NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Planning with Map Uncertainty

Dave Ferguson Anthony Stentz

CMU-RI-TR-04-09 1

February 2004

Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(© Camnegie Mellon University

University i!aﬁrayinm
f‘armnf' G Eur N

Abstract

We describe an efficient method for planning in environments for which prior maps
are plagued with uncertainty. Our approach processes the map to determine key areas
whose uncertainty is crucial to the planning task. It then incorporates the uncertainty
associated with these areas using the recently developed PAO* algorithm to produce a
fast, robust solution to the original planning task.

Contents

1 Introduction 1
2 Planning with Uncertainty 1
3 Extracting Pinch Points 3
4 Planning with Pinch Points 5

4.1 The Adjacency Graph 5

4.2 Planning with the Adjacency Graph: PAO* 6
5 Results 8
6 Replanning 10
7 Conclusion 11
8 Acknowledgments 11

11

1 Introduction

There are several domains in which agents are required to plan with imperfect informa-
tion. Consider a land-based robot navigating outdoors with a low-resolution overhead
map generated by a helicopter. This map may be quite inaccurate: the density of the
data may be low and the position estimation used to project this data onto the overhead
map could contain significant error. As a result, any planning map extracted from this
overhead map and used by the robot will be imperfect.

In examples like these, the navigating agent knows that it has incomplete or uncer-
tain information. Moreover, it is often also aware of the nature of this uncertainty. In
our example, the robot may know the density of the data used to produce the original
map, as well as the uncertainty associated with the helicopter position for each data
point. It would also have an idea of the error associated with any footprint convolution
process used to take the original map and extract a terrain map for planning.

The combination of these sources of information can be used to derive error mod-
els for the final planning map. Given these error models, the robot can determine a
reasonable approximation of the probability that a given cell in its planning grid holds
a particular terrain value.

In this paper we deal with exactly the above situation: an agent is equipped with
a planning grid of its environment, where every cell in the grid has some uncertainty
associated with its value.

We begin by discussing the nature of the problem and describe current approaches
to planning with uncertainty. We go on to introduce our novel solution and provide key
results and extensions.

2 Planning with Uncertainty

Figure 1 shows a sample uncertainty distribution over the terrain associated with a
particular cell in an environment. The idea is that, although we may not have perfect
information regarding a cell’s terrain, we can often extract such terrain distributions
using the information we do have and some error models.

Dealing with distributions over terrains rather than fixed values requires some mod-
ification to classical planning techniques. Currently, there are tWwo common methods of
planning that incorporate this type of uncertainty.

The first method, known as assumptive planning [5], computes an approximate
cost of traversing each cell (or ‘assumes’ a default value) and plans using these ap-
proximations. When the resulting plan is executed, if a discrepancy is found between
a cell’s assumed cost and actual cost, the plan can be updated to reflect the newly ac-
quired information. This type of planning is very fast, since it can use A* techniques
to focus its initial computation and D* techniques to repair previous plans [7, 4].

However, planning with approximate costs breaks down when cells have some

probability of being untraversable. Typically, assumptive planners solve for a path
from the start state s to a goal state g while minimizing the overall cost of the path.

p(Terrain)

Terrain: Flat Fair Rough Untraversable

Figure 1: A sample terrain distribution

The overall cost of a cell = on the path is defined as:

Cost(z,g) = min)C'ost(a:, y) + Cost(y, g).

yEnbrs(z

The value Cost(x,y) is computed from the approximate cost of traversing from cell
z to neighboring cell y. But if there is some non-zero probability that cell z is un-
traversable, the equation above is no longer valid, as it does not account for this pos-
sibility (and its associated cost). In order to get the appropriate cost, an alternative
path needs to be planned around x to the goal. The cost of this path is nontrivial to
compute, as it requires making similar considerations for all other cells encountered,
which makes the overall computation exponential in the number of cells in the environ-
ment. As a result, accurate cost approximations are difficult to generate and computed
solution paths based on rough estimates can be highly sub-optimal.

