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Abstract

The non-rigid motion of a driver's head (i.e. the motion of their mouth, eye-brows, cheeks,
etc) can tell us a lot about their mental state; e.g. whether they are drowsy, alert, aggressive,
comfortable, tense, distracted, etc. In this paper, we describe our recent research on non-rigid
face tracking. In particular, we present both 2D and 3D algorithms for tracking the non-rigid
motion of the driver's head using an Active Appearance Model. Both algorithms operate at
over 200 frames per second. We also present algorithms for converting a 2D model into a 3D
model and for fitting with occlusion and large pose variation.

1 Introduction

Tracking the driver's head has a wide variety of applications and is one of the most important tasks

for an intelligent vehicle. Two types of head tracking can be distinguished: rigid and non-rigid.

In rigid tracking such as [7,9], the head is tracked as a rigid object with 6 degrees of freedom,

3 translations and 3 rotations. In non-rigid tracking, the motion of the mouth, eye-brows, cheeks,

etc, (i.e. the facial expression) are also tracked independently of the motion of the head itself. Non-

rigid tracking is a more general, and far harder, problem than rigid tracking. It also has a number

of applications that are not possible with rigid tracking alone. In particular, the non-rigid motion



of the driver's face can tell us a lot about their mental state; i.e. whether they are drowsy, alert,

aggressive, comfortable, tense, distracted, etc.

In this paper, we describe our recent work on non-rigid face tracking. In particular, we have

been working with Active Appearance Models (AAMs) [5]. AAMs are a well studied face model

consisting of separate linear shape and appearance components. 2D AAMs can model both the

rigid motion of the head and the non-rigid motion of the facial features. The specific problem we

have addressed is the fitting problem. Tracking a driver's head with an AAM requires fitting the

AAM to each frame in turn in the video sequence. The fitting algorithm therefore needs to be:

(1) fast enough to operate in real-time and (2) robust enough so as not to lose track of the head.

Our main contribution is an analytically derived gradient descent fitting algorithm [10]. Because

our algorithm is derived analytically, it is far more robust than previous algorithms which are based

on numerical approximations [5]. It is also far faster, operating at over 200 frames per second on

a standard 3GHz PC, leaving plenty of time for all of the other processing needed in a complete

end-to-end system, as well as the possibility of implementation on low-power devices. Finally, this

fitting algorithm can be extended to cope with occlusion, such as that caused by caused by large

head rotation [6].

On limitation of standard AAMs is that they are 2D. Compared to 3D face models, such as 3D

Morphable Models (3DMM) [2], 2D AAMs are at a serious disadvantage. With a 2D AAM, the

6 degree of freedom rigid motion is combined with the non-rigid facial expression into a complex

combined 2D motion model. Separating the rigid motion from the non-rigid is far harder with a

2D AAM than with a 3DMM. Moreover, coping with large pose variation, which inevitably leads

to self occlusion, is straightforward with a 3D model, but very difficult with a 2D model. The

main problem with 3D models, however, is that they are very hard to fit. The fastest "efficient"

algorithm runs at around 30 seconds per frame [11]; i.e. 900 times slower than real-time (30 frames

per second.) Another difficulty with 3D models is that a large amount of 3D range data is usually

required to build the model. Obtaining such data is difficult.

In the second half of this paper we describe our work on 3D non-rigid face tracking. We



have made two main contributions in this area: (1) we have developed a non-rigid structure-from-

motion algorithm [15] that can be used to convert a 2D AAM into a 3D face model, and (2) we

have developed an algorithm for fitting the resulting 3D model which runs at over 250 frames per

second [14] (remarkably, this algorithm is even faster than the 2D algorithm).

