
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Planning with Pinch Points

Dave Ferguson Anthony Stentz Sebastian Thrun

CMU-RI-TR-04-06 „

January 2004

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

© Carnegie Mellon University

University Libraries _

Abstract

We describe a heuristic search algorithm for generating optimal plans in a new
class of decision problem, characterised by the incorporation of hidden state. The
approach exploits the nature of the hidden state to reduce the state space by orders of
magnitude. It then interleaves AO*-type heuristic expansion of the reduced space with
forwards and backwards propagation phases to produce a solution in a fraction of the
time required by other techniques. Results are provided on an outdoor path planning
application.

Contents

1 Introduction 1

2 Deterministic Decision Problems with Hidden State 2
2.1 Deterministic Decision Problems 2
2.2 Hidden State 3
2.3 DPHS Information States 3

3 Solving the DPHS 4
3.1 The Face Graph 4

3.1.1 Creating the Face Graph 4
3.2 The Complete Solution 5
3.3 Reachability Analysis 7
3.4 AO* 7
3.5 PAO* 8

4 Results 12

5 Conclusion 14

III

1 Introduction

The path planning problem has been addressed extensively by the robotics research
community. A number of approaches exist to solve the planning problem in determin-
istic domains (e.g. A*). Recently, incremental approaches have been developed which
allow for corrections to the original cost values associated with state transitions[10, 6].
These algorithms are both optimal and efficient given the information they ascribe to.
However, they are unable to cope optimally with uncertain apriori information.

Consider a robot navigating outdoors equipped with an overhead map of the sur-
rounding area (generated by satellite or an aerial vehicle). The resolution of the map
may be much lower than the resolution used by the robot to navigate. Due to this low
resolution, there is some uncertainty as to whether portions of the terrain are traversable
or not. As a result, certain cells in the final map will hold incomplete information: the
robot knows some information about what the terrain is like in the general vicinity but
not the exact value at the particular cell. Some of these cells may be crucial for the
robot's planning task, such as those residing in narrow valleys.

Current planners would deal with such cells in one of two ways. Firstly, they could
assign a default value to all such cells. Typically, these methods allow the robot to
update the information about cells as it moves, so that it could plan using the actual
terrain of the cell when it came close enough to determine it. Secondly, they could
compute an expected value of the cell. Given some probability density function over
possible terrains, one can compute the expected terrain of the cell and plan using this
expectation.

However, neither of these methods makes use of the information provided to act
optimally. If the cell has a non-zero probability of being untraversable, then planning
using the expected terrain (or terrain cost) will not in general produce the best path.
This is because the cost of the cell must reflect the possibility that the cell turns out to
be untraversable and the robot must find an alterior path to the goal. The cost of this
alterior path is a global property and cannot be derived directly from the terrain cost of
the cell in question.

This paper explores a family of problems that extend classical deterministic path
planning problems with a limited type of hidden state, enabling us to model exactly the
above type of uncertainty. This family encompasses several key application problems,
in particular mobile robot navigation in environments with detectable state (such as
indoor environments with doors which may be open or closed, or outdoor environments
with gaps that may turn out to be too narrow to pass through). It also includes the graph-
theoretical Canadian Traveller's Problem, which consists of planning a route through a
graph where edges may be untraversablefl].

We present a solution to such problems which performs search in a reduced infor-
mation state space using a heuristic to guide the search, as with AO*. The key theoret-
ical contribution of this paper is a new algorithm, PAO*, which updates the heuristic
value of states throughout the state space in such a way as to reduce the required com-
putation considerably.

1

' pit "W^f^S^WtJk
^̂ g -̂V-cC -̂.K" ' ^^^M0,y':y-^''%%%^ # m a ; "" ^ ? ass-**..,.-

j * » - i r * : > . '.••
:
:'%4MY&&£.*i~--^-- • • - • • » / • • • "• ••• •- -•* - ' " • - • - : : ' •- • ^ , - c • ' . -

I ' ,-J- ..-. : y t ^ - . ^ i ' »-.;. - i . ^ ^ . , / : . - , , : - . - , ; . - - ,VVC - = • :> ';

se^^^^irT-Joirt-•.•:"" . ;* -; ^ : ^ -

S i R ^ " ; : 3 i ,v ' w ^ t i a ^Ll'.: Z^mmr \ • • •••$ v^ - •>

Figure 1: A gradient map of an outdoor environment generated by a helicopter. Several
pinch points are shown in green. The grey scale value of a particular cell reflects the
cell's traversability: the darker the cell, the more difficult the terrain (with black cells
representing obstacles). The displayed area is 300 x 700 meters.

2 Deterministic Decision Problems with Hidden State

This section describes the basic Decision Problems with Hidden State (DPHS) frame-
work as applied to robotic path planning, beginning with a brief review on deterministic
decision problems. We go on to discuss how such problems can be reduced to a search
over the space of their hidden state component.