A second method addresses the limitations of approximating costs and deals with
terrain uncertainty more comprehensively. Partially observable planning [3] gen-
erates every possible terrain of every cell and finds the overall best plan taking into
account these possibilities and their associated probabilities. Thus, rather than using
an approximation of the cost of using a particular cell on a path to the goal, it com-
putes the true expected cost by generating every possible outcome and its associated
cost and probability. However, as mentioned above, computing these costs is exponen-
tial in the number of cells in the environment. Moreover, as an agent moves through
its environment it learns the true terrain values of areas it encounters. Consequently,
the terrain distribution associated with each cell can change and this change needs to
be taken into account in the planning stage. As a result, partially observable planning
is often intractable for reasonably sized environments. Even if our terrain model is
reduced to two possibilities, traversable and untraversable, and the agent is equipped
with a perfect contact sensor (the simplest case), planning involves dealing with 3”™
information states', where our planning grid is m-n cells in size. This is a prohibitively
large state space.

Each cell may be known to be traversable (¢), known to be untraversable (o), or not yet seen by the agent
(u), in which case it has its initial probability distribution over being traversable/untraversable. This results
in 3 different states of information the agent may have concerning the terrain of each cell.

T. Initially, set the cost of each cell in the environment to its expected traversable
cost. Use D* to plan an optimal path (relative to these costs) from the robot
position to the goal. Mark the pinch points along this path (see 2(b)) and use
them to construct an ordered list P.

2. While there are still pinch points in P:

(a) Replan path from pinch point to goal: Remove the top pinch point from P
and set the terrain of each cell belonging to a pinch point to untraversable.
Invoke D* to replan a path to the goal from the cell previous to the pinch
point (on the path which the pinch point was found on).

(b) Mark new pinch points along path: Step along this new path and look for
sections which have a high probability of being untraversable and are costly
to navigate around. Mark these cells as pinch points and add them to the
end of P.

3. Return all pinch points encountered.

Figure 2: Pinch Point Extraction Algorithm

It is possible to reduce our state space to only those cells which are likely to be
important to an agent navigating the environment. In this way, we gain the significant
advantage of partially observable planning without incurring anything like its compu-
tational cost.

3 Extracting Pinch Points

The idea is to focus our computation on areas of the environment whose traversability,
and hence uncertainty, is crucial to the planning task. Thus, rather than dealing com-
prehensively with the uncertainty associated with every cell, as partially observable
planning does, we restrict our attention to those cells which are most useful.

These are the ones which would cause a costly detour in the robot’s path to the goal
if they turned out to be untraversable. We would like to be able to detect these cells
and incorporate their terrain uncertainty in our planner so that we could decide from
the outset whether it is better to avoid these cells entirely or risk going through them.

To find these cells, coined ‘pinch points’ [2], we generate a set of cells which could
reasonably be encountered by an agent navigating to the goal and look for key members
of this set. Figure 2 outlines the process.

We first assume each cell with a reasonable probability of being traversable is in
fact traversable and generate its resulting expected terrain cost?. We then calculate
a path to the goal which is optimal relative to these costs. Given this path, labelled
as consecutive cells 71 ... 7,, we can find all sections of the path which are potential
blockages and would cause significant detours if found to be blocked.

2This is computed by normalising its terrain distribution to only contain the traversable range then taking
an expectation.

ay ay —p Tit+1
Vol b 7 4
N T
Ticl 4+ Ti -t Tig1 Tiel - Ty ba
A b
<
bl bl
a) a2 —» Tiy1
X 4
b
Tic1 4> b1 4 Tig1 a T by
X 4 v
A [
T Ti—1 . bl

Figure 3: Finding potential path blockages in an eight-connected grid. Each diagram
highlights three local paths from cell 7;_; to r;4; for different relative positions of
cells 7;_1, 73, and r;4;. If there is a nontrivial probability that all of these three paths
are untraversable, the cells along the paths are grouped together as a potential pinch
point.