2 2D Driver Non-Rigid Head Tracking

2.1 2D Active Appearance Models

Active Appearance Models (AAMs) [5] are generative face models. A 2D AAM consists of two

components, the shape and the appearance. The 2D shape of an AAM is defined by a 2D triangu-

lated mesh and in particular the vertex locations of the mesh. Mathematically, we define the shape

s of an AAM as the 2D coordinates of the n vertices that make up the mesh:

U\ Uo . . . Un

s = I I - (1 )
i V2 . . . Vn

AAMs allow linear shape variation. This means that the shape matrix s can be expressed as a base

shape s0 plus a linear combination of m shape matrices s :̂

m
s = so + J2Pisi (2)

i=\

where the coefficients pi are the shape parameters. AAMs are normally computed from training

data consisting of a set of images with the shape mesh (usually hand) marked on them [5], The

Iterative Procrustes Algorithm and Principal Component Analysis are then applied to compute the

the base shape s0 and the shape variation s*. An example of the base shape s0 and the first two

shape modes (si and s2) of an AAM are shown in Figure l(a)-(c).

The appearance of the AAM is defined within the base mesh s0. Let s0 also denote the set

of pixels u = (u, v)T that lie inside the base mesh s0, a convenient abuse of terminology. The



(a) Base Shape so (c) 2D Shape Mode s2

(d) Base Appearance Ao (e) Appearance Mode Ai (f) Appearance Mode As2

(g) Example Model Instance (h) Example Model Instance (i) Example Model Instance

(j) 3D Base Shape s0 (k) 3D Shape Mode si (1) 3D Shape Mode s2

Figure 1: An example Active Appearance Model [5]. (a-c) The AAM base shape so and the first two shape
modes Si and S2. (d-f) The AAM base appearance Ao and the first two shape modes Ai and A2. (g-i) Three
example model instances demonstrating how the AAM is a generative model that generates images of faces
with different poses, identities, and expressions, (j-1) The 3D shape variation.

appearance of the AAM is then an image ^4(u) defined over the pixels u £ s0. AAMs allow linear

appearance variation. This means that the appearance ^4(u) can be expressed as a base appearance

A0(u) plus a linear combination of/ appearance images Ai(u):

A(u) =
I

i=l

(3)

where the coefficients A; are the appearance parameters. As with the shape, the base appearance

Ao and appearance images Ai are usually computed by applying PCA to the (shape normalized)

training images [5]. An example of the base appearance Ao and the first two appearance modes (Ai

and A2) of an AAM are shown in Figures l(d)-(e).

Although Equations (2) and (3) describe the AAM shape and appearance variation, they do not



describe how to generate a model instance. The AAM model instance with shape parameters p

and appearance parameters A; is created by warping the appearance A from the base mesh s0 to the

model shape mesh s. In particular, the pair of meshes s0 and s define a piecewise affine warp from

so to s which we denote W(u ; p). Three example model instances are included in Figures l(g)-

(i). This figure demonstrate the generative power of an AAM. The AAM can generate face images

with different poses (Figures l(g) and (h)), different identities (Figures l(g) and (i)), and different

non-rigid face motion or expression, (Figures l(h) and (i)).

2.2 Real-Time Non-Rigid 2D Tracking with AAMs

Driver head tracking is performed by "fitting" the AAM sequentially to each frame in the input

video. Given an input image / , the goal of AAM fitting is to minimize:

Uo(u) + £ KMu) - /(W(u; p))| =
L i = l J

(4)

simultaneously with respect to the 2D AAM shape pi and appearance A; parameters. In [10] we

proposed an algorithm to minimize the expression in Equation (4) that operates at around 230

frames per second. This algorithm relies on a sequence of mathematical simplifications.

The first step is to separate the shape and appearance components. If we denote the linear

subspace spanned by a collection of vectors Ai by sub(y^) and its orthogonal complement by

sub(v4i)
J-, the right hand side of Equation (4) can be rewritten as:

i=\ 1 = 1 Ai)

(5)

where || • \\\ denotes the square of the L2 norm of the vector projected into the linear subspace L.