2.1 Deterministic Decision Problems

A Deterministic Decision Problem (DDP) consists of the following components:

• States. The state of the DDP is denoted by x. At any point in time, the state
is fully observable. In path planning the state corresponds to the position of the
robot in the environment.

• State transitions. The states of the system are related through an adjacency list.
An agent may transition between the current state and any adjacent state in a
deterministic manner.

• Cost Function. DDP's need some measure of the cost of transitioning between
two adjacent states, Cost(x, y), which is usually computed from the terrain costs
of the cells associated with the two states.

The central problem in path planning DDPs is to calculate a path from a start state
s to a goal state g while minimizing the overall cost incurred. The overall cost of a cell
x is defined as:

Cost(x,g) = min Cost(x1y) + Cost(y,g). (1)
yenbrs(x)

To solve for the cost of an individual state s a fast A* based focussed propagation of
values can be performed (see [10, 6]).

2.2 Hidden State

The DPHS model allows for the incorporation of hidden state into the DDP framework.
The extension is as follows:

• Hidden state. We deal with p elements comprising our hidden state (known
as 'pinch points'). In our path planning application, each relates to a particular
cell in the environment which may be traversable or untraversable. Not only is
there uncertainty associated with the traversability of these cells, but there are
great consequences if they are untraversable (i.e., an alternative route holds a
much higher cost). Each hidden state element holds a probability distribution
over its possible values (for us a single number corresponding to its probability
of being untraversable). The elements are assumed static: their true values are
fixed throughout.

• Observations. The true value of a hidden state element may be observed by
an agent. We assume noiseless observations through a proximity sensor which
allows the agent to determine the value of a pinch point from any adjacent cell
in the environment.

The hidden state thus relates the DPHS framework to Partially Observable Markov
Decision Problems (POMDP's)[5]. However, under the current model there is no un-
certainty in robot action and all observations are noiseless. As we will see, these char-
acteristics allow us to use heuristic search algorithms over state spaces intractable with
POMDP's[8].

2.3 DPHS Information States

An information state is the state of knowledge an agent may have concerning the
true state of the environment, both the known and the hidden elements. An infor-
mation state in a DPHS is written as (x,H)9 where x is the observable state and
H = {v(hi),v(h2),..., v(hp)} is the agent's knowledge concerning the hidden state.
Each hidden state element may be known to be traversable (v(hi) = t), known to be
an obstacle (v(hi) = o), or unknown to the agent (v(hi) = u). Thus, given a DPHS
with an m • n known state space (planning grid) and p pinch points, the number of
information states is m • n • 3P.

The noiseless nature of our observations thus restricts the resulting information
state space to be finite, allowing us to perform discrete search to achieve an optimal

result. However, this state space explodes with the number of hidden state elements.
Planning over the entire space is therefore prohibitively expensive.

Fortunately, there are a few key properties of our problem which enable us to sub-
stantially reduce the amount of computation required.

Firstly, we can reduce the computation to consider only the hidden state elements.
If a cell k in the environment holds a cost to each of the hidden state elements (com-
puted without passing through any other hidden state element) and to the goal, then the
overall cost of that cell in any information state / can be computed given the overall
costs of each hidden state element in /. In particular, since we are planning from a start
state s we need only compute the cost for this single cell in the single information state
the agent starts in. We thus simplify our information state description to the agent's
knowledge concerning the hidden state, H. Secondly, because the true values of the
hidden state elements are fixed, we know that an agent will only ever gain information.
In other words, because our environment is static, once an agent observes a pinch point
to be traversable/untraversable it will never again be uncertain of that pinch point's true
value. So our planning space is without cycles. Finally, because each unknown hid-
den state element in an information state can turn out to be only either traversable or
untraversable, we are presented with a natural admissible heuristic to use for searching
the restricted information space (that is, assume all unknown hidden state elements are
traversable).

3 Solving the DPHS

As mentioned previously, our solution exploits the fact that we can reduce the problem
to a search over just the space of the hidden state component. To do this, we reduce the
environment to an adjacency graph between hidden state elements.

3.1 The Face Graph

Each pinch point in a planning environment may have a number of faces, which consist
of adjacent cells opening out into different cost regions of the environment. These faces
can be thought of as different entrances and exits associated with the pinch point (see
Figure 2). Each neighboring (non-obstacle) cell to a pinch point resides on exactly one
of the pinch point's faces.

The adjacency graph (Face Graph) links up these faces to one another and, in doing
so, provides a compact representation of the hidden state elements of the environment.
Figure 1 illustrates an environment with 10 pinch points and Figure 2 shows a section
of its corresponding face graph. The cost of an arc between two faces represents the
cheapest cost associated with moving along an optimal (pinch-point free) path between
the faces and is used to propagate values from one face to another.

