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Abstract

This paper presents a prediction and planning framework for analysing
the safety and interaction of moving objects in complex road scenes. Rather
than detecting specific, known, dangerous configurations, we simulate all
the possible motion and interaction of objects. This simulation is used to
detect dangerous situations, and to select the best path. The best path can
be chosen according to a number of different criterion, such as: smoothest
motion, largest avoiding distance, or quickest path. This framework can
be applied, either as a driver warning system (open loop), or as an action
recommendation system (human in the loop), or as an intelligent cruise
control system (closed loop). This framework is evaluated using synthetic
data, using simple and complex road scenes.
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1 Introduction

Many different types of sensors have been developed to detect cars, obstacles
and pedestrians. These use a variety of techniques, such as laser scanners,
radar, ultrasound, vision, between car communication, and car-road com-
munication. These approaches all attempt to provide the car with a map
of the road and other road users, at the current time. This sensor data is
used to provide safety warnings for the driver in known dangerous situa-
tions, such as: blind spot detection for overtaking, side collision detection
[9], curb detection [1], or rear-end collision [12]. Other systems have used
simultaneous localisation and mapping [11] to identify obstacles. These ap-
proaches guarantee that a small number of known dangerous situations have
been avoided.

In this paper we argue that simply knowing there is an object at location
x at time t does not provide sufficient information to asses its safety. A
framework is needed for understanding the behaviour of all the vehicles,
pedestrians, obstacles and other objects on the road. The safety of the
road must then be determined by considering the combined actions, and
interactions, of all these objects. Can we confidently calculate that the road
is safe for the next t seconds?

This is a challenging task because we must simulate both the behaviour
of our own car, as well as that of all other objects in the scene. We must
consider the possibility of new objects entering the scene, objects leaving
the scene, and the possibility of sensor failure. In addition, the simulation
of objects is challenging because they are governed both by physical limits
(such as maximum speed) but predominantly by human behaviour. A well
behaved driver will obey road conventions, a conservative driver may try to
avoid accidents, and a reckless driver may take unexpected risks to avoid
slowing down. These situations must all be considered.

It is important to note that whether a collision is occurring now or
whether a car is driving towards us now, is not of direct use. What is im-
portant, is whether or not we will be involved in a collision in the near
future. To make this decision we must know the future, and there are many
possibilities. This paper presents a framework for enumerating all possi-
ble future scenarios, analysing them, and making recommendations for the
driver based on their likelihood.



2 Framework

The prediction and planning framework consists of three components. First,
all possible future scenarios are predicted. Second, a path planning algo-
rithm uses the prediction results to determine the safest path through the
scene. Finally the output is used, either to control the car, or to display
safety information to the driver.

2.1 Elements of Prediction

Vehicle dynamics Every car is governed by physical mechanics. Given
the initial state of a car, a series of control inputs (such as acceleration and
steering), known properties of the road surface, tyres, and weather; it is
possible to calculate the trajectory of the car. In practice, drivers do not
use the full extent of their car's control inputs, all of the time. As a result,
predicting the path of a car is determined both by the physical capabilities
of the car, but predominantly by human behaviour.

Human behaviour A detailed study of how humans choose their path
in complex environments is presented in Fajen & Warren [3]. There is no
physical reason preventing oncoming traffic from colliding. Both cars could
very easily turn in towards each other and crash. The reason they do not
collide, is that both drivers obey the rules of the road, and stay in their own
lane. This poses a problem for systems which attempt to asses the safety
of a road scene. Almost every scene with oncoming traffic is theoretically
dangerous. Road death statistics in any country show that driving is dan-
gerous. What we must consider, is the degree of safety that we are prepared
to accept, and our confidence in the ability of other drivers, to also drive
safely.

Sensor uncertainty In order to predict the future, we need to understand
the error in our understanding of the present. Sensors can be uncertain
for a number of reasons: they can incorrectly classify objects, they can
contain imprecise measurements, or detection could fail, or they could group
multiple objects into a single detection result. In this paper we will assume
a perfect sensor. The use of a sensor model will be included in future work.
This model must provide a probability distribution for each class of object,
over the surface of the road and surrounding area. It must also provide a
probability distribution for the likelihood of a missed detection, at each road
location, given the local context of that region of the road scene.