The first of the two terms immediately simplifies. Since the norm only considers the components of

vectors in the orthogonal complement of s u b ( ^ ) , any component in s u b ( ^ ) itself can be dropped.



We therefore wish to minimize:

(6)

The first of these two terms does not depend upon A*. For any p, the minimum value of the second

term is always 0. Therefore the minimum value can be found sequentially by first minimizing the

first term with respect to p alone, and then using that optimal value of p as a constant to minimize

the second term with respect to the A*. Assuming that the basis vectors A{ are orthonormal, the

second minimization has a simple closed-form solution:

u; p)) - A>(u)], (7)

the dot product of A\ with the final error image obtained after doing the first minimization.

The second step is to minimize the first term in Equation (6). This can be performed effi-

ciently using the inverse compositional algorithm [1]. The usual forwards additive Lucas-Kanade

algorithm minimizes the expression in Equation (6) by iteratively minimizing:

u; p + Ap)) \\2
suh{Ai)± (8)

with respect to A p and updates the parameters p <— p + Ap. On the other hand, the inverse

compositional algorithm iteratively minimizes:

u; Ap) - 7(W(u; p) \\lb{A)± (9)

with respect to A p and updates the warp W(u ; p) <— W(u ; p) o W(u ; Ap)" 1 . In [1] we proved

that the inverse compositional algorithm and the forwards additive (Lucas-Kanade) algorithm are

equivalent. The advantage of using the inverse compositional algorithm is that the Gauss-Newton



(g) (h) (i)

Figure 2: Driver head tracking results with a 2D AAM. Notice how the AAM tracks both the rigid motion
of the head (f-i) and the non-rigid motion of the mouth (b-e). Figure best viewed in color.

approximation for Ap is:

Ap = H 1 awi
(10)

where:

(11)

In this expression, both the steepest descent images pvMo^lsubO^ anc* the Hessian H are con-

stant and so can be precompiled. This results in a substantial computational saving, and means

that the algorithm can be implemented in real time. See [1,10] for more details.



(g) (h) (i)

Figure 3: Driver head tracking results with a 2D AAM. Notice how the AAM tracks both the rigid motion
of the head (a-c), the non-rigid motion of the mouth (d-e), and the blink (f-h). View in color.

2.2.1 Experimental Results

In [10] we quantitatively compared our algorithm with three variants of the original AAM fitting

algorithm and showed it to be both faster and more robust [5]. In Figures 2 and 3 we include

a number of frames from two sequences of a 2D AAM being used to track two different drivers

faces. (These figures are best viewed in color.) Note how the AAM tracks both the rigid motion of

the driver's head as well as the non-rigid motion of their mouth and eyes.



2.3 Real-Time Non-Rigid Tracking With Occlusion

When fitting a head model, it is important to be able to cope with occlusion. Occlusion is inevitable,

for example, when the driver puts their hand in front of their face, or when they turn their head

to look in their "blind-spot", a one of the passengers, etc. We have extended our real-time AAM

fitting algorithm to cope with occlusion [6]. The description in this paper is in terms of a 2D AAM,

however it is perhaps more relevant, and also straightforward to use this algorithm with the 3D face

models described in the following section.

Occluded pixels in the input image can be viewed as "outliers". In order to deal with outliers

in a least-squares optimization framework a robust error function can be used [8]. The goal for

robustly fitting a 2D AAM is then to minimize:

£ Q f U>(u) + £ ^A(u) - J(W(u; p))| ] (12)
u€s0 \L i=\ J /

with respect to the shape p and appearance A parameters where g(t) is a symmetric robust error

function [8]. In comparison to the non-robust described algorithm above, the expressions for the

incremental parameter update Ap (Equation 10) and the Hessian H (Equation 11) have to be

weighted by the error function gf(E(u)2)9 where:

m

E(u) = A)(u) + £ A ^ ( u ) - /(W(u;p)) (13)

Equation (10) then becomes:

r / 9 w i
= - ^ £ Q\E(U)2) V A ) ~ E(U) (14)

L a P J

and Equation (11) becomes:

Hp = £ 0'(£(u)2) [ v , 4 o ^ r f v ^ o ^ l • (15)
L ° J L a P J



The appearance variation must also be treated differently. See [6] for an explanation of why.