A section of the path centered on cell 7; is a potential blockage if there is a nontrivial
probability that an agent at cell 7;,_; will not be able to get to cell r;;1 using one of
the three shortest non-intersecting routes between the two cells. Here, the idea is that
if r; turns out to be untraversable, there is still a good chance ;4 is reachable from
r;—1 using one or more of the neighbors of r;, but if r; is untraversable and the next
obvious two paths from 7;_; to ;41 are also untraversable, then it is not so likely. To
generate the probability that the path is blocked at cell r;, we look at the three shortest
paths from cell r;_; to cell ;41 and use the terrain distributions of the cells along
these paths to determine the probability that all three paths are untraversable. If this
probability is greater than some threshold, we group cell r; and the cells along the
shortest paths together as a potential pinch point with position r;.

Figure 3 illustrates the shortest paths between r;_; and r;4, for four different rel-
ative positions of the consecutive path cells r;_;, r;, and ;1. The paths for all other
possible relative positionings can be obtained from these four. In this figure, ; pro-
vides one path between the two cells, while the other paths are denoted by the cells
marked a;, a2 and by, bs, respectively.

If a group of cells is marked as a potential pinch point we know that there is a
nontrivial probability that an agent may not be able to get through this area. In order

to determine the consequences of this possible outcome, we then check how costly a
route around the potential pinch point would be. To do this, we generate a cheapest
cost path from the previous cell on the path, r;_1, to the next cell on the path, r;,1,
without using any of the cells constituting the potential pinch point. If the cost of this
path is significant we add the potential pinch point to our list of true pinch points.

If we come across a number of pinch points in a row, for instance in a narrow
valley, we combine them into a single pinch point. The resulting probability of the
combined pinch point being untraversable is the sum of the individual probabilities
and the position of the pinch point used later for planning is taken as the mean of its
constituents.

Once we have found all pinch points along the original path, we then set the terrains
of all cells comprising these pinch points to untraversable and replan paths from the
close side of each of these pinch points to the goal, i.e., from 7;_; for each pinch point
;. This enables us to locate new pinch points which might be encountered by the agent
if it found the current pinch point to be untraversable. We iterate the procedure to
generate a set of pinch points which could reasonably be encountered (assuming an
agent that always acts optimally given its map information). Figure 4 illustrates the
approach in action. Note that, in this figure, only the cell r; corresponding to each
pinch point is shown (surrounded by a large red square to aid in illustration), rather
than the collection of all cells comprising the pinch point.

In extracting pinch points, D* is used to replan each subsequent path. The ef-
ficiency of D* over A* has been widely recognized (see [7, 4]) and, as shown in the
results section, this efficiency allows us to generate our set of pinch points very quickly.
Once equipped with this set, we can then incorporate its members and their associated
terrain uncertainties into the planning process. To do this, we make use of the recently
developed PAO* algorithm.

4 Planning with Pinch Points

In [2] the algorithm PAO* was introduced, which solves planning problems involving
hidden state such as pinch points. PAO* is applied to an adjacency graph containing
the robot position, the goal position, and the pinch points in the environment. It uses
the adjacency information to calculate an optimal solution graph, as with the AO*
algorithm, in a highly efficient manner.

4.1 The Adjacency Graph

Each pinch point may provide a bridge between several different regions of the envi-
ronment. For instance, a pinch point located at a Y-junction connects three different
regions to each other. The collection of cells adjacent to the pinch point in each region
constitute a face of the pinch point. The adjacency graph links up these faces by in-
serting arcs between every pair of faces that are reachable from one another. The cost
of an arc between two faces represents the lowest cost associated with moving along a
pinch-point free path between the faces and is used to propagate values from one face
to another.