Objects entering the scene Another important point to consider is the
possibility that new objects may enter the scene. The road in front the car
is the most obvious point of entry for a new car. On a straight road, this
point is on the horizon. On a corner this entry-point will be the point where
the road becomes occluded. All intersections, and gateways are possible
entry-points, as are blind spots caused by buildings, trucks and cars. The
detection of occlusion boundaries is a known graphics problem [4]. Every
occlusion boundary which borders the road, and is large enough to obscure
an object, must be considered as an entry-point.

Multiple hypothesis The most simple prediction of the future, is that
all objects will continue to move at their current speed. This, however, is
only one of many future outcomes. Each action the driver makes, leads to
a different future outcome. In addition, all other objects can also change
their motion. The main issue for implementing the prediction algorithm, is
the choice of method for enumerating all possible driver actions, as well as
all the actions of all other objects in the scene, over the next t seconds.

2.2 Elements of Planning

The planning process considers each of the many future predictions of the
road scene and determines which hypothesis will lead to a collision, and
which are safe. Exactly which path is the best outcome, is dependent on
the priorities of our driver. Previously, start-goal path planning problems
[7] have been studied in the mobile robotics community. Many solutions
exist including potential function approaches [5, 10] and provably complete
sensor methods [8]. Our approach uses a map based approach [2]. Planning
algorithms have previously been applied to car-like robots [6], but not in the
context of safety analysis, with future prediction, in complex multi-object
environments.

Finding the safest path through a scene. Each hypothesis of the
future defines a series of actions for our car, and for all other objects in
the scene. These actions define a paths for each object. A hypothesis is
determined to be dangerous if any two object paths collide.

There are many different actions that we can make as driver, however,
we cannot control the whole scene. Other drivers can also influence the
future. For each action we can make, there are many hypothesis for the fu-
ture. Some of these future outcomes are safe and some are dangerous. The
safety of a particular control action, we make, is determined by considering



the likelihood and safety of each of the resulting hypothesis. A conservative
algorithm labels a control action as unsafe if any future outcome, resulting
from that action, is unsafe. A more realistic algorithm assesses the driver's
tolerance for risk, the driver's assumptions about other road users, and the
likelihood of each hypothesis, and combines these probabilities in a proba-
bilistic manner, to determine if a control action is safe, or not.

If the safety of all possible control actions is considered, then one control
action can be chosen as the safest. This choice of control action still results
in many future outcomes, but based on our hypothesis-safety function, we
know this will lead to the most likely safe outcome. In some cases, we may
choose to select the most likely path resulting from this action, and display
this information to the driver.

Dynamic safety A separate issue to path safety, is dynamic safety. How
likely is the car to physically realise a series of control inputs. This is
dependent on the properties of the car, the road surface, and the current
weather conditions. A separate but related issue, is the ability of a driver to
accurately implement a series of control actions. This is dependent on the
particular driver, and his current mental state, such as alertness. Whether
or not these terms are included in the hypothesis-safety function, depends
on the particular application being developed.

Driver preference In some situations the safest path may require sudden
movements, or may be very slow. In these circumstances, the driver may
choose to trade safety for comfort or speed. Thus the hypothesis-safety
function must consider many factors including: path safety, dynamic safety,
the ability and alertness of the driver, the speed, and the degree of comfort.

2.3 Visualisation and driver warnings

So far we have described the space of all actions which lead to a safe scenario,
and the best path for a specific object to navigate the scene. Prom this
information we also know the space of control actions (set of paths) that
will lead to a collision. But how can this danger information be displayed
concisely to the driver? We consider three options:

Display best path: The driver is shown a recommended path that the
system considers most safe. This is calculated using the technique
described in the previous section.



Road map: Each path traverses the road surface, so every point on the
road will be touched by zero or more paths. We can classify each point
on the road surface with a degree of safety based on the distribution
of safe and unsafe paths that traverse that point. This projection of
the decision tree onto the road can be used as a warning display.

Object label: Similarly, in every path, there is a minimum distance be-
tween any two objects. This distance can be used to classify each
object as a possible threat to the driver, or not. One classification
heuristic might be minimum distance. A warning is then displayed
alongside each potentially dangerous object.

It is important to note that warning systems are not an exact science.
Detailed user interface studies would need to be conducted, to determine
effective heuristics for displaying dangerous road-regions and objects, to
the driver. The calculation of the best path, however, is well principled,
assuming the human factors are suitably approximated.

