corresponding
to the Maxwell stress are zero. Prototypical is the choice cr(z) = z3 - z studied in [BHJPS].

As pointed out in the Introduction, in the special case a = 0 (2.1a) becomes the equation of ID
nonlinear viscoelasticity, and ti(x,f) can be interpreted physically as the displacement at time t of
a reference point x on a bar with reference configuration [0,1] of unit mass density. In this case,
the result of Section 3 (strong convergence for low-energy initial data), though nowhere stated in
the literature, is a more or less obvious consequence of the work of Andrews & Ball [AB] combined
with the work of Pego [Pel] (see [Frl] for details). However, the results presented in Section 4 of
this paper (transition layer dynamics, variational stability of limit states, exponential convergence)
are new and interesting even if a = 0.

Following [BHJPS], we study (2.1) in the phase space W0
lfOO(0, 1) x Z,2(0,1) B (ti, ut)\ note that

this rather "weak" space allows to admit equilibria with discontinuous strain as data.

Definition 2.1 Given initial data (ti0, t>o) € W^1'00 X I 2 , by a weak solution of (2.1) on [0,T) we
mean a pair of functions

(u,v) € C([0,T);K°° * L7)
n C1((0,T);W0

1'ooxIa))

which satisfies (2.1c) and for which the equation

) t - au

holds for all t £ (0,T) as an identity in L2 x WltCO (note that for (u,v) in the above space and
every t £ (0,T), each of the three terms vtf <r(us)Xi 0uxrt is well-defined as an element ofW~liCO).

One of the important features of (2.1) is the fact that solutions dissipate energy: due to the viscous
damping term &uxxU the total (kinetic -I- elastic) energy

(which is conserved along smooth solutions of the undamped, purely mechanical equation of motion
associated with the above energy) decreases along solutions,

E(u(t), v(t)) = E(u(h), ti(to)) - P I ||u*,||£, for all t > t0 > 0.
Jto

(2.3)

This will be the starting point for our discussion of the large time behaviour of solutions in Sections
3 and 4.

The aim of the present, "preparatory" section is to summarize and slightly extend the existence
results and a-priori estimates of [BHJPS, Theorem 3.1]. The sharper a-priori estimates derived
here, in particular estimate (c), will be needed for our study of transition layer dynamics in Section
4.
Notation. Here and below, by C°, C1 and C7 we do not mean the sets of k times continuously
differentiate functions / : (0,1) —• 12, but the Banach spaces oft times continuously differentiate
functions with finite norm ||/ | |c> = E?«o

8 UP*€(o, i) l£/( ' ) l -

Theorem 2.1 (Existence and a-priori estimates)
Assume W satisfies (HI) and (Hi).
(a) Given any initial d*la (uo,t>o) € WQIO° X 1? there exists a unique weak solution (utv) of (2.1)
on (0,oo).



(b) Given M,r>0 there exist constants K(M), K(M,T) > 0 such that whenever ||(uo, vo)\\w*>~xL*
< M, then

p | | ( ( ) , ( O l k x L { ) , ( 2 . 4 )
t>0

sup||(iil(Oi«i(<)||iir...x£. < tf(A/,r). (2.5)

(c) If in addition vo £ WQ'2, then v £ C([0,oo);C°); an<i moreover given M > 0 fAtre ersife
> 0 such that s/||(uo,t;o)||iv*.~xit".' < M,

(d) / / in addition a £ C2(ffi) and (uOjvo) £ C2 x W*-*, Men (ti,v) € C([0,oo);C2 x C°) H
^ ( o J j C 2 x C°), and equation (2.1a) holds classically for allt > 0.

The proof is a straightforward adaptation of the work of [BHJPS] (who prove (a) and (d) and derive
the first estimate of (b) for the standard nonlinearity c(z) = z3 — z), combined with an estimate
on the abstract parabolic equation zt + Az = /(*,*) (Lemma Al in the Appendix). Following
[BHJPS], we work with a transformed equation: for every (ti, v) € WQ f l(0,1) x I l (0 ,1 ) one defines
*(« . v) = (p, q) € W^(0} 1) x Li(0,1) by

p(x) := I* v(x')dx'~ I f v{x')dx'dx
Jo Jo Jo

q := puf - p

(where here and below ( )fl denotes the subspace of functions with zero average). Then (ti,v) can
be recovered from (p, q) via

Jo P
v = p*.

Since a change of variables of this kind was to the best of our knowledge first introduced by R.
Pego [Pel], we take the liberty of heretoafter referring to V as the Pego transform. The following
fact will be used frequently below:

Lemma 2.1 The Pego transform (it, v) i~> V(u,v) is a continuous isomorphism of Banach spaces
W*'p x l 2 ^ Wl>* x ISa (I < p < oo;.

The proof of the lemma is elementary.

An elementary formal calculation, made rigorous below, suggests that through the above change
of variables, the linear part of (2.2) diagonalizes and (2.1) becomes

= 0 (t € (0,oo)) (2.6b)

' Pli=o = Po, q\t=o = qo ( * € ( 0 , l ) ) (2.6c)

where T O / = / — f* / , that is, TQ denotes the orthogonal projection in L2(0,1) onto the subspace
of functions with zero average.

Proof of (a) and (b). For convenience of the reader, we include the relevant details from [BHJPS]
who treat (2.6) as an abstract parabolic equation Z\ -f Az = f(z) on a Banach space X and appeal
to results of Henry [Hel]. Let



X = I 2 x I f , V(A) = {p € W«2'2 : p*|{o,i} = 0} x I f . Clearly i4 is a sectorial operator, the
fractional power space Xlf2 is simply W*'2 x Lfy and the nonlinear term f(z) is locally lipschitz
as a mapping X1 '2 -> X. Now given initial data (po,?o) € X1*2, by [Hel, Theorem 3.3.3] there
exists a unique solution (p, q) of (2.6) on some time interval [0,<i) - provided, of course, we adopt
Henry's definition of "solution":

Definition 2.2 (See [Hel, Chapter S.S]) Given (po,*o) € X1'2, a solution {p,q) of (2.6) on [0,T)
t5 a pair of functions

(pl() €
n cl({o,T);X)
n C((0,T);V(A)) =:V

which satisfies (2.6c) and for which equation (2.6a) holds for every t € (0,T) as an identitiy in X
(note that for (p,q) in the above space and every t € (0,T), each of the three terms in (2.6a) is
well-defined as an element ofX).

Before proceeding with the proof of global existence, let us point out

Lemma 2.2 With the notions of solution as specified in Definitions 2.1 and 2.2, (u,v) is a solution
of (2.1) with initial data (t/o,t>o) if and only if its Pego transform (p,q) = V(u,v) is a solution of
(2.6) with initial data (po,flo) = V(UQ%VO).

Proof of Lemma 2.2. The "only iP direction is immediate via Lemma 2.1. The "iP direction
is less immediate since (p,q) £ Y only gives (u,v) £ C([0,T); Wj'00 x I2)) O Cl{(0tT)\W£'2 x
W-x'*)nC{{QtT)\ Wo1'00 x Wo1'2). However, by [Hel, Theorem 3.5.2], if (Piq) is a solution of (2.6)
it must have the additional regularity (pyq) € C1((0,T);A"y) for all 7 € [0,1), in particular (by
taking 7 = 1/2 and using Lemma2.1) (u,v) € Cl((0,T); W^°° x I 2 ) .

Proof of (a) and (b), ctd. Let z = (p,q) be the local solution constructed above, and let
T € (0,00] be the maximal time of existence. By a continuation theorem of Henry [Hel, Corollary
3.3.5], in order to establish T = 00 it is enough to show that

l l / ( z ( t ) ) l 1 stays bounded as t - T, (2.7)

where || • || and || • \\x/2 denote, respectively, the norm in X and in X1*2. We shall prove more,
namely

Claim 1: Given M > 0 there exists K(M) > 0 such that if ||(po, 9o)||i/2 < M% then the solution of
(2.6) satisfies ||(p(0,?(0lli/2 < K(M) for all t € [0,T).

To prove Claim 1, we first of all note that by Lemma 2.2 the inverse Pego transform V~l(p% q) is
smooth enough to be a solution of (2.1) in the sense of Definition 2.1, and hence smooth enough
to satisfy the dissipation identity (2.3). This together with the continuity of EoV~l : X1!2 —• 1R
implies

IMOIIi* < 2(£oT>-1)(Po,*o) < KX{M) for all t € (0,7%

giving in particular ||P(<)IIL~ < K\(M)ll2^ and

) 1 / S < K3(M).