(c), (d)

Figure 4: (a) Example of a section of a fractally generated terrain map. The darker a
cell, the larger its probability of being untraversable. (b) An optimal path (in blue) from
the mid-left side to the mid-right side of this map, assuming cells with a reasonable
probability of being traversable are traversable. In red are the positions of pinch points
found along this path. (c) An alternative path from the start-side of the first pinch point
to the goal (in purple). This path is computed assuming all pinch points from (b) are
untraversable. (d) The final set of all pinch points in red with all alternative paths in

purple.

4.2 Planning with the Adjacency Graph: PAO*

A shortest path is planned from the robot position to the goal position using this adja-
cency graph. To do this, the problem is phrased as a search over an AND-OR graph [6].
An AND-OR graph contains two types of nodes: AND nodes obtain their values from
combining the values of all their child nodes, while OR nodes compute their values
from choosing a single child node value.

Our planning domain can be represented as an AND-OR graph as follows. Each
node in the graph corresponds to a face in a particular information state. In our setting,
an information state is the state of knowledge the agent has concerning the terrain
values of each of the pinch points. Following our discussion on partially observable
planning, we restrict each pinch point to be known to be traversable (1), known to be
untraversable (0), or not yet seen by the agent (u).

The root of the AND-OR graph (an OR node) is the start cell s in the information
state characterised by every pinch point being as yet unseen (i.e., of value u). The next
level of the graph corresponds to all elements of the adjacency graph, both faces and
goal, which have arcs to s. The faces are AND nodes: each has two children repre-
senting the two possible information states realizable from visiting the node. These
two children each have the same face as their parent but reside in different information
states (one has the pinch point associated with the face of value ¢, the other o). These
children are OR nodes because their pinch point has a known value.

PAO*, short for Propagating AO*, is an algorithm which searches an AND-OR
graph by gradually building a solution graph from the start state through two alternat-
ing phases, as with AO* [1, 6]. First, it grows the best partial solution by expanding
one of the non-terminal leaf nodes and assigning admissible heuristic costs to its chil-
dren. Next, it uses the newly computed costs to propagate cost revisions throughout
the partial solution graph. At each stage in this propagation, OR nodes which are part
of the current partial solution update their choice of child to reflect the most recent cost
values. An example partial solution graph for our domain is shown in Figure 5.

In the first phase, an initial heuristic cost for a leaf node { is obtained by solving for
the cost of the ‘heuristic counterpart’ of [: the fully-known state characterized by the
most desirable true values the pinch points in [could have. Pinch points with known
values are left untouched. Pinch points not yet seen (with value u) are assigned the
value ¢. The resulting cost is guaranteed to be admissible.

The major benefit of PAO* lies in its second phase: its propagation of cost revi-
sions. Unlike AO*, PAO* propagates cost changes not only upwards to parents in the
partial solution graph, but sideways to neighbors (in the complete AND-OR graph),
and downwards to children. The resulting approach makes full use of all received in-
formation and thus allows for more informed decisions to be made at each stage of the
process. The complete algorithm is given in Figure 6 and thoroughly discussed in [2].
Briefly, there are three key propagation steps that PAO* performs but AO* does not.

Firstly, when the cost of a face in a given information state changes, PAO* propa-
gates this updated cost across all faces in the information state, so that dependent faces
will have their costs updated as well. While AO* only propagates new information up
the partial solution graph, PAO* also propagates it across the full AND-OR graph at
each level.

Secondly, PAO* uses the nature of the current problem domain to propagate cost
changes down the AND-OR graph. Given an AND node with two children corre-
sponding to the two possible true values of the node’s pinch point (traversable and
untraversable), the cost of the parent node should never be greater than the cost of the
untraversable child node. Taking advantage of this piece of intuition, PAO* updates
the face costs of the states associated with untraversable nodes so that they are lower
bounded by their parent state values. This also enables PAO* to provide a more realistic

Figure 5: An example partial solution graph. Each circle corresponds to an AND node
and each square to an OR node. P(i) = o represents the probability that the pinch point
associated with face i turns out to be untraversable.

value for the untraversable child of each newly expanded AND node.