Ubstacle

Our car

Recommended action

Future danger

No action —* collision

Figure 1: This figure shows an example warning display. It shows the rec-
ommended path, dangerous paths, dangerous objects and the best instan-
taneous control action.



2.4 Applications

The path planning and warning algorithms can be used to solve many dif-
ferent problems.

Closed loop control: In this approach the car is controlled directly using
the best predicted action. The driver is not included in the control
loop, except in an emergency. This can be used to implement an
intelligent cruise control system.

Human in the loop: In this approach the car displays the recommended
path to the driver. This can be displayed as a route map on a road,
or as the instantaneous action to be applied, (e.g. brake now!, turn
right!, or turn left!).

Warning system: The car does not display the best path, but rather
displays warnings on the road and on objects to convey to the driver
regions of action space which are dangerous.

Sensor analysis: It is important for the computer vision and physical-
sensor communities to know a target accuracy for car and object de-
tectors. By applying this algorithm to a large number of typical road
scenes, it would be possible to determine whether automated control
is safe or not, given the level of accuracy of the sensors in question.



3 Method

This section describes the prediction and planning framework in detail, start-
ing with some basic definitions about road scenes. First, a single time in-
stant is considered, then the effect of motion. The interaction of objects is
modeled using game theory, with all objects moving in turns, one turn at a
time. All the possible actions that an object might make are represented in
a decision tree. Each leaf node describes a possible path through the scene.
These paths can be classified as safe or unsafe by running a simulation, and
checking that no two objects collide.

3.1 The road scene

A road scene consists of a drivable area, obstacles, cars, pedestrians, cyclists,
and entry-points, at a specific instant in time. Each object is assigned a
speed and velocity, and this is referred to as the objects state. An obstacle
is an object with zero speed. A moving object has non-zero velocity, and
an interactive object has the ability to change its velocity dependent on the
road scene. An entry-point is a disc with an radius which increase at a fixed
rate. This area represents the maximum distance that an unseen object can
cover in a given period of time. The drivable area consist of a 2D surface
with a Euclidean grid defined on its surface. All objects are assumed to move
on this surface and obey the laws of Newtonian mechanics. The surface is
assumed to be bounded, and the simulated car must remain strictly inside
this road boundary. An object collision occurs when two objects occupy the
same position on the road surface. A scene is safe if no two objects collide.

statei(t) = {position^), velocity i(i)} — {x;(£),x^(£)} (1)

I Pedestrian crossin

I Driver's view!

Figure 2: This scene consisting of a drivable area, non-drivable areas (side-
walk, grass), obstacles (parked cars), and a moving object (pedestrian).

3.2 Object motion and interaction

Interactive objects change their velocity (speed and direction), over time,
based on the current road scene and an internal strategy function for each



object. An interactive object may change its speed according to some strat-
egy, which is dependent on the current state of the scene.

An action (2) is denned as the change in velocity of an object (3), which
is determined by its strategy function. Below, statei(tn) is the state of object
i at time tn (with i < m).

actiorii(tn) — x = strategyi(statei(tn),state2(tn), ...,statem(tn))

(2)

statei(tn+i) — {x, x} = state(tn) • actiorii(tn) (3)

The state update (•) is implemented, for turn duration At, as:

Xi(tn+i) = Xi(tn) + Xi{tn) * At + -x(*n) * At2 (4)

*i(*n+l) = *,-(*„) + Xt-(*n) * At (5)

The path of an object (6) is defined as an initial state, followed by a
list of actions, for the following game-turns. A scenario (7) is defined as the
paths of all objects in the scene.

pathi = {statei(to), actiorii(to),..., actiorti(tmax)} (6)

scenario = {pathi{to),path2{to), ...pathm(t0)} (7)

3.3 Determining the safety of a scenario

A scenario consists of a list of objects together with a path for each object.
To determine whether a scenario is safe, simulate all road scenes between
to and tmax and determine whether each scene is safe. A road scene is
dangerous if any two objects collide. An object is controllable at tn if it
does not collide with any other object during the period tn < t < tmax.