Now we show ||g(<)||i,~ < K*(M)> as follows. (This is the only part in the proof of (a) and (b) where
the arguments of [BHJPS] do not straightforwardly generalize to the more general nonlinearities
admitted here.) Arguing as in [Pel, Corollary 3.4], there exists a subset fi C (0,1) of full measure
(independent off) and a pointwise representative q of f € C([0,T); I2°)nC1((0,T); IJ0) such that
for all x € Q, q(x, •) is continuous on [0,T) and continuously differentiate on (0,T), (q)t(,t) is a
pointwise representative of $i(-,f) for all t € (0,T), q(x, •) is a classical solution of the ODE given
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by the second component of (2.6a) on (0,T), and |g(x,<)| < |fa(0IU~ for all t € (0,r). Now by
(H2) there exists R(M) > 0 such that <r(^^) - *{**$*) > 2K2(M) for all pu & € [~KXjKi]
and all qu 92 with either q2<0,qi>R or 92 < —<R> 01 > 0. Thus since for *i , *2 € ft

£
we have

whenever either qfa) < 0, f(*i) > R or $($2) < —-R, $(*i) > 0. Since JjJ q s 0, this implies
8up r i €ftg(xi , t ) - inf , a 6ft$(*2,0 < 2max{|fooIU~,-R} and hence (because the sup is > 0 and the
inf < 0) | |9(*)HL~ ^ 2max{||golU-i i l } . This proves Claim 1.

Now Claim 1 has three corollaries: First, (2.7) holds, i.e. T = 00. Second, thanks to Lemma
2.2 we obtain global existence for problem (2.1): given (tio,t>o) € WQ>0° X 1? and letting (p,?) be
the solution of (2.6) with initial data V(uo1vo)} its inverse Pego transform (u,v) = V~l(p,q) is a
solution of (2.1). Third, Claim 1 combined with Lemma 2.1 and with the fact that T = 00 implies
the first estimate of (b). Finally, the second estimate of (b) is via Lemma 2.1 equivalent to

Claim 2: Given M, r > 0 there exists K(M% r) > 0 such that if ||(p0,9o)||i/2 < M then the solution
of (2.6) satisfies |bi(t)iflt(0lli/2 ^ K(M,r) for all < > r.

This follows from Claim 1 and a Harnack type inequality of Pego [Pel, Lemma A3] for the abstract
parabolic equation zt + Az = f(z) which implies that for r > 0

sup
•€[t-rft]

This completes the proof of (a) and (b).
Next, as an intermediate step towards proving (c) we show

Claim 3: Given 7 € [5,1) there exists K(M,7) such that if (p0, qo) € X 7 and ||(p0, qo)\\y < A/, then
the solution (ptq) of (2.6) satisfies (p,q) € C([0,oo);X7) and suP<>0 ||(p(0.«(0)ll7 < W ) ) -

Here the fact that (p, 9) € C([0,00); X7) follows from [Hel, Theorem 3.3.3]. To deduce the a-priori
estimate, write (p, q) = z and use the fact that by Claim 1, sup t > 0 ||*(t)|| < C(M), sup t>01|/(*)| | <
K(M). Hence by Lemma Al in the Appendix sup t > 0 ||^47z(t)(] < K(M,7), proving Claim 3.

Proof of (c). If vo € Wo1'2, then (po,9o) = V(u0, vQ) € V(A), thus € X 7 for all 7 < 1. Hence
(P,?) = V{u,v) € C([0,oo);X7) for all 7 < 1. Moreover if ||vo||wi.* < M then ||il(po,9o)|| <
K(M), hence by Claim 3 P7(p(t),g(<))| | < K(M,y) for all ( > 0. Now choose 7 > | and use the
fact that X 7 <-> C1'" for 7 > f + f, giving p € C ^ o o ^ C 1 ) and sup t > 0 ||p(t)||c» < K(M), hence
tit € C([0,oo);C) and sup,>0 | |u t | | c < K(M).

Proof of (d) . As carried out in [BHJPS] for e(z) = z8 — *, (d) can be proved by simply replacing
the function spaces used in the proof of (a). One works with the space X = I j x C] , lets
V(A) = {p € W*'2 : p*U=o,i = 0} x Cj, and takes initial data (po,?o) € X^ (« € ( | , 1)), noting
that thanks to the imbedding X* *—• C1 x C1 and the assumption c € C2 , / is locally lipschitz
from Xs to X. The proof of Theorem 2.1 is complete.

3 Strong convergence for low-energy initial data
The static problem underlying equation (2.1), that of minimizing E(ti,v), does not attain its
infimum: every minimizing sequence (t^,i^) C ^ 0

1 | W x I? of E converges weakly (in WQ'1 X L7)
but not strongly (in WQ f l x L7) to the nonminimizingstate (w, v) = (0,0), while the strain ux forms
finer and finer microstructure (uj

x -^ v in the sense of Young measures, where v = {PX}*€(O,I) is
the homogeneous Young measure vx = \6Z_ -f (1 - X)6*+ with A = * + / ( z + — *_)).
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Remarkably,solutions (u(<), v(t)) to the evolution equation (2.1), despite the energy E(u(t), v(t))
decreasing strictly with time unless (tio,vo) i s a n equilibrium, do NOT mimick this behaviour as
time t - • oo. Instead, dynamics acts as a mechanism preventing the formation of finer and finer
microstructure in ux and all solutions with low initial energy get stuck in equilibrium states which
are not absolute minimizers of E but at best 'relative minimizers'.

To state this precisely, we recall that the equilibrium states are the time-independent solutions
of (2.1) (that is, the functions (u, v) € Wp'00 x L2 such that c(ut(x)) - a J?* u s const, v = 0),
and we assume throughout this section that the stored-energy function W satisfies (HI), (H2) and
(H3).

Theorem 3.1 There exists e > 0 suck that given any initial data (uo,t>o) € W0
ltO° x L2 with low

energy

the corresponding solution (ti(t), v(t)) o/(2.1) converges strongly in WQ'P XI? (I < p < oo^ to some
limit state (tioo,0) as t - • oo. Moreover this limit state lies in W0

1>o° X I? and is an equilibrium
state o/(2.1).

Remarks. 1) We will in fact show convergence in a slightly stronger topology: the strain ux(t)
converges not only in I/*, but boundedly-almost-everywhere as t —• oo. However, in general
ux(t) does not converge in I°°: initial data with smooth strain typically approach limits with
discontinuous strain. See Section 4 below.

2) In contrast to this delicate behaviour of the strain ux(f), nothing interesting happens to the
velocity v(t), and the above statement that v(t) —> 0 in L2 is in fact an elementary consequence
of the energy dissipation identity (2.3) and the a-priori estimates in the previous section: From
Poincare's inequality and (2.3) we see

r iMoiii.* < r H^wiik* < °°'
Jo Jo

thus / ^ j \\ut\\l2 —> 0 as t —• oo, thus (since supt>T ^||tif(f)Hia < oo by Theorem 2.1(b))

IM0lli» —0 ast-^oo.

3) In particular, from Theorem 3.1 we recover the interesting result of Ball, Holmes, James, Pego
and Swart [BHJPS, Theorem 4.1, proved there by contradiction] that no solution of (2.1) minimizes
energy globally as time t —» oo: since E > 0 on ivo

lt0° x L2 and since the mapping (ti, v) •-• E(u> v)
is continuous with respect to L3-convergence of v and convergence boundedly-almost-everywhere
of ur , we have (assuming without loss E(u0, v0) < e)

lim E(u(t),v(t)) = E(uooy0) > 0 = inf E.
o

4) The result of Theorem 3.1 was conjectured in [BHJPS], even without any restriction on the
initial energy, on the basis of the above nonminimization result and numerical simulations by
Swart and Holmes [SH]. We do not know whether the restriction on the initial energy is necessary.

The three subsections below are devoted to proving Theorem 3.1.

3.1 Parametrizing the set of equilibria
As pointed out in the Introduction, (2.1) possesses an infinite-dimensional continuum of different
equilibria. As a first step towards proving that each low-energy solution selects exactly one of these
equilibria as its final state (as claimed in Theorem 3.1 above), we present a "parametrization" of
the set of equilibria and show its "stability** under an appropriate notion of convergence.
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Notation. Throughout the rest of this paper, we fix r > 0 such that for A € [—r, r] the equation
<r(z) - A = 0 has exactly three roots *i(A) < *2(A) < *3(A). Moreover, we let

m := mm

M := max W(z)\.