Similarly, the cost of a parent node should never be less than the cost of its traversable
child node. Thus, PAO* also updates the face costs of parent information states so that
they are lower bounded by their traversable child states. It performs this update as part
of its propagation of cost changes back up the solution graph.

These propagation steps combine to allow information gained at one end of the
solution graph to be accessible at the other. As a result of these differences, PAO* has
been shown to be orders of magnitude more efficient than AO* while still guaranteeing
optimal solutions to the graph search.

5 Results

Focussing our computation on pinch points, we are able to solve the planning problem
much more efficiently than the full partially observable approach yet still incorporate
key areas of uncertainty to produce robust paths. In addition, the complexity of our
approach, through both the extraction of pinch points and the subsequent PAO* search
for a solution, is highly dependent on both the quality of the information the planning
agent holds and the nature of the environment. Thus, when confronted with simple
environments and reliable information, it is able to exploit these desirable attributes to
produce solutions very quickly. Meanwhile, in more complex environments with less
reliable information, our approach incorporates more areas of uncertainty to produce
very robust solutions.

T. The initial solution graph consists solely of the start node s in the original
information state.

2. While the solution graph has some nonterminal leaf node:

(a) Generate fringe node: Starting from the root, traverse down the solution
graph until a nonterminal leaf node is encountered. Along the way, update
untraversable child states to have their face costs lower bounded by their
parent states.

(b) Expand best partial solution: Expand the nonterminal leaf node and com-
pute cost values for the information states of its children. Traversable child
states are given heuristic costs. Untraversable child states inherit their par-
ents’ cost values as lower bounds then perform limited value iterations over
their heuristic counterparts to potentially increase these values. Add the
children to the solution graph, noting whether they are terminal.

(c) Propagate cost changes and update solution: Compute an updated cost of
the original leaf node given the costs of its children. If the node’s cost
has changed, update the cost estimates for its entire information state and
update its parent’s cost to reflect these changes. If the parent is an OR node,
the current node may be replaced if it no longer provides the minimum cost.
If the node is a traversable child, update the costs associated with the entire
parent state to be lower bounded by the current state. Continue propagating
up the graph until a node is reached whose cost does not change.

3. Return the optimal solution graph.

Figure 6: The PAO* algorithm

To test the computation required to extract pinch point areas in environments of
varying complexity, we generated 1000 fractal terrain grid maps. Each was of size
200 x 200. These environments ranged from very open, easy to navigate areas to very
complex, cluttered areas (such as in Figure 4)>. With each map, we restricted the
total number of pinch points to be 10, so that our results could easily be interpreted in
conjunction with the planning results given in [2]. As Figure 4 shows, this still enables
us to consider a large number of diverse paths when the environment is highly cluttered.

Over our 1000 terrain test cases, the average number of extracted pinch points was
2.47 and the average time taken for this extraction was 0.07 seconds. The maximum
amount of time required to extract the pinch points from any map was 0.34 seconds
(with the minimum being 0.003).

Combining these results with the computation required to plan with extracted pinch
points (from [2]), we have the entire process conservatively taking 6.7 seconds. This
time reflects the worst results reported here and in [2] for environments with 10 pinch
points.

3For details of the fractal generation process, see [7). We used a gain of 20 and varied the number of
levels from 5 to 9.

A complete partially observable solution over such an environment would need to
contend with 3200200 geates rather than the 3'° used in our PAO* planning. This is
currently far too large a problem to be solved. However, by restricting our attention
to the most important areas of the environment, we have been able to obtain robust,
realistic paths for minimal computation. The resulting approach is fast enough to be
used by real systems operating with imperfect information in real environments.