3.1.1 Creating the Face Graph

In order to come up with the appropriate arcs and arc costs associated with the face
graph, we run an initial cost propagation through our environment (using prioritized

4

Figure 2: The cheapest cost arcs between a subset of the faces in the previous
traversability map. Each pinch point has a number of faces attached to it, correspond-
ing to the different general entries to the pinch point. Here the pinch points are in green,
enlarged slightly to aid in illustration, and the cost arcs are in blue.

sweeping[7]) which determines, for each cell in the planning grid, the cost to each
different face and the cost to the goal. For this propagation we treat each pinch point
as if it were an obstacle, so that we ascertain which faces are directly accessible to
each another. Then, given some face f\ and its corresponding costs to each other face
Cost(f\, f2)»-Cost{f\ , /n) ,we create an arc to each face fa for which Cost(fi, fa) <
oo and label it with its associated cost. Similarly, an arc is created to the goal if it is
accessible (i.e., if Cost(/i, Goal) < oo).

After this pass, we then compute the cost between faces associated with the same
pinch point. This cost (labelled CostThru(fi, fj)) is then used in information states
which have the respective pinch point holding the value t (traversable).

After constructing our face graph, we have reduced the planning DPHS to the
graph-theoretic Canadian Traveller's Problem (CTP) concerning the hidden state el-
ements. We now introduce four methods for solving this problem, culminating in a
discussion of our novel algorithm, PAO*.

3.2 The Complete Solution

The first approach we consider uses the monotonicity of the agent's information con-
cerning the hidden state to derive an iterative solution to the CTP. Ultimately, we are
trying to compute an optimal path for an agent which starts out in the information state
H = {u,u,... ,u}. However, the cost values of each face in our graph at this state can
be recovered directly from the costs of the faces in the information states which have
exactly one pinch point of known value. These face costs in turn can be computed from
the costs of the faces in the information states which have two known pinch points, and
so on.

The reason for this is as follows. As soon as the agent moves to a face associated
with a pinch point which is of value w, the agent learns (through its proximity sensor)

Compute Cost C[fk, i]i
Cost^- Cost(fk,Goal)
v - v(h(fk))

If V = U

Cost +- p{h(fh) = o) . C[fk,io] + p(/i(A) - 0 • C[/fc, it]
Else

Cost <- min(Cost, min(C[/», z] + Cost(fk, /»)))
Ifv = t / i € /

Cost *- min(Cost, min (C[/», i] + CostThru(fk, /»)))
/<€o(/fe)

Return Cost

Figure 3: General value solution algorithm to compute cost of face fk in information
state i.

what the actual value of that pinch point is. As a result, our agent is constantly increas-
ing its knowledge of the state of the environment, one pinch point at a time. To solve
for the values of information state i we must have the values of every information state
which is reachable from i. These are exactly the information states which have one
more pinch point of known value.

In short, we iterate from the base-case information states where the environment
is completely deterministic (all pinch points are of known values) up to information
states with increasing numbers of pinch points holding the value u.

The costs of each face in the deterministic information states (there are 2P such
states for p pinch points) are solved using standard value iteration (VI), with each face
having its cost initialized to its arc cost to the goal. If no such arc exists (i.e. the face
has no path to the goal without needing to traverse some hidden state element), the cost
is initialized to infinity.

Once the costs of these states have been determined, the costs of faces of subsequent
information states can be solved using the modified value iteration algorithm in Figure
3.

In this generalized algorithm, C[fk,i] represents the cost of face fk in information
state i, h(fk) is the pinch point to which face fk belongs, v(hj) is the value of pinch
point hj in information state i (one of t, o, or u)f io and it are the information states
similar to i in all respects except that h(fk) is of value o and t, respectively, and a(/&)
is the set of all faces associated with pinch point h(fk).

The algorithm works by finding the complete set of successor faces (combined with
information states) from a given face fk. If fk is attached to a pinch point with value
u (in our information state i), then we use the probability measure associated with
this pinch point to generate an expected cost of the current face. This expected cost
combines the values of the face in the information states io and it. If the pinch point is
known, then we update our current cost to be the minimum of the cost associated with
moving to any adjacent face (and the goal, if reachable). If the pinch point is known
and is traversable then we can add to our contention the faces on the other side of the
current pinch point as these, too, are available successors.

The cost computation is performed for each face in the information state repeatedly
until convergence.

3.3 Reachability Analysis

A major drawback of the above approach is that every possible information state is ex-
amined and solved for, including states that can never be realized given the initial state
the agent resides in. Reachability analysis has been used extensively by the Markov De-
cision Processes community (and others) to restrict computation to information states
which are physically reachable from the initial state[3, 2]. The idea is to propagate
outwards from the initial state, marking each subsequent state as reachable. All states
left unmarked can be ignored in our solution derivation.