Definition 3.1 We introduce the function

^tz\ ._ / >' z e UA€[-r,r] *

Ĥ e t£7t// ft/er to rp as the "phase function*, since given a strain state z, tp(z) indicates its "phase*
A, 2 or 3;.

Besides the phase function, the second quantity needed to characterize equilibrium states will be
the function

Since equation (2.1a) can be rewritten as

utt - (((r(*x) - of' u) + 0uxt) = 0

and corresponds to balance of linear momentum, it is natural to refer to cr(ur) - a/Q
rti as the

"elastic stress". (The "viscous stress" 0uxt does not play a role below as it decays to zero as time
t — oo).

For reasons that will become clear at the beginning of Section 3.2, in the lemma below we can
not afford to be cavalier about the distinction between elements of L°°(0,1) and their pointwise
representatives. This makes the statement of the lemma a little technical.

Lemma 3.1 (Convergence of elastic stress and of the phase function implies convergence of strain)
Let {if*} C W0

>o°, and assume there exists a subset Q C (0,1) of full measure and pointwise
representatives wk o/u* such that
(a) sup, ||ti*||L~ < K

(b) <r{wk(x)) - a / * xik =: A*(x) — A (k — ooj for some A € (-r, r) and allx£Q

(c) lim*-*oo V>(t£*(*)) exists and is finite for all x £ ft.
Then lim*_>c© tD*(x) =: w(x) exists for all x €& (note in particular that we neither have to pass
to a subsequence, nor to exclude a subset ofQ of measure zero). Moreover, its equivalence class
w satisfies \\w\\Loo < K, and u(x) := fi w satisfies: u € W^°° (i.e. in particular u{\) = 0),
<r(ux(x)) — a/0* u s A a.e. (i.e. in particular (u,0) is an equilibrium state of (2.1)), ^(ux(x)) =
lim*^oo il>(uk(x)) a.e., and

u* —• ux houndedly-a.e., in particular

uk-+u in Wl* (l<p< oo;.

Remark. In particular, by taking uk = u for some equilibrium state (ti,0) of (2.1), we obtain
the following corollary: each equilibrium state with <r(us(x)) — a/^t* € (—r,r) can be uniquely
recovered from
(a) the phase function ip(ux) £ I°°(0,1)
(b) the elastic stress c(ux) - a / ^ u s canst £ JR.

Proof. First we show that {/0* uk) is convergent in C([0,1]), as follows. Define

*• * € f t and iK«*(«) )««€ {1,2,8}
0, else

* € 0 and tl>(wk(x)) = oo
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Then in ft

s

«* + Ak) - X\ • «(<* [' «' + A»)l + xS • «* - X*o • *'• (31)

Thus letting t(x) := J£ \uk - uf| and using the fact that zJ(A) = *>(M)(\)) a n d h c n c e

we can estimate:

(since tt*(0) = «'(0) =

I r \3

3 T

) e ( 0 > l ) : 1>(wk (x)) *

+ 2K\{x € (0,1) : V ^ * ) ) # V-(̂

and thus
<(«) < «*.i • ? • («** " 1) for all * € [0,1].

Now A* —• A boundedly-a.e. (and hence in X1) as k —• oo and |{x 6 (0,1) : il>(wk(x)) ^
tl>(wl(x))}\ —• 0 as min{fc,/} -* oo by hypothesis, and hence e*(j —• 0 as min{*,/} —• oo. Conse-
quently

| | / ' u k - XTu'llcao.!]) - 0 (min{*, /} - oo).
Hence by combining this with (b) and (c), we deduce that the right hand side of (3.1) converges
to zero for all x £ fi, thus

wk-wl-+0 forallx€f2 (min{*,/} -> oo).

Consequently
lim*->oo fo ti* =: U exists for all x £ [0,1],

lim*-*oo wk =: u; exists for all x € fi.

Combining this with (a) and the fact that convergence boundedly-a.e. implies convergence in L1,
we have in particular

ti*-*u; in L1,

where w is the equivalence class of w. Thus (letting ti(z) := /Q
r u;)

, = lim / ti* = lim u*(l) = 0
*-*oo J o A—oo

(i.e. the boundary condition is preserved as k —• oo), and

O

hence U = f£ v. To verify the remaining claimed properties of u is now trivial.
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3.2 Reduction to convergence of mean elastic stress
According to our parametrization of equilibria introduced in Lemma 3.1, in order to prove Theorem
3.1 we have to show that along low-energy solutions of (2.1)
(a) *(*,(*, t)) - a ft u(t) - A € ( -r , r) a.e. as t - oo
(b) lim*_>oo V>(u*(£)0) exist* *&d is finite a.e.
In this subsection we reduce the problem of proving convergence of the above infinite-dimensional
set of parameters to the problem of proving convergence of a single one-dimensional parameter,
namely the mean elastic stress / 0 (<r(ur(x,<)) — a f£ u(x\ t))dx.

Before proceeding with this reduction, we have to address a minor technical issue regarding the
meaning of convergence a.e. of a noncountable family {ti>(<)}t€(o,oo) of L1 functions:

Definition 3.2 Let Mt)},€(o,oo) C Ll(0, 1), and let </> : ]R - • R U {±00} be any function. We
say thai j>(w(t)) converges a.e. as t —• 00 if there exist pointwise representatives w(t) ofw(t) such
that limt-too 4>(w(x}t)) exists for a.e. x € (0,1).

It is obvious that unlike for countable families of Ll functions, one can always violate the conclusion
"limt-too^ti^x,*)) exists a.e." by a bad choice of representatives w(t)y for any family {w(t)}
and any nonconstant function <f>. Thus when wanting to deduce pointwise information like (a)
or (b) above for a solution of (2.1), some care has to be taken as to picking "good" pointwise
representatives of the strain ux at each t.

Lemma 3.2 (Convergence of mean elastic stress implies convergence of elastic stress)
Let (u,v) be a solution of (2.1), and assume

«—0

Then

((T(u,(x,i))-a/o
rti(O)dx=:A exists.

<r(ux(xtt)) — a/^ti(<) —• A a.e. as t —• 00.

Lemma 3.3 (Convergence of the phase function)
Lei (u,v) be a solution of (2.1), and assume

Urn sup I / (<r(ur(x, t)) - a/*«(<)) dx
IT

Then (b) holds true.

Lemma 3.4 (Small initial energy implies small mean elastic stress)
Given 60 > 0 there exists eo(6o) (independently of a) such that every solution (u,t>) of (S.I) with
E(UO,VQ) < Co satisfies

limsupI / Uu,(x,t)) - afiu(t))dx
l-*oo \Jo x 7

<60.

Combining these three lemmas while taking 60 = 3f in Lemma 3.4 gives the following

Proposition 3.1 Let (utv) be a solution of (2.1) and assume that

E(uOyvo) < min{e o (^) ,3^} fc0 ** «» Lemma 3.4),

Urn / U(u,(x,i))-afiu(tj)dx exists.

Then (a) and (b) hold true. In particular (by Lemma S.I), (ti(t), v(f)) converges strongly in Wl'p x
L2 (1 <p < oo) to some equilibrium state (t*oo,0) as t - • oo, « » € W^1'00, and us(t) —> (iioo)r
boundedly-a.c.
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Proof of Lemma 3.2. We will prove that for any solution (u, v) of (2.1)

x -> 0 a.e. as f ^ oo. (3.2)- f
We write (p,q) = T>(u,t;). Arguing as in [Pel, Corollary 3.4] we see that there exists a subset
6 C (0,1) of full measure (independent oft) and a pointwise representative q of q € C([0, oo); Lf)
such that for all * € ft, «(*,•) is continuous on [0,oo), continuously differentiable on (0,oo), a
classical solution of the ODE

ft « -
|^(ar,t)| < |k(f)|U« for all (x\t) e fl x (0,oo), and (q)t is a pointwise representative of qt €
C((0, oo); I£°). By (3.3) and the fact that *^* =: v is a pointwise representative of u*, it is enough
to show that

qt - • 0 as t - • oo for a.e. x € (0,1). (3.4)

Consider the following modification of the Lyapunov function E:

Compute

JO/o Jo

Integrate over i € (0, T) and observe that the left hand side E(T) - £(0) stays bounded as T — oo
by Theorem 2.1(b), and that the second term on the right hand side / 0 f£ pqu stays bounded
since

< l
T

for some positive constant K and /Q
T ||tixt||^a = ^(£(tio,vo) - E(u(T)yv(T))) by (2.3). Conse-

quently

q oo
Jo Jo

and thus

I I q'dxdt <
Jo Jo

n qfdxdt-*

Hence by Fubini's theorem

Monotone convergence and the fact that qt is a pointwise representative of qt implies

f dt -•> 0 a.e. as t —• oo. (3.5)

In addition, by differentiating (3.3) with respect to t and using Theorem 2.1(b) which implies
*uPt>r IIPt(0llH"'* < oo for r > 0, we have the a-priori estimate

sup |ft«(*,t)| < oo for x € ft, r > 0. (3.6)

16



Combining (3.5) and (3.6) proves (3.4) and (3.2) and completes the proof of Lemma 3.2.