3.4 Game theory

In a board game, such as chess, players take their turn to make a move. In
each turn, a player considers the state of the board, at that time, and then
makes his best move. After he has finished, the next player considers the
new state of the board, and makes his move. This process continues until
the game is completed. A chess computer operates by simulating the future
moves of both players, and then deciding which of these future outcomes is
most beneficial. The current move is based on whether or not it leads to
this beneficial outcome.



A simple chess computer can be implemented using a decision tree and
a board evaluation function. The primary (root) node of the decision tree
represents the current move. Each branch from this node represents a per-
missible move. Each branch results in a new state of the board. For each
node, we add branches for the moves that the opponent could make, based
on that state of the board. This process can be repeated for each player
in turn, until all possible futures have been considered, or until we run out
of computing resources. At this point, we apply the evaluation function to
all leaf nodes, and the branches taken to get there, and select the best leaf.
Since this is a tree structure, each leaf node must trace back to a primary
branch. This primary branch represents the move that the computer must
make now, to maximise its chance of winning the game.

One of the implementation issues is the game-turn allocation strategy,
which defines when objects may take their turn to act. There are two com-
mon strategies: (i) sequential turns, or (ii) simultaneous turns. In the se-
quential approach, only one object may act at a particular time, and there is
a predetermined sequence in which objects act. This is similar to Chess, Go
and Monopoly. In the simultaneous approach, all players take their move
at time tn based on the state of the game at time £n_i- All moves are
then applied simultaneously. This is similar to the approach used in most
reenactment war games. The simultaneous approach is usually preferable
because the results are not biased by the predetermined turn sequence.

3.5 The road scene decision tree

A scenario is defined as the initial state and a path for every object be-
ing simulated. This particular set of actions represents only one, of many,
possible future outcomes. The space of all possible scenarios is both large
and complex. The action of each object is dependent on the actions of all
the other objects in the scene. To simplify this problem, we propose that
the road environment should be modeled as a board game, using Game the-
ory. All objects are assumed to move in game-turns, one after another. In
each game-turn, one object considers the state of the road, and then makes
its best move based on its strategy function. After it has completed its
game-turn, the next object makes its move.

By making this approximation, all object decisions can be enumerated in
a decision tree. The primary (root) node in the decision tree represents the
state of the road (all objects) at the current time. Each branch represents a
permissible action that the first car could make. Each child-node describes
the state of the road resulting from that action. For each new child-node,



we build a new set of branches for all moves that the second car could make.
This process is then repeated for all cars. All cars are then allowed to make
second and third game-turns, until the required simulation period tmax is
completed. Each walk from primary node to leaf defines a possible scenario,
because it defines one unique series of actions for each objects in the scene.
The safety of each scenario is then determined using Section 3.3.

Option 1 - Stop • • • • • • •
^ ^ ^ ^ ^ ^ ^ safe

safe

fast, but
dangerous

collision

Figure 3: This figure shows an example decision tree. At the current time,
the car can either stop, or overtake. Each of these decisions have a different
consequence. If we stop, it is always safe, even if the obstacle starts moving.
If the car overtakes, there is a chance that the oncoming car may stop, in
which case the path is safe, however if the oncoming car does not stop, then
it is dangerous. The best (conservative) action at the current time, is to
stop. However, if our priority is the quickest path, whatever the risk, then
there may be a safe outcome if the car overtakes.

3.6 Choosing the optimal path, for the current time

At this point we make an implementation decision. Our initial implemen-
tation does not consider the action of other drivers. This simplification will
be removed in future work. This simplification means that the decision tree
only contains actions of our own car, and is independent of other drivers. It
also means a path through the tree defines a path for our car.

The previous section described how the decision tree represents all pos-
sible future scenarios. Each of these scenarios can also be classified as safe
or unsafe. We now select one of the safe paths as the "best path" based
on an optimality criterion. This criterion can be the path of least effort, or
the quickest path, or the path which leaves the largest avoiding distance to
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other objects, depending on the driving strategy being implemented. Af-
ter the best path has been chosen, only the action at time to is imple-
mented. We now know this action will lead to a safe outcome, over the
period to < t < tmax (as long as the current object completes the maneuver,
and that the other objects behave as predicted, and no new objects enter
the scene).