Instead of being solved sequentially, as described above, it must be solved for in every itera-

tion of the algorithm. The incremental additive updates to the appearance parameters AA =

i , . . . , AAm)T are computed by minimizing:

| (16)

The least squares minimum of this expression is:

AA = -H^J^e' {E(u)2)AT(u)E(u) (17)
u

where A(u) = (Ai(u),..., Am(u)) and HA is the appearance Hessian:

HA = 5 > ' ( £ ( u ) 2 ) A ( u ) T A ( u ) . (18)
U

In order to retain the efficiency of the original algorithm, a variety of approximations need to be

made to speed up the computation of the two Hessians Hp and HA. See [6] for the details.

2.3.1 Experimental Results

In Figure 4 we include a few frames of our algorithm being used to track a person's face in the

presence of occlusion. The figure contains examples of both self occlusion caused by head rotation,

and occlusion caused by other objects. In some of the cases almost half the face is occluded.
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(d) (e) (f)

Figure 4: Tracking with occlusion. Our algorithm is robust to occlusion caused by pose variation (a-c), the
person's hand (d-e), and other objects (f). Note that the algorithm tracks the eye-blink in (e).

3 3D Driver Non-Rigid Head Tracking

3.1 3D Active Appearance Models

The shape of a 2D AAM is 2D which makes driver head pose estimation difficult. On the other

hand, 3D Active Appearance Models (3D AAM) [14] have a 3D linear shape model:

S = (19)

where the coefficients pi are the 3D shape parameters and s and ŝ  are the 3D coordinates:

s =

x1

V2

Z2

. . Xn

•• Vn

. . Z.
n J

(20)

11



To fit such a 3D model to a 2D image, we need an image formation model. We use the weak

perspective imaging model defined by:

u = Px = | x y M x + I ^ | . (21)
Jx jy jz ) \ Oy

where (ox, oy) is an offset to the origin and the projection axes i = (ix, iyj iz) and j = (jx,jy,jz)

are equal length and orthogonal: i i = r j j ; i j = O.

3.2 Constructing a 3D AAM from a 2D AAM

If we have a 2D AAM, a sequence of images /*(u) for t = 0 , . . . , TV, and have tracked the 2D AAM

through the sequence, then the tracked 2D AAM shape parameters at time t are p* = (p\,..., p ^ ) T .

Using Equation (2) we can then compute the 2D AAM shape vectors s*:

Ul U2

n )v\ vl
2

(22)

A variety of non-rigid structure-from-motion algorithms have been proposed to convert the tracked

feature points in Equation (22) into a 3D AAM. Bregler et al. [4] proposed a factorization method

to simultaneously reconstruct the non-rigid shape and camera projection matrices. This method

was extended to a trilinear optimization approach in [13]. The optimization process involves three

types of unknowns, shape vectors, shape parameters, and projection matrices. At each step, two of

the unknowns are fixed and the third refined. Brand [3] proposed a similar non-linear optimization

method that used an extension of Bregler's method for initialization. All of these methods only

use the usual orthonormality constraints on the projection matrices [12]. In [15] we proved that

only enforcing the orthonormality constraints is ambiguous and demonstrate that it can lead to an

incorrect solution. We now outline how our algorithm [15] can be used to compute a 3D AAM

from a 2D AAM. (Any of the other algorithms could be used instead, although with worse results.)

12



We stack the AAM shape vectors (see Equation (22)) in all N images into a measurement matrix:

W =

Un

V, Vo

(23)

If this measurement data can be explained by a 3D AAM, then the matrix W can be represented:

W = MB =

pO p0p0

pi pl p i

N

So

\am I

(24)

where M is a 2(./V + 1) x 3(m + 1) scaled projection matrix and B is a 3(m + 1) x n shape matrix

(setting the number of 3D AAM vertices n to equal the number of 2D vertices n.) Since m is

usually small, the rank of W is at most 3(m + 1).