Proof of Lemma 3.3. By hypothesis and (3.2)

Urn sup | cr(u>(*,<)) - a £ t i ( i ) | < ^ a.e., (3.7)

and by (2.3) and by hypothesis

J. (3.8)

Combining (3.7) and (3.8), we thus have

limsup|cr(tD(x,t))| < r a.e.
tt-»00

Since tD(x,-) is continuous in t for a.e. x, for a.e. x there exists T(x) such that )
(since it is connected) must be contained in a connected component of <r~l([—r,r]). Because the
connected components are the sets UACI-M-] *jW 0 = *> 2, 3), for a.e. z there exist T(x), i (x)
such that

tZ>(*,i)€ | J *,(A) for all i > T ,

i.e. limt-^oo ^(^(^,0) exists and is finite a.e.

Proof of Lemma 3.4. The gist of the argument lies in Maxwell's equal area rule: the stress c(uz)
of minimizersof I[u] = /^ W(ux(x))dx subject to linear boundary values u(x)\{0)i) = Lx must be
identically equal to the Maxwell stress *M = (W)f(L) (where W*m is the convex envelope of W)>
which in our case is CM = 0. See e.g. [Fr2] for further information. To prove the "averaged" and
"perturbed" version of this statement claimed in the lemma, we argue by contradiction. Suppose
there exists 60 > 0 and a sequence (uk,vk) of solutions of (2.1) such that

lim £(tift(

limsupI /

Since by (3.3), (3.4) and Theorem 2.1(b)

So.

- 0 («->«>) for a l i i ,

and since E(uk(t),vk(t)) decreases in t for all k, we can choose t* such that for u* := u*(i*),
vk := vk(tk)

£(«*,«*)-»0 a s i - o o (3.9)

jf'(<r(ti*) - a£ti*)| > «0 for all * (3.10)

-»0 M t - o o . (3.11)

But by (3.9) t£ —• { ^ } in measure, hence <r(u*) —• 0 in measure, and by (3.9) and (3.8)
l|a/<fS*IU-->0, hence

4r(fi*) — tt/^5* —• 0 in measure,

contradicting (3.10) and (3.11).

3.3 Convergence of mean elastic stress
Here we complete the proof of Theorem 3.1 by showing
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Lemma 3.5 (Convergence of mean elastic stress)
Let co he as in Lemma 3.4, Ci as specified below in (8.24), and let (u,v) be a solution of (2.1) with

E(u0)vQ) < min{eo(^),5^,ei} =: c.

Then x

lim / U{ug(x,t))-afZu{t))dx exists. (3.12)

-At)

By Proposition 3.1 in the previous section, this establishes Theorem 3.1 with the above choice of

Proof of Lemma 3.5. This is the most delicate step in the proof of Theorem 3.1, and can be
proved as follows. Suppose (3.12) fails. Then the w-limit-set of c, {A € -R : 3t* —> oo such that
c(tk) —• A}, which is connected since c(t) is a continuous function oft, must contain a nonempty
interval I C (-T>3f )• N o w P v e n A € I choose tk — oo such that lim^-oo c(tk) = A. By (3.5),
this means

<r(ux(xttk)) - a/o
ru(tjk) - • A a.e. as tk -> oo.

(Note that here and from now on, we no longer have to distinguish between elements of U and
their pointwise representatives, since we are dealing with countable sequences of functions.) Also,
by the choice of e, Lemma 3.3 and Lemma 3.4, the phase function converges:

lim ip(ux(tk)) exists and is finite a.e.

Consequently, letting t* —• oo, by Lemma 3.1 we obtain the existence of a function ux £ WQ'°°
such that

&(u~) — a rf tiA s A a.e.,
J° (3.13)

oo 1>(u9(tk)) = : V̂ oo a.e.

Recall that A € was arbitrary, i.e. such a ux exists for all A 6 /; note also that the phase function
of the ux is independent of A. Now let us investigate how the family of equilibria {UA}A€/ varies
with A. First, for the sake of motivation consider the case where

i M * ) = lim * M * . * * ) ) € { 1 , 3 } a.e., (3.14)

or equivalently a'iy^) = W"(ux) > 0 a.e., that is to say all the ux consist only of locally stable
phases. We claim that we now arrive at a contradiction, by appealing to the following

Comparison principle for weak solutions of the ODE <r(ux)x = au.
Assume u, u € Wl%o° satisfy

^(«*(*)) ~ <*fi* = X a.e.,
A < A, ti(0) = S(0) = 0, *(um(x)) and a(us(x)) € [~r,r] a.c., t(u,) = *(fi.) a.e., ^(ti.) € {1, 3}
a.e. ("no unstable phases"). Then

u(x)<u(x) for all x € (0,1].

Proof of Lemma 3.5, ctd. Pick A, A € /, A < A, and then the equilibria tiA, ux constructed in
(3.13) satisfy the assumptions of the Comparison Principle, hence
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contradicting the boundary condition tiA(l) = ti*(l) = 0 and completing the proof of Lemma 3.5
in the special case of when (3.14) holds.

Proof of the Comparison Principle. Under the assumption rp(ux) = ip(ur) £ {1,3} a.e., the
ODE solved by u and ti becomes elliptic, so comparison principles do not come as a surprise even

though the one needed here is somewhat nonstandard. Let Xi(*) := < Q1 ^ ~ * • Then

u* = Xi • *i(<*fiu + A) + xa • z3(af^u + A) a.e.,
_ . _ (3.15}

U* = Xi • *i(or/*ti + A) + xa • *s(a£ti + A) a.e..
As x —• 0+ , J^ u and / * u tend to tero, hence (since A < A) for small enough x > 0 we have

Thus, since Zj(X) (j = 1,3) are strictly increasing functions of A (note ;jj*i(A) = y#/Ajo) > 0 f°r

A€[-r,r]),
zj(QIou + A) < ^ i ( a / ^ + A) for x > 0 small and i = 1, 3. (3.16)

Now integrating (3.15) and using (3.16) gives

t*(x) = I ux < I ux = ti(x) for x > 0 small. (317)
Jo Jo

Now suppose {x € (0,1] : ii(x) > ti(x)} =: 0+ ^ 0, and let x* := inffi+. By (3.17), x* > 0.
Hence

u < u for 0 < x < x*
=> Iou<Io^ forO<x<x*
=> Q/*U + A < af*u + A for 0 < x < x*
= > ^(a/o

rti + A) < Zj(afiu + A) for 0 < x < x* and j = 1, 3
=> ug < ux a.e. for 0 < x < x* (by (3.15))

contradicting the fact that u(x*) = ti(x*) by the definition of x*. The proof of the Comparison
Principle is complete.

Proof of Lemma 3*5, ctd. It remains to prove the Lemma with the assumption (3.14) replaced
by the assumption of small initial energy; this means that ipoo(x) is now allowed to take the
"unstable" value 2 on a set of small measure. This more complicated situation, in which the ODE
under study is no longer elliptic, will be handled by means of the following

Refined Comparison Principle for weak solutions of the ODE c{ux)x = au.
There exists €\ > 0 with the following property: Whenever u, u £ Wl*°° satisfy

*(**(*)) - <*&* s A a.e.,
<r(ux(x)) - aj*u s A a.e.,

A < A, ti(0) = ti(O) = 0, <r(ux(x)) and tr(ux(x)) € [~rtr] a.e., 1>{ux) = j>(ux) a.e., and

I W(ux)<cx
Jo

"the proportion of unstable phases is small", then

«( l )<u( l ) . (3.18)
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Remark. That is, roughly speaking: when violating the assumption uif>(ux) = ^(us) 6 {1, 3}
a.e." in the ordinary Comparison Principle (which we had seen to imply u(x) < ti(x) for all
x > 0) on a set of small measure, an averaged form of the Comparison Principle survives. This
is by no means obvious, as not only u-u may now decrease on {x : ip(ux(x)) = 2}, but also on
{x : il>(ug(z)\ € {1,3}}: If, say, ̂ (ur) = 2 on some interval (0,xi), ^(ur) = 1 on some interval
(*i 1*2)1 and A — A is small compared to xi, then

I u-l t*<-(A-A),
Jo Jo

and hence

(u - u)g s xi • (*i{JZ* + X) - *i(/<f ti + A)) < 0 for x > xx, x near xu

that is to say us decreases further for x > xi, x near x\. This example suggests at first sight that
inequality (3.18) should only be expected to hold if A — A is large compared to t\. However, the
proof below shows that (3.18) in fact holds without such a restriction.