3.7 Evaluating the strategy function

In this implementation, we have chosen to implement the smoothest path
strategy, which is the path with smallest sum-of-squares actions. This path is
simple to implement, and should be reasonably comfortable. It is more safe
than the fastest path approach, which uses the sum-of-absolute magnitudes.
Certain areas of the road surface are more desirable for driving, than other
areas. For example, it is not desirable to drive on the wrong side of the
road. A scalar field is described on the surface of the road which represents
the desirability of a car to be present at each x location. This is called the
PositionPrior(x). In a similar manner, it is dangerous to drive too fast,
or too slowly, so a Velocity Prior(||x||) is used. The magnitude of the prior
terms is significantly lower than the cost of an action, but add up over the
duration of the path. If this prior term is not used then the car will not
complete an overtaking manoeuvre. Likewise, if the speed term is not used,
then if the car ever stops to avoid a pedestrian, it will never start moving
again. Thus these prior terms are of critical importance.

tmax tmax

cost(path) = ^T cost(state(t)) + ^ cost(action(t)) (8)
t=t0 t=t0

cost(state) = PositionPrior(x)2 + VelocityPrior (||x||)2 (9)

cost(action) = ||x||2 (10)

o ... D . , , [wrong lane xlateral.klateralPositionPrtor(x) = < # (11)
I otherwise 0

(speed > speedmax speed.kfast

Velocity Prior (speed) = < speed < speedm{n speed.ksi^ (12)

I otherwise 0
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3.8 Representing decisions and road state

Decision tree So far we have described the algorithm using a decision
tree with quantised actions and a continuous state space (discrete time). In
practice, the size of the decision tree is very large, with order O(an) where
a is the number of actions and n is the number of game turns considered.
This is an action space representation. For each walk through the tree,
we run a separate simulation to determine if there are any collisions. The
only storage requirements, are a current path and best path. The main
computing resource required is processing time.

Graph representation To reduce the number of states and actions, the
road can be simplified, using a graph representation. A multi-lane road can
be represented as a series of nodes on the graph. The car is only allowed to
change lanes, or to merge with an onramp, at specific points on the graph.
We have not used this representation because it does not allow pedestrians
and non-highway scenes to be represented. Instead we consider a quantised
euclidean surface.

State space representation What the decision tree representation does
not reflect, is that different walks through the decision tree may traverse
the same partial path in state space. For example, you may go around an
obstacle in the middle lane, by overtaking on the left or on the right, but
both of these paths return to the middle lane and follow the same completing
path. This lends itself to a dynamic programming implementation which
evaluates in state space rather than decision space. In particular, it reduces
the computational order to O(sn) where s is the magnitude of state-space.
This algorithm requires a very large number of states to be stored in memory.
The key implementation decision is whether sn < an which is determined
by the number of turns n, the number of states s and the number of actions
a.

Dynamic programming If we only consider the actions of our own car,
then we may precompute a simulation of all other objects in the scene. This
computation results in a binary obstacle map for each time-step:

m

obstacle^, t) = ( J ObjectAt(x, t, statei(t)) G {true, false} (13)
2 = 1

This obstacle map is sampled at a higher temporal resolution than the
game time-step. This reduces the size of the decision tree. A collision can
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Chess

Road scenes

Complexity: O(an)
a: actions
n: number of iterations

In a decision tree each path is assumed
unique, but in practice, there is more
than one way to get from A to B.

A more efficient algorithm to use is
dynamic programming in state space.

Complexity: O(san)
s: number of states
a: number of actions
n: number of iterations

be detected by checking for an obstacle at every point x(t) along the path
(over time).

Safe(path) = Safe (state(to), action(to),..., actzon(tmax)) = M obstacle(t, x(t))

(14)

Dynamic programming is an efficient algorithm for determining the best
path. We define a quantised state space for the road road(t,x(£),x(t)) =
{action, cost}, where each cell contains the best action at that time and
state, and the total cost from that time until the end of the game. The
algorithm is presented in Figure 4.

3.9 Dynamic path planning

Every turn, new sensor information is available, and the decision making
process is repeated using the new data. If the previous prediction was ac-
curate, then the new sensor information should agree with our previous
prediction.