We perform a Singular Value Decomposition (SVD) on W and factorize it into the product of

a 2(7V +1) x 3(m + 1) matrix M and a 3(m +1) x n matrix B. This decomposition is not unique,

and is only determined up to a linear transformation. Any non-singular 3(m+1) x 3(m + 1) matrix

G and its inverse could be inserted between M and B and their product would still equal W. The

scaled projection matrix M and the shape vector matrix B are then:

M = M G, = G~l B (25)

where G is the corrective matrix. See [ 15] for the details of how to compute G using orthonormality

and basis constraints. Once G has been determined, M and B can be recovered. In summary, the

3D AAM shape variation s» is automatically computed from the 2D AAM shape variation st and

13



the 2D AAM tracking results. An example of the 3D base shape s0 and the first two 3D shape

modes (sx and s2) of the AAM in Figure 1 are shown in Figure l(jM0-

3.3 Real-Time Non-Rigid 3D Tracking

We perform 3D tracking (i.e. 3D AAM fitting) by minimizing:

A)(u) + T XiAiu) - 7(W(u; p))||2 + K- S0 + YlPi Si ~ P (26)

simultaneously with respect to pi9 \ , P , and pi9 where K is a large constant weight. Equation (26)

should be compared to Equation (4) and can be interpreted as follows. The first term is the 2D

AAM fitting criterion; i.e. Equation (4). The second term enforces the (heavily weighted soft)

constraints that the 2D shape s equals the projection of the 3D shape s with projection matrix P .

Once the expression in Equation (26) has been minimized, the driver head pose can be extracted

from the weak perspective projection matrix P and the 3D non-rigid shape variation is contained in

the 3D shape parameters p{. In [14] we extended our 2D AAM fitting algorithm [10] to minimize

the expression in Equation (26). Although somewhat more complex, our 3D algorithm operates at

around 286Hz, about 20% faster than the 2D algorithm [14]. This speed up is due to a reduction of

about 40% in the number of iterations required because of the additional constraints imposed by the

3D model. This more than compensates for the approximately 20% increase in the computational

time per iteration.

3.3.1 Experimental Results

In Figures 5 and 6 we include a few frames of our algorithm being used to track the faces of two

people. The main points to note are: (1) the tracking is real-time (over 250 frames per second),

(2) the 3D head pose (motion) of the head is recovered explicitly (displayed in the top left of each

frame), and (3) the 3D non-rigid motion of the face is captured independently (the recovered 3D

shape is shown from two viewpoints in the top right.) Note how our algorithm recovers both the

14



(c) (d)

Figure 5: 3D head tracking. Our real-time non-rigid tracking algorithm estimates the 3D pose of the head
(top left of each frame) and the non-rigid 3D motion of the face (top right of each frame).

3D head motion, and the non-rigid motion of the face, in particular the opening of the mouth and

the blinking of the eyes.

4 Conclusion

In this paper we have described our recent non-rigid face tracking research using AAMs. We have

described four algorithms: (1) a real-time (over 200 frames per second) 2D AAM fitting algorithm,

(2) a real-time robust extension to this algorithm, (3) an algorithm for building a 3D non-rigid face

model from a 2D AAM, and (4) a real-time (over 250 frames per second) algorithm for fitting the

3D non-rigid model. Our real-time algorithms allow the efficient implementation of a promising

15



(c) (d)

Figure 6: 3D head tracking. Our real-time non-rigid tracking algorithm estimates the 3D pose of the head
(top left of each frame) and the non-rigid 3D motion of the face (top right of each frame).

and well studied technology (AAMs) on standard PCs. They are so fast that implementation on

low-power devices is also be possible.
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