Proof of Lemma 3.5, ctd. The lemma now follows immediately from combining the Refined
Comparison Principle with the proof in the case when (3.14) holds.

Proof of the Refined Comparison Principle. Let Xt (i = 1» 2, 3) be as defined in the proof
of the Comparison Principle, and define

fitt:={*€(0,l): iK*) = 2}
ft, :={x 6(0,1) : iH*)€ {1,3}}.

The main idea in the proof is a blow-up argument with respect to A. Namely, we consider the
difference quotient

w := •
A-A

This difference quotient satisfies a "nice" linear nonautonomous ODE, namely

f T X)-«(«£« +A)
A-A

for some C(x) between <r(ux(x)) and <r(u*(x)). (In particular, C(«) € [-r,r] a.e.) We would like to
prove w(l) > 0, and do this in three steps:

\[ u; <c**-l<c*-l=:C for all x € [0,1]
\Jo I

(3.20)
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To prove (3.20), note that t(z) := / * |w| satisfies

0 < £*(*) = M*)l < j f

and so (3.20) follows from Gronwall't inequality and the fact that ((0) = 0.
To show (3.21), note first that the conclusion is clear for x near zero. Suppose for contradiction

that {x € (0,1) : a J* w < - £ } ^ fl, and let *• := inf{* € (0,1) : af£w < - £ } . Then x* > 0,
and

a I w>-\ forallx€[0,ar*].
Jo "" *

Hence by (3.20)

Thus

1 /"* /"*

m

and consequently

contradicting the hypothesis of (3.21). This proves (3.21).
Finally, to deduce (3.22) we use (3.21) and (3.23) to estimate

«*>{ *• Z€Q-
consequently

and the quantity on the right hand side is positive by the hypothesis of (3.22). This establishes
(3.22). Finally, letting

W o:= min W(z2{\))

(note Wo > 0) we have

Hence if

then the hypothesis of (3.22) holds. Thus the Refined Comparison Principle holds true with the
above choice of c\. The proof of Theorem 3.1 is finally complete.
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4 Layer dynamics
In the previous section we proved that each solution (u(t),v(t)) of (2.1) with low initial energy
approaches some equilibrium state in the limit t —• oo.

We now focus on a restricted class of initial data - those with a transition layer structure -
and investigate more closely how the evolution towards equilibrium occurs, and in particular why
solutions fail to form microstructure and how the limit state "selected" by the evolution law (2.1)
depends on the initial state.

Throughout this Section, the stored-energy function W is assumed to satisfy (HI), (H2) and
(H3), and the initial data (uo,vo) € WQ'°° X L7 will be required to satisfy

(Al) (smoothness and a-priori bounds)
«o € C 2 , vo € Wo1'*, I I M r l U - + ||vo|k>.t < M

(A2) (low initial energy)
E(uo,vo)<€

(A3) (no transition layers at the boundary of (0,1))
r , (0) := {* € [0,1] : |(«o).(*)| < />} C (0,1)

(A4) (steepness of transition layers)
l(«o)..(*)| > K in £,(0)

for suitable constants M, c, p, K > 0. Here the crucial conditions are (A4) and (A2).
(A4) means that |(tio)**| must be large (i.e. the graph of (uo)x steep) whenever (tio)r is near

the unstable state 0. Note that by (A4), (A3) and (Al) (which in particular requires ||uo||ca < oo),
£p(0) consists of a finite number of connected components or "transition layeri* [a?, b°] (0 < aj <
6j < ... < a°N < b°N < 1), in each of which (uo)x is strictly monotone and has exactly one zero *?.

Since the constant e will be required to be small, (A2) means that the strain (uo)r must be
close to z_ or 2+ inbetween layers. See Figure 1.

Theorem 4.1 Given an arbitrary constant M > 0 and given any interval [—p, p] in which a9 < 0,
there exist e(Myp), K(M,p) > 0 such that all solutions (u,f) of (2.1) whose initial data satisfy
(A1)-(A4) have the following properties:

(PI) (preservation of the number of phases / no nucleation or coarsening)
The number of zeroes o/u r(- , t ) is finite f positive, and independent oft. Moreover,
denoting the zeroes by 0 < Xi(t) < ... < xjv(t) < 1, each Xi(t) depends continuously on
<€[0,oo).

(P2) (preservation of transition layer structure)
The number of connected components ofCfi/7(t) := {x € (0,1) : |u*(*,f)| < p/2] is fi-
nite, positive, and independent oft, and in each connected component, ur(*,i) is strictly
monotone and has exactly one zero. Moreover, denoting the connected components by

M 0 . *«(*)] & < «i(0 < *i(0 < - < M O < MO < U <** <*.(0, *i(0 *****
continuously ont € [0,oo).

(P3) (lock-in and steepening of transition layers)
Forallt>0,

M l ) , *,(*)] C [a?, 6?] Vi, in particular xtf) € [a?, 6?]

$ e * Vx € USL
^ e ^ Vi,

where 7 = ^ miif-M] Kl > 0.

(P4) (exponential convergence of transition layer positions)
limt_»oo *i(t) =: *J exists for all i, x\ £ [aj, tf] (thus in particular 0 < x\ < ... < x% <
1), and MO - *?| < min{|6? - a?|, # e - * } .
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(P5) (dependence of the limit state on the initial state)
lim<_>oo ux(t) =: (u*)x (which exists as an [/•limit by Theorem S.I) is continuous on
(O,l)\{*J,.. . ,x^} but discontinuous at every x*, and (letting xj = x§ = 0,
«S!r+i = V

where ip(z) is the phase function introduced in Definition S.I.

(P6) (exponential convergence of the solution)
There exist C,Y >0 independently ofp such that forp£ [2,oo),

However,

||(ti(«),*(O) - (u*,0)\\Wi.-xL, + 0 (t -> oo).

(P7) (variational properties of the limit state)
(u*,0) is a local minimizer of E(u,v) in W^'00 x L2. However, if the coefficient a
in equation (2.1a) is nonzero then (u*,0) is neither a global minimizer of E(utv) in
WQICO x L2, nor a local minimizer of E(u,v) in WQ'P X L2 (l<p< oo^.

Figure 1. A typical initial tUte and iu Urge time
limit m described by Theorem 4.1.

Remarks. 1) The lock-in and sharpening of strain interfaces as captured by (P3) was observed
numerically by Swart and Holmes [SH], whose numerics in fact motivated us to investigate this
issue analytically. For similar numerical observations in a related model (whose underlying free
energy does not contain a displacement penalty term cru2 but a strain gradient term (u«,)2) see
[BG], [GB]. The proof of (PI), (P2), (P3) proceeds by explicit construction of an invariant region
(see Claim 1 below) in which transition layers are trapped; some of the underlying ideas are adopted
from the work of Pego [Pel, Proposition 6.2] on one-dimensional nonlinear viscoelasticity.

An inkling of why an equation like (2.1) may exhibit a lock-in effect like (P3) can be had from
the behaviour of a special class of solutions to (2.1a) in the special case a = 0: Pego [Pel] shows
that two strain phases u>_ and u>+ can be connected by a travelling wave u*(x,i) = w(x — ct)
(ttf(x') —• w± as x' —» ±oo) if and only if either c = 0 (that is, (ti,0) is an equilibrium) or the
"chord criterion" is satisfied:

The chord connecting the points (u>_,<r(u>_)) and
(w+,<r(w+)) does not intersect the graph of c.