13



begin
Initialise the future-most road-state with the corresponding obstacle map.
for all x, x do

f obstacle(tmax.x) — true {action — 0, cost = 00}
,x) = \

J^else {action = 0, cost = 0}
od
Evaluate all entries in the road-state, working backwards through time
for t = (tmax - At) to to do

for all x, x do
for all possible actions, find action with minimum cost(t, state(t)) do

future-cost — Cost(road(t + At, state(t) • action))
if obstacle{t,yi(t))

then cost — 00
else cost — Cost(action) + Cost(state(t)) + future.cost

fi
od
Assign road(£,x(£),x(£)) with the best action and cost

od
od
Select the best path through the road-state
begin

state(to) = The car's current state (speed and position)
for t = t0 tO tmax do

action(t) = Action(road(t, state(t)))
state(t + At) = state(t) • action(t)

od
end

end

Figure 4: Dynamic programming implementation
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4 Evaluation and discussion

4.1 Experiment 1:

In this experiment, we demonstrate the decision making capability of our
system. The road scene consists of a road with an obstacle, and the possi-
bility of an oncoming car. The system must decide whether to stop or drive
around the obstacle, depending on whether there is oncoming traffic or not.
The results are shown in Figure 5. Experiment (a) shows the predicted best
path around the obstacle. Experiment (b) shows the path around the obsta-
cle, with an oncoming car at 75m. Notice how the car takes a steeper path
than in (a). Experiment (c) shows how the car cannot overtake an obstacle
with a car at 45m. The car waits for the oncoming pass, and then drives
around the obstacle. This is shown in (c-i through iii).

Notice that the algorithm safely avoids the obstacle without hitting the
oncoming car. The algorithm correctly makes the decision to wait for the
oncoming car, when the available overtaking distance is too short. The shape
of the car's path is not defined, stopping distances and time to impact are not
modeled. The shape of the manoeuvre, and decision making functionality,
is calculated as a result of the prediction and planning process.

4.2 Experiment 2:

The second experiment demonstrates the use of entry-points. There is a
car waiting at an intersection, and the system must consider the possibility
that the car might start to move. The first experiment (a) ignores the
possibility that the waiting car might move. The car initially plans to drive
straight past (a-i), and is then unable to avoid the waiting car (a-ii), when
it starts to move. The second experiment (b) uses an entry-point to model
the possibility that the waiting car might move. Notice that the car initially
plans to take a very wide path (b-i), but when it reaches the intersection,
new sensor data shows that the car is not moving, so it can take a normal
path through the intersection. In experiment (c) the waiting car is modeled
with an entry-point. When the waiting cax starts to move, the simulated
car is able to drive past safely (unlike (a)).

By assigning each entry-point a maximum speed we can model the unsafe
region around each danger point. This guarantees a conservative solution
is chosen at each time-step. As new sensor data becomes available, the
danger area will always get smaller until a real object is detected. This
allows the car to take a sensible but conservative path, but still be able to
avoid a collision if necessary. It is hence essential to model the possibility of

15



(a) Path planning result with no oncoming car (frame 0).

(b) It is safe to overtake with an oncoming car 75m ahead (frame 0).

(c-i) It is not safe to overtake with an oncoming car at 50m (frame 0).

(c-ii) The car must wait for the oncoming car to pass (frame 55).

(c-iii) After the car has passed it is safe to overtake (frame 95).

Figure 5: Experiment 1: This experiment analyses the safety of overtaking
a stationary obstacle, with (a) an empty road, (b) an oncoming car at 75m
ahead, and (c) a car at 45m. It is safe to drive around the obstacle in (a) and
(b), but in experiment (c) the car must slow down, wait, and then overtake
(see c-i to iii). Note: no overtaking manoeuvre is defined, the path is the
result of simulation and the prior preference to drive on the right, and to
keep moving.
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(a-i) Path planning at frame 0, without entry-point.

(a-ii) Collision at frame 60, without entry-point

(b/c-i) Path planning at frame 0, with entry-point

(b-ii) Path planning at frame 70, with entry-point, car is stationary.

(c-ii) Path planning at frame 70, with entry-point, car is moving.

Figure 6: Experiment 2: The use of entry-points. The car waiting at the
intersection may start to move. In (a) the possibility of a moving is ignored.
In (b) entry-points are used to model this possibility, but the car does not
move. Entry-points are used in (c) and the car does move. Notice that
entry-points are required to safely navigate the scene.
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new objects entering the scene, and the possibility of objects changing their
motion. This is not possible in traditional sensor based systems, which do
not consider the future. This justifies the use of the prediction and planning
framework.