6 Replanning

The approach described above allows us to deal with the uncertainty in our planning
grid which is likely to be most relevant. But there are two related situations in which
this approach alone will not be sufficient. The first is when an agent finds itself in
a highly unlikely situation where a large number of non-pinch point cells have been
found to be untraversable and, as a result, the agent is unable to traverse its computed
path. The second is when the original information given to the agent is incorrect or the
environment is dynamic.

However, we can deal with both of these situations by augmenting our approach to
perform dynamic replanning while the agent navigates the environment, as follows.

First, the agent extracts the pinch points in the environment and computes its solu-
tion path to the goal as previously described.

Next, the agent computes which neighboring cell it should move to first, based on
its neighbors’ costs to each reachable face and the costs from each reachable face as
returned by the solution path. Initially, this is trivial: the starting cell is part of the
adjacency graph so the agent knows which face to move towards. It only needs to look
for the neighbor which will take it to that face with least overall cost. However, as
the robot traverses towards the desired face, it is able to update the terrain information
concerning encountered cells. As a result, the face which is initially least costly may
not remain so. For example, if the agent finds that a number of cells along its path
to the desired face are untraversable, it might not be able to reach the face without a
costly diversion. In such a situation it may be less costly to move towards a different
face which was initially more expensive.

‘We can allow for this type of online replanning by interleaving D* and PAO*. First,
we use D* to maintain cheapest cost paths to every reachable face from the agent cell.
Thus, each time the agent updates the terrain of an encountered cell, the new terrain
cost is propagated through these paths and the path costs to each face are updated
accordingly. Given these costs (and the costs from each face returned by PAO¥*), the
agent can update the best overall face to move towards.

However, PAO* derives its efficiency by ignoring much of the AND-OR graph and
only considering promising faces. Thus, only the faces along the final solution graph
are guaranteed to have their correct costs. The rest may only have admissible costs.
This means we need to invoke PAO* with the current desired face each time we find
we are moving towards a face which has some nonterminal leaf node in its solution
graph. Thus, we take the path costs returned by D* and use these to update the arcs
between the robot position and the rest of the adjacency graph. We can then use PAO*
to compute the best reachable face to move towards. Because PAO* does not terminate

10

until the solution graph is complete, we are guaranteed that the face returned by the
algorithm will have its optimal cost given the current adjacency graph information.
When the agent reaches a face, it can update the adjacency graph for all altered arc
costs and replan accordingly.

7 Conclusion

We have presented an algorithm for efficient planning with imperfect information. Our
approach focusses computation on areas of the environment whose uncertainty is most
important to the planning task. It then makes use of the recently developed PAO*
algorithm to solve the subsequent planning problem. As a result, it is able to produce
robust paths in a fraction of the time required by a complete solution. We have also
described a replanning extension to the algorithm to cope with dynamic environments.

8 Acknowledgments

This work was sponsored in part by the U.S. Army Research Laboratory, under con-
tract “Robotics Collaborative Technology Alliance” (contract number DAAD19-01-2-
0012). The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies or endorsements of
the U.S. Government.

11

References

[1]

{2

[31

4]

(5]

(6]
7

C.L. Chang and J.R. Slagle. An admissible and optimal algorithm for searching AND-OR
graphs. Artificial Intelligence, 2:117 — 128, 1971.

D. Ferguson, A. Stentz, and S. Thrun. Pinch point planning. Technical Report CMU-RI-
TR-04-06, Carnegie Mellon Robotics Institute, January 2004.

L.P. Kaebling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 1998.

S. Koenig and M. Likhachev. Incremental A*. In Advances in Neural Information Process-
ing Systems. MIT Press, 2002.

Illah Nourbakhsh and Michael Genesereth. Assumptive planning and execution: a simple,
working robot architecture. Autonomous Robots Journal, 3(1):49-67, 1996.

E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, 1992.

Anthony Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the
International Joint Conference on Artificial Intelligence (1JCAI), 1995.

12