We emphasize that the chord criterion forbids the existence of travelling waves whose phases w . ,
10+ are dose to the minimizing phases *_, r+, unless the wave speed c is exactly zero. Note
also that this lock-in-effect for travelling waves underlies (and is reflected by) the 'kinetic relation9

obtained in the limit of vanishing viscosity by Abeyaratne & Knowles [AK] for the motion of a
single interface shock in the system of conservation laws a = £ = 0: For a special piecewise linear
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choice of <rt these authors show [AK, Figure 13] that the resulting kinetic relation represents a
stick-slip-system, that is, the interface is locked in until the 'driving traction' W(w+) - W(w-) -
\(<r(w+) + <r(w-))(w+ - u>_) (which is zero at (u;+, w~) = (r+, z . ) by Maxwell's equal area rule)
exceeds a critical level. (For a general discussion of 'kinetic relations' and forces on interfaces in
two-phase materials, the reader may also consult [Gu, Sec. 5].)
2) Even though initial data satisfying (A1)-(A4) can have only a finite number of transition layers,
provided M > max{|z_|, |*+|} the class AM^K of such data contains elements with an arbitrarily
large number of transition layers, since no bound from above is imposed on the steepness of the
layers and since the condition £(uo, vo) < * can be met by letting (tio)* « *+ or *_ inbetween
layers. The fact that patterns with an arbitrarily large number of phases are stable under the
dynamics underlines the genuinely infinite-dimensional nature of the system (2.1).
3) The behaviour of transition layers as captured by (P1)-(P5) is "local", in the following sense:
provided assumption (A3) and its definition of Cp(0) are changed to

(A3)' £,(0) := {x € A : |(m).(*)| < p } C A

where A is the closure of some open subset A of (0,1), conclusions (P1)-(P5) remain true for the
solution restricted to A, as is clear from the proof below. Note, however, that in the interesting
situation of initial data (tiO)x « 0 outside A, the nonlocal hypothesis (A2) imposes the constraint
that the measure of (0,1)\A must be small.
4) The nonconvergence result in (P6) is clear from (P5): since ti*(-,f) is continuous for all t and
its limit is discontinuous, the convergence cannot be uniform.
5) By contrast, the first part of (P6), exponential convergence of tir(», f) in U% is rather less obvious.
It clarifies how the competition between the exponentially stabilizing behaviour of equation (2.1a)
away from the transition layers (see the stability result in [BHJPS] for small W1)OO-perturbations
of weak relative minimizers u* of J[u]) and the exponentially destabilizing behaviour in the lay-
ers themselves (see (P3)) is decided: the interaction between these two effects results in overall
exponential stability.

Both this result — and the proof — is in these authors' opinion more interesting than the
usual "exponential stability by linearization" results in the PDE or dynamical systems literature.
Namely, in the lAnorm, in which the strain field ux(t) approaches its limit state, the nonlinear term
*<>(0'(ux(t))) in equation (2.6a) is not locally dominated by the linear terms, or more technically
speaking: the mapping / »-• cr(f) from U —• L* (1 < p < oo) is nowhere Frechet-differentiable,
for every a : 2R —• JR which is not affine. However, in the L°°-norm (or any stronger norms like
W71^-norms), in which the mapping is Frechet-differentiable so that the nonlinear terms are locally
dominated by the linear terms, we know that ux(t) does not converge as t —* oo.

This situation will be handled by combining the lock-in result (P3) with a new lemma for the
abstract parabolic equation z% + Az = f(z) (Lemma A2 in the Appendix), which extends the
work of Henry [Hel] from Frechet-differentiable situations to a more general scenario that allows
to analyse the speed of convergence of smooth functions to discontinuous patterns.
6) The variational stability result in (P7) can be viewed as a contribution towards the fundamental
issue (C) from the Introduction, raised in a much more general context in [Ba]. For the specific
model studied here, the conclusion of (P7) was conjectured in [BHJPS], for "generic" initial data.
Regarding the involved Sobolev norms, let us remark that (u*, 0) is a local minimizer in W<J|0° x I?
of E(uy v) if and only if ti* is a local minimizer in W0

1|O° of J[u] (J as defined in (1.7)), which is in
turn equivalent to ti* being a 'weak relative minimizer' of J[u] in the language of the calculus of
variations [Ce].

Also, this result parallels in an interesting manner the behaviour of a numerical minimization
algorithm for the functional J[u] proposed recently by Ma & Walkington [MW], where the authors
observe convergence to equilibria of the discretized functional which are not global minimizers
but discrete analoga of the local minimizers described in (P7). Note that their algorithm forbids
interfaces of the limit state to move as the computation is done on a fixed mesh and the strain of
typical limit states jumps at (almost) every grid point [MW, Figure 3).
7) We emphasize the asymmetry in the appearance of the Wl'°°- and the Wl ^-norms in statements
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(P6) and (P7):
(u(t),v(t)) converges to (u*,0) in W^ x L2, but not in WQIO° X I?\
(ti*,0) is a local minimizer of E(u, v) in W^°° x I 2 , but not in Wo

lj> x I 2 .
From the viewpoint of the geometric theory of dynamical systems, this is a genuinely infinite-
dimensional subtlety, with no analogon in finite-dimensional systems. However, on the level of layer
dynamics there is a simple interpretation: the limit states are only minimizers of the Lyapunov
function subject to an asymptotic constraint imposed by dynamics, namely the lock-in of strain
interfaces.

Proof of (PI ) and (P2). We fix a solution (ti, v) and write (p,q) = V(u,v). First, let us collect
together the various a-priori estimates needed later. From (Al) and Theorem 2.1, there exists
Ki(M) such that

(4.25)

(4.26)

sup ||-^||x,*° = sup || *1 lli°° < Ki(M)9 (4.27)

(4.28)

From (A2), the definition of E and (2.3),

L« < 2||af/0*ti(<))||L~ < 2\Z2aE(uOivo) < 1\Flctk (4.29)

(as already used in (3.7)), and

ll~"7plU°° ^ "sllKOIk1 ^ -j\/2£l(uo,t;o) < "^V^e. (4.30)

Furthermore, letting

we have
Jo*(**(*)) ^ K*(M)\/E{UQ%VO) < Ki(M)\/l. (4.31)

Finally, define

(To I~ inf \(T |,

tr- := inf |<r'|,

t r + : = ^ sup |<r'|,

let I? € (0,p/4) (r/ to be specified later), and set

After all these estimates and definitions, we now introduce the crucial technical tool for proving
(P1MP5), the set
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Claim 1. Assume K > (1 + ^)#i(A/) , e < min{&-£-, (jffijfr))»»^sir}* Then

(i) AO Q Wo) Vt > t0 > 0 (monotonicity),
and for all z € £(t)
(ii) k*(*>OI>«7tM*>0)| (exponential growth).

First, let us prove (i). By (4.30), (4.31), (4.29) and the choice of c

I I ^ I U ~ < » ? forall<>0, (4.32)

i

^(u«(0)ll ^ a^ for all * > 0,
o ""

for all t > 0.

Now the interval [-0poj0po] is, at each point z € (0,1), a negatively invariant interval for the
nonautonomous one-dimensional ODE

(4-33)

=: /<*)(,(r,0,t), (4.34)

because at |?| = 0po we have (using |us | = \$ + $\<i) + f>o = P and sign(us) = sign(g))

(435)

- (4.86)

-1 - V - V) = <ro{p - 4*7) > 0. (4.37)

This proves (i). To show (ii), fix t and fix i € C(t). By (i), x € £(«) for all s € [0,t], and thus in
particular |ur(x,«)| < p for all s € [0,i]. Consequently from (4.28)

£|«.(.,.)| = sign(gg(x,.)

> k(*«)l

Thus because |«,(x,«)| > 0(K - Ki) > &Ki at « = 0, |«,(x,«)l > If ^ i for all s € [O.t], and
consequently

^ M * . « ) l > 0l?«(*.*)l = Tl?«(*,*)l for all x € C(t) and all*€ [0,t).

Integrating this differential inequality gives (ii), completing the proof of Claim 1.

Claim 2. Assume K > Ki(M) max{l + £ , 4 } , and let e be as in Claim 1. Then £,/s(f) C C(t) C
^ ( 0 ) , and |uM(x, <)| > fe 1 " «» ̂ / a ( 0 . for all t > 0.