4.3 Experiment 3 - Narrow street with pedestrians.

The third experiment shows how entry-points can be used to model unex-
pected objects entering the scene. This scene is inspired by a scene from a
J.A.F. "Stop the accident" booklet. In this experiment, the car is driving
down a narrow one way street with many pedestrians on the road, and two
parked cars. At frame 70 an unseen pedestrian appears from behind the
first parked car. This scene is modeled with and without entry-points, and
with and without the unexpected pedestrian. Figure 7(a) shows the car hit-
ting the unseen pedestrian. Figure (b) shows the car's initial plan to stop
away from the pedestrian. As the car approaches, new sensor data shows
that a pedestrian has not stepped out yet, and the car plans a path through
the obstacles (c). At frame 70 the new pedestrian appears (d) and the car
adjusts its path accordingly.

This example shows how the prediction and planning framework can
navigate a complex scene with many pedestrians moving in different direc-
tions. In complex scenes there are many points where new objects could
unexpectedly enter the scene. These events must considered if the system
to accurately predict a safe path through the scene.

4.4 Experiment 4 - Parked cars, unexpected pedestrian

This experiment also demonstrates the importance of entry-points. It is also
inspired by a scene from the J.A.F. "Stop the accident" booklet. The scene
consists of a narrow one-way street with cars parked on both sides of the
road. There is a pedestrian in the distance, walking towards the driver. On
the right hand side of the road is a delivery van with boxes stacked on the
ground. The point of the scene, is for the driver to notice the boxes, and
expect the delivery driver to walk out into the street. In this experiment,
we will ignore the specific cue of the boxes, and will consider the possibility
of a pedestrian entering the scene from behind any car. To do this, we add
an entry-point behind every car in the scene, and allow the prediction and
planning framework to chose the optimal path and speed, which ensures the
car is controllable at all times, even if a pedestrian enters the scene.

Figure 8(a) shows the predicted motion of all objects in the scene, at
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(a) Simulation without entry-points. Car hits new pedestrian.

(b) With entry-points, frame 0. Car slows, and turns wide of danger point.

(c) With entry-points, frame 35. New sensor data. Car can pass danger point.

(d) Path planning, frame 70. New pedestrian!! adjust path.

(e) Path planning, frame 130, obstacles will be avoided.

Figure 7: Experiment 3: This scene contains a narrow road, two parked
cars, and many pedestrians. At frame 70 a new pedestrian enters the scene
from behind the top car. In (a) new pedestrians are not modeled, and the
car hits the pedestrian, (b-f) shows the same simulation, using entry-points.
Notice how the car slows down, avoids the dangerous situation, misses the
pedestrian, and completes the scene. Considering new objects in the future
is essential!
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frame 0. At frame 45 a new pedestrian enters the scene and walks across
the road (b). In the control experiment, we do not use entry-points. The
initial path of the car is shown in (c). Between frames 44 and 45, the car
must dramatically change its planned path, to avoid the new obstacle. In
this experiment (without entry-points) the car is lucky that it is possible to
find an avoiding path for the new pedestrian.

The second experiment, Figures (d-j), uses an entry-point to model the
possibility of a pedestrian entering the scene. An entry-point is an elliptical
region of uncertainty which has zero radius at the current time. The radius
of the ellipse increases linearly over time at the theoretical maximum speed
of the new object. The shape of the entry-points are shown in (d), 5 seconds
in the future. Notice how the car plans to pass the danger points one parked
car at a time (f) and (g). When the new pedestrian enters the scene the car
slows down, waits for the pedestrian to pass (j), then continues on its way
(k).

The important point to notice in this scene is that entry-points allow
the car to predict new objects entering the scene. The car can then plan
to navigate the scene at a safe speed, with sufficient time to stop, should a
pedestrian step into the scene. Compare this to the control experiment. In
the control case, the initial speed was specified, and the car planned to avoid
the second pedestrian, so there was no need to drive slowly and carefully.
Hence the violent swerving action in (c-d). In conclusion, this experiment
shows that it is important to model the possibility of new objects entering
the scene. It also demonstrates that the prediction and planning algorithm
can effectively choose a safe speed to navigate a road. This would not be
possible with traditional sensor based systems, which rely on speed limits
to determine the safe driving speed.
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(a) Motion prediction at frame 0, for the next 5 seconds.

(b) Motion prediction at frame 45. A new pedestrian enters scene.

(c) Path planning, frame 44, without entry-point.