Incorporating reachability considerations, the algorithm described above changes
in two ways. Firstly, an initial propagation step is performed, branching out from
the initial state, to mark all the reachable states. Secondly, the iteration phase only
considers the states marked in the first step, thus ignoring the irrelevant areas of our
information space.

3.4 AO*

The number of examined states can be further reduced by performing heuristic-based
search over the information space. AO* is a classic search algorithm which performs
such a heuristic search over an AND-OR graph[4, 9]. An AND-OR graph contains two
types of nodes: AND nodes obtain their values from combining all their child nodes,
while OR nodes compute their values from choosing a single node from their children.

The planning CTP can be represented as an AND-OR graph as follows. Each node
in the graph corresponds to a face in a particular information state. The root of the
graph (an OR node) is the start cell s in the information state H = {u, u,..., u}.
The next level of the graph corresponds to all the faces which have arcs to s (and
each node at this level has information state H). These are AND nodes: each has two
children representing the two possible information states realizable from visiting the
node. These two children each have the same face as their parent but reside in different
information states (one has the hidden state element associated with the face of value
f, the other o). These children are OR nodes, the next level are AND nodes, and so on.

Intuitively, from s the agent can choose to move to any adjacent face or directly
to the goal (if clear). Thus, its cost is a function of the minimum cost of the adjacent
faces. Once it has moved to one of these faces, it learns the true value of the hidden
state element associated with the face. It does not choose this value: it is taken from the
range of possibilities (in our case just {traversable, obstacle}) according to the hidden
state element's probability measure. Thus, the cost of the parent node is a combination
of the cost of both its children.

AO* searches an AND-OR graph by gradually building a solution graph from the
start state through two alternating phases. First, it grows the best partial solution by
expanding one of the non-terminal leaf nodes and assigning admissible heuristic costs
to its children. Then it uses the newly computed costs to propagate cost revisions to

1. The initial solution graph consists solely of the start node, s, in the original
information state H.

2. While the solution graph has some nonterminal leaf node:

(a) Expand best partial solution: Expand a nonterminal leaf node and compute
heuristic values for its two children. Add the children to the solution graph,
noting whether they are nonterminal.

(b) Propagate cost changes and update solution: Compute an updated cost
estimate of the original leaf node given the costs of its children. If its cost
has changed, update its parent's cost to reflect this change. If the parent is
an OR node, the current child may be replaced if it no longer provides the
minimum cost. Continue propagating up the graph until a node is reached
whose cost does not change.

3. Return the optimal solution graph.

Figure 4: The AO* algorithm

the parent node and onwards up the graph. The full algorithm as used is illustrated in
Figure 4.

The efficiency of AO* is obtained through its use of a heuristic to limit the amount
of the AND-OR graph that is examined. The resulting solution graph can often be
constructed through observing only a fraction of the complete graph. In our case, the
heuristic value of a new node n is computed through solving a VI over the 'heuristic
counterpart' of n: the deterministic state characterized by the best-possible true values
the hidden state elements in n could have. For elements already known in n (i.e.
elements hp such that v(hp) = t or v(hp) = o) the elements are left untouched.
Elements still unknown (with v(hp) = u) are assigned the value t. The resulting
values are guaranteed to be admissible and the VI over the deterministic state is very
fast.

3.5 PAO*

AO* works very well in certain situations, typically where most of the reachable states
are clearly undesirable. This is because its use of a heuristic allows it to focus its search
away from highly sub-optimal faces. However, given the current problem domain and
heuristic, it is possible for the algorithm to examine far more states than necessary.
Furthermore, because the partial solution graph is altered during the course of the al-
gorithm, AO* can re-expand the same state several times. In the worst case, this can
result in execution times that surpass the complete solution by orders of magnitude (see
results).

(a)

(b) (d)

Arc Costs
:(R,a)=5 C(R,b)=10 C(R,c)=15
:(R,d)=20 C(a,b)=10 C(c,b)=10
Xd,b)=10 C(bt,G)=10

(c)

(0

5+20

5+20 / \ 15+20 20+20
0.5 0.5s

0
5 +

(15 +
inf/2)

10 +
(5 +
inf/2)

15 +
(15 +
inf/2)

20 +
(15 +
inf/2)

Figure 5: Sample planning problem involving a robot, a goal, and four doors which
may be open or closed. Some sample arc costs between door faces and points of interest
are shown in (b). The first two expansions of the AO* and PAO* solution graphs are
shown in (c) and (d). The values under each node represent the parent's cost to the
node plus the cost of the node itself. The resulting AO* and PAO* solution graphs
after propagating the