Indeed, if x € £,fi(t), then |u,(x,OI < p/2, hence (by (4.32)) | i i | ^ | = |« r - §| < p/2 +17 < p0,
hence x € £(0> and furthermore by (4.32), (4.27), Claim 1 and the fact that K >

I«~OM)I > 1 ^ 1 - 1 ^ 1
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This establishes Claim 2.
Next, we show that the number of zeros of tf*(*,0 and the number of connected components

of CPi2{t) is conserved, and that the zeros and the connected components depend continuously on
t. From Claim 2 and the fact that | |ti(-,0llc < oo for all t > 0, it is clear that at every t € [0, oo)
Zp/iit) possesses a finite number of connected components M0»M01 (0 < a i M < MO < — <

aN(t) < 1>N(t) < l)i in each of which vx(-,t) is strictly monotone and has exactly one zero *,-(<).
Also, N(t) > 1 because the boundary condition ti(O,f) = u(l, t) = 0 implies that u r(-,0 must have
at least one zero. We would like to prove that N(t) is constant and that the a,, t t, xt depend
continuously on < 6 [0, oo). To this end, we apply the implicit function theorem, respectively, to
the equations

I -P /2
•P/2 = 0 ,

I ti,(x,f)
noting that by Theorem 2.1(d), y, yr £ C((0,1) x [0,oo)) and that at each zero (xo,to) € (0,1) x
[0,oo) of p, \gx\ > K/2 by Claim 2. That is, for each t0 the set {g(xO}to) : (xo,to) is a zero of g)
does not contain a critical value (with respect to x) of y(*,fo). Hence by the implicit function
theorem, the number of zeros of y(-,<) is independent off (i.e. N(t) = const =: AT), and the zeros

)> *<(<)» *<(*) d«P«nd continuously on i. This proves (PI) and (P2).

Proof of (P3). From Claim 1 and from arguing as in our above analysis of Cp/^(t)y we can write

AO = Ul!Li[**(O.ft(*)] for ° < ° i (0 < AM < - < a ^ ( 0 < A^M < !» wherc t h e a«» ft d e P e n d

continuously on t. Now from Cfi/2(t) C £(f) C £p(0) we deduce

[«*M.M01 £ [a«W, AMI £ [a?,6?] for all i , (4.38)

proving the first part of (P3).
The second part of (P3) was already proved in Claim 2.
The third part of (P3) is a trivial consequence of the second part: For all t, t we have

P =

Proof of (P4). The key to understanding (P4) lies in the monotonicity property stated as Claim
l(i) above, which implies [<»,•(<),&(<)] Q M<o)> A(<o)] for all t > t0 > 0. That is, the [<*,(<), ]
form a nes<e(f family of intervals. Since

*i(t) e M0, MO] £ M 0 . AMI £ M.*a.

it is enough to prove

x6"1*- (440)

But this follows readily as in (4.39):

2p > 2po m
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Proof of (P5). We introduce the sets

:= {x € (0,1) : ^ € *(*([-Pi, *]))} (• = 1,2,3),

where pi € (3rjr,po] = (Sfl.P "" $ (further restrictions on pi will be imposed later). Note that if
pi s po, then £2(f) = £(<). As proved in Claim 1, £(i) C £(t0) for t > t0 > 0, since the unstable
interval [-Ppo,0Po] i* negatively invariant for the ID nonautonomous ODE (4.34). Similarly:

Claim 3. Assume e < atrj2 • min{^r, /KaAj\\*» ab)- Then:

(0 &{t) 2 ^§(<o) for all t > t0 > 0 and i = 1,3.

(ii)

The proof of (i) is very similar to that of Claim l(i). By (4.30), (4.31), (4.29) and the choice of e

<

ir- 7, (4.42)

< <r-V (443)

for all t > 0. We claim that if q(x,t) = /?*j(*(±/>i)), then «**(*>*) l i e s between Zj(<r(pi +17)) and
Zj(a(pi — 17)) (hence in particular sign(ur(z,<) — 2j(0)) = sign(^(x,f) — f3zj(Q)) and tr(ux(x,t)) €

). Indeed, by (4.41)

and similarly

Consequently, the interval Ij = [Pzj(a(pi))t f}zj(c(—pi))] is for j = 1,3 a positively invariant
interval for the ODE (4.34), since for q(x,t) € dlj

0.

This proves (i). Now we prove (ii). Without loss of generality, assume u,(x,f) < 0. If x £ £l(0»
then (ii) follows from (i), for any r > 0. So assume x $ C1^). Hence for all * > t with x € Cx(s)

by estimating as above. Also, tiat{q(x,t),\Pzi(*(pi))t0zi(v(-pi))]) < Kx(M) by (4.26). Hence if
x $ Cx(8) for all s € [t,i + r] and some r > 0, then

,< + r),
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Since the left hand side is greater or equal to sero, this implies r < g / f c ^ A , proving (ii).
Now assume that p\, 77 are so small that the interval [-r, r] from Definition 3.1 contains cr([-pi —

liPi + »?])• Then since <r(ur(x,t)) € *([-pi - f?,Pi +1?]) whenever x € &(t) (j = 1,3), we have

This together with Claim 3 allows to calculate ^>(t£): Assume without loss (tio)*l(rj,*j j < 0.

Then (t«o)*ltf.(«),«H*(f» < 0 for all < > 0, hence 1>(ux(,t + •))|<*<t)loH.1(t)) = 1 for all « > r, by
Claim 3. Consequently,

Since Ut>0(A(0>a i+i(0) = (*?>*?+i)> ^ i s proves the last part of (P5). Now it is clear that
ti* is discontinuous at the x* (since il>(ul) jumps), and continuity on (xj,x*+1) follows from the
equilibrum equation: *(t£(x)) = a / * um + A for some A € JR, and hence

t£ = Zj(aJ^um + A) in (xj ,xj+ l ) for some j € {1,3} independent of x,

consequently u e C2((xJ,xj+1)) (€ C°° if cr is C00). (P5) is proved.

Proof of (P6) . We will apply Lemma A2 (or more precisely: Corollary Al) with A, / , z(t) =
(p(0, q(t))y a = 1/2 as in Section 2, but X = L\ x L\ and 2>(,4) = {p € H^2'2 : p*|{0,i} = 0} x L\
unlike in Section 2. Unless cr is globally lipschitz — which we have no intention to assume —, / is
now not defined on the whole of X1'2, but x is a global solution € C([0,00); Xll7)C\Cl((Q> T); X)f)
C((0tT);V(A))t as required. We set xo := (0 ,^ ) := (0,/9ti;) so that x(f) = (p(<),«(0) - (0,**) =
xo in Wi*2 x l j = X 1 ' 2 as f —• 00, and let B be the Gateaux derivative of / at xo- Let us write
out what x(t) - xo, B and g(x(t)) are:

We verify hypotheses (i), (ii), (iii) of Corollary Al.
(i) is clear: in fact, B is a bounded linear map from X to X.

(ii) is taken care of by (P5) (which implies infr€(O,i)^'(ti*(x)) > 0) together with a Lemma of Ball,
Holmes, James, Pego and Swart:

Lemma 4.1 (BHJPS, Theorem 3.3) With A, B as above and X = L\xU>a, V(A) = {p € W2'2 :
pr|{o,i} = 0} x lPa (I < p < 00^, the spectrum of A — B lies in

{\€C:Rt\> min{£ JnWVto) . f »•

(In [BHJPS] the result is stated with p = oo, but their proof in fact does not require any knowledge
about p.)

It remains to verify (iii). Since ||(p,9)|| = ||p|U» + I Mix.',

< 4 f k(u,(0) - <r(*l) - •«)(«.(<) - ul)\7dx.
Jo

Now at each time t, we split the domain of integration into two parts, a "stable" and an "unstable"
region:
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First, let us deal with the stable region.
Since c is continuously differentiate, there exists c(A) —• 0 (A —• 0) such that

Z-Zo

Now if x € fl,(<), then ux(xyt) lies between zj(*(pi + *))) ̂ ^ *j(<K-Pi " *?)) f o r 8 o m e i 6 O»3}-
By the monotonicity of the Qs(t) (by Claim 3, Qs(t) D fij(*o) for t > to > 0), so also must tij(x),
with the same j , hence

M * , < ) - n;(x)| < \zj(a(Pl -h i?)) - ziW-H - f?))| < ^ | p i - f t ? - ( -Pi- f?) | = J t • 2(pi + 17).