(d) Path planning, frame 45, new pedestrian, sudden path change

(f) Motion prediction at frame 0. Observe the entry-points, between cars.

(g) Path planning at frame 0. Purple stripe shows car's path (5 seconds)

(h) Path planning, frame 5. Notice how each car is passed, one at a time.

(j) Path planning, frame 45. Car slows for pedestrian, no swerve needed.

(k) Path planning, frame 85, obstacles will be avoided.

Figure 8: Experiment 4: This scene contains a narrow road, a pedestrian
walking towards the driver (a), and an unexpected pedestrian entering the
scene (b) at frame 45. Notice the sudden change in path in response to
the new pedestrian (c,d) if entry-points are not used. In this example the
pedestrian is lucky. The experiment is then repeated with entry-points (f)
which model the possibility of a pedestrian entering from behind a parked
car. Notice how the algorithm plans?lo pass each car one at a time, when
it knowns that it is safe (f,g). This approach guarantees that the unseen
pedestrian can be avoided (j).



5 Future work

This framework has been shown to effectively predict and plan safe paths
through complex road environments, however, there are still several areas
where future research is needed. Interaction with other cars has been de-
scribed, but has not yet been demonstrated. The main issue that needs to
be addressed is the modeling of driver behaviour. If the models are too well
behaved then the problem is solvable but not useful, and if the human mod-
els are too general, then oncoming traffic will pose a significant problem.
Warning generation has also been described. The main issue is the amount
of detail available to the driver. The exact choice of algorithm will depend
on human interface studies.

In this paper, all sensors and car controls are perfect. All examples
were theoretically safe, which is an ultra-conservative condition. In the new
implementation the obstacle map will be probabilistic. The decision about
whether a situation is dangerous will depend on the drivers tolerance for risk,
which may vary. In addition, the car may not accurately implement control
actions (or the human driver is inaccurate). This extension is of particular
interest to the authors, because real world sensors are not perfect, and most
real road scenes cannot be driven without a small tolerance for risk.

The decision space of all opponent actions is very large. Instead of using
actions in a decision tree, the opponents actions could be modeled as a
probability distribution over position, speed and time. This reduces the
decision space, but adds complexity to the cost function because it must
now consider both, the probability of collision, and the probability of driver
action in the same framework.

6 Conclusion

This paper has presented a prediction and planning framework, for analysing
the safety of complex road scenes, consisting of moving and stationary ob-
jects. A decision tree has been used to enumerate all the possible future
paths of the simulated car. A method for determining the safety of each
path has been described. A strategy function is used to select the best safe
path through the scene. Techniques are described for using this action to
directly control the car, or to displaying warnings or recommending actions
to the driver. The framework has been tested using synthetic data, on two
simple and two complex road scenes.
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A Appendix: Road scene representation

The use of entry-points is mentioned in the main section of the paper. This
appendix provides a couple more examples to aid the explanation. An entry-
point is a point on the road surface, at the current time, where a new object
may enter the scene. The region of the entry-point at time t > 0, represents
all locations on the road surface where the unseen object could reach in a
given time. If we assume the unseen object has a fixed maximum speed,
then this region is described by a circle, with a radius increasing at the
fixed maximum velocity. This is a very conservative model. If too many
entry-points are used on a scene then the only conservative solution is for
the car to stop. This will be addressed in the future probabilistic version
of the framework. We now consider three examples, a blind corner, and
intersection, and a pedestrian crossing. The explanation of each example is
presented in the caption of Figures 9 through 11.

Our sar Our -ar

40 m
Obstacle

There is a possibility that a car may enter
the scene and drive around the corner.

We represent this region of uncertainty
with an entrypoint which is a circular
region with a radius increasing at 50km/h.

Figure 9: An entry-point is used represent a car entering around a blind
corner. The entry-point is located at the point where the road becomes
occluded in the current drivers view.
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Figure 10: An entry-point is used represent a car entering at an intersection.
The entry-point is located at the point on the road where the drivers view
becomes occluded.

Pedestrian

Figure 11: A pedestrian crossing is a region with a very high likelihood of
detecting pedestrians. A pedestrian is modeled as a small object with slow
speed and erratic behaviour. A pedestrian crossing is modeled with two
entry points to represent the possibility of pedestrians stepping out into the
road on either side.
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