Now choose pi < 417, and then

where c(iy) —• 0 as rj —• 0.
In the unstable region, the integrand is not small, but the unstable region itself shrinks expo-

nentially: By Claim 3, f2w(t) C C(t - r) for t > r, hence by (4.40)

,0.(01 s
and thus by (4.25)

KM<) - *{ul) - <r'(ul)(ux(t) - u
t)

Consequently by combining (4.44) and (4.45)

Now note that \\x(t) - *0 | | < ||*(<) — *o||i/2> ^nd choose 17 small enough so that ^ ^ < r0, where
r0 is the constant supplied by Corollary Al. Then Corollary Al applies and we obtain:

for some constant M and all i < min{7,2«} = minfr,^, 2inT*W*y '(**(*»} ^ ^ hence in parti-
cular for

7 {^ ,^ inf

This establishes (P6) in the case p = 2, because

HK<),
and the inverse Pego transform V~l : W*'2 x i j —• W^f2 x X2 is continuous (see Lemma 2.1).
Finally, for p € (2,00) we can estimate using (4.26) and Holder's inequality
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A straightforward calculation shows that the operator norm of V'1 in C(W^2 x Lg, WQ* X I 2 )
is bounded independently of p, precisely:

H*"1(P,*)lki.pxL» < ( | + l)ll(P,«)lk*.»KLP for all (p,f) € Wl2 x 2£,

and (P6) follows.

Proof of (P7). The local minimization property of (ti*,0) is a consequence of the (non-elementary)
fact (P5), which implies <r'(t£(x)) > inf {*'(z) : z € « iWhp,p] ) )U: 3 Whp,p] ) ) } > 0 for all
x € (0, l ) \ {xj , ...,*AT}» together with the following (elementary) lemma on the variational integral

Lemma 4.2 Let u0 € WQ'°° be a stationary point of J (that is to say j;\,=oJ(vo + €$) = 0 for
all 4> € W^°°) with ^((«o)«(x)) > a > 0 a.e. TAcn ti0 M a /oca/ mtntmuer o/ J in W^00.

Proof of the Lemma. This is a standard fact from the calculus of variations, but for convenience
of the reader we include a proof. Let u € W£l0°» ||u* - (IIO)C||L~ < *, c € (0,1). Since W is C2,
^(tix) = W((uo)x) + c((uo)r))(u, - (uo)t) + ^ ( t i r - (tio)r)2 for some function ^ (which can be
chosen to depend measurably on z) with values ((*) strictly between ux(z) and (UQ)X(Z) . Now if €
is small enough, then <r'(£(*)) > a/2 > 0. Also, since uo is a stationary point of J (or equivalently:
(tio,0) is an equilibrium of (2.1)), there exists A € 1R such that c((uo)x(z)) — a f* uo = A a.e.
Hence we compute

/(tt)-J(tto) = ^ ( ^

T\ f1 ̂ ( ( « - «o)x)2 + | ( « - «o)2)
=0

> o.
The last part of (P7) is taken care of by another elementary lemma:

Lemma 4.3 Let a > 0. Then J does not possess any local tninimizers in WQ>P (I < p < ooj.

Proof. (For W(z) = fr*"1)* the argument is sketched in [BHJPS, p. 23].)
Fix p € [l,oo). First, we prove that UQ S 0 is not a local minimizer. Let A s= M *+M_, w

f 2 . , 0 < x ̂  A ^ ^ j = . j * ^ t e n d e d periodically to the whole of R, tin(x) = ̂ ti(n

"(l)> e l i X - 1 / n Then

J(«n) - J(oo) = -^^(0) + ~ I u7 < 0 for n large enough,
n n ° Z Jo

but 5n -+ tio in M^1^ as n -* oo.
Now we prove that tio & 0 is not a local minimizer. To this end, let x0 € (0,1) be a point where

|uo| achieves its global maximum. Since u0 ̂  0, tto(xo) # 0. Without loss of generality, assume
t*o(xo) > 0. Set un SB min{uo,t*o(xo) + fin(#+ £ - xo)}. Then for n large enough,

J{un)~ J («o)<0 ,

but un —̂  tio in WlJ> as n - • oo. The proof of the lemma is complete.

This concludes the proof of Theorem 4.1 and our discussion of layer dynamics.
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Appendix: Two results on the abstract parabolic equation
zt + Ax — f(t,x).
Our first result is a simple a-priori estimate which follows immediately from standard estimates
(Henry [Hel, 1.4.3]) for fractional powers of sectorial operators.

Our second result generalizes a conclusion of Henry [Hel, Theorem 5.1.1] on exponential con-
vergence to equilibrium via linearization. Namely, we extend Henry's result to nonlinearities / (t , x)
which are not Frechet-differentiable at the limiting equilibrium but only possess directional deri-
vatives. This more complicated situation is not an esoteric peculiarity of the partial differential
equation studied in this paper, but occurs whenever one wants to study the approach of smooth
solutions of a partial differential equation to discontinuous patterns as time t tends to infinity; see
Remark 5 in Section 4.

Notation. As in Henry [Hel, Section 5.1], A denotes a sectorial operator on a Banach space X,
V(A) denotes the domain of A, X* (0 < 0 < 1) are the associated fractional power spaces, || • ||
and || • Up denote the norm in X and, respectively, in X*% V is an open subset of XQ (for some
fixed a € [0,1)), and / : [0,oo) x V —• X is a mapping which is locally lipschitz continuous in x
and locally Holder continuous in t, that is, given (ii, x\) € [0,00) x V there exists a neighbourhood
V of (*i, xx) in [0,00) x V and constants 0, L > 0 such that for all (t, *) , (5, y) € V,

Note that by [Hel, Thm 3.3.3], for such A and / the initial value problem

x(O)lxY <A 1>
possesses for all xx € V a unique local solution x € C([0,T);Xa)nC1((0,T);X)nC((0,T);V(A))
on some time interval [0, T(xj)).

Lemma A l Let y € [0,1) and |M7zo|| < Mt0, let T € (0,oo], and assume z(t) is a solution on
[0,T) of (Al) such thai sup te[0 X ) ||r(t)|| < Mt, sup,€[0 T ) \\f{z(t),t))\\ < Mj. Then there exists
C(7,M i 0 ,M,,Mj) independent of T such that

sup
«€[0,T)

Proof. Let T(t) denote the semigroup generated by A. Fix r € (0,T) and estimate differently in
the intervals [0,r] and [r, oo):

( ^ ) V<€[0,r]

and

The proof of the Lemma is complete.
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Lemma A2 Let A, a, V, f be as above, let x<> € V be an equilibrium point o/(Al) (i.e. x0 £
V(A), and Ax0 = /(t,x0) V* > 0), and let x : [0,oo) - • V be a solution of (Al). Suppose in
addition that

/(*, *) - /(<, *o) = B(x - *0) + 9(t, *)
where

(i) B : Xa —• X is a bounded linear map,

(ii) the spectrum ofA — B lies in {ReX > 6} for some 6 > 0, and

(iii) |b(t,*(f))|| = o(\\x(t) - «o||a) + 0(e-^) as \\x(t) - xo|U - 0, /or some y > 0.
7%tn iAere crts/ p, M >0 such that provided

||x(0 - xo|U < Me-™*^'* Vt > 0.

Proof. Clearly A - B is a sectorial operator. Pick 6' such that 0 < 6 < 6' < Re Spec(A - B), and
let T(t) be the semigroup generated by A — B . By standard estimates [Hel, Sections 1.3, 1.4],

U < Cr*e-Sit\\z\\ Vr€X, Vt>0

with some constant C. Let m := min{7,6}, and choose ro > 0 so small that

r0 r s-Qe-V'-m*ds < ^ . (A2)
Jo 2C7

Choose p > 0 so small that

|M<,*)|| < rol lx-xol la-f / fe^ (A3)

for ||x - xollo < P,i > 0. Let z(t) = x(t) - x0. Then z solves

hence

o

+ cj\t - ^"^-''('-^(rollzWIU + Ae^') ds. (A4)

Now define «(i) := sup,€l0 tje
m'||z(«)||,», let T € (0,i] and compute using (A4) and (A2)

emr||*0-)IU < C\\z(0)\\a + C J\T - *)

< C\\z(0)\\a + C(ro ti(t) + AT)

hence by taking the supremum over r € (0,1]

The proof of the Lemma is complete. In fact, since the assumptions (iii) and ||x(<) — *o||o < P
were only needed to obtain (A3), the above proof yields
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Corollary A l Assume all hypotheses of Lemma A2 except (iii) hold. Then there exist r0, M > 0
such that provided

\\9(t, *(t))\\ < ro\\x(t) - solU + Ke~1% for allt>0 and some Kt 7 > 0

then
I WO - *olU < Me" • fa^- l>< Vt > 0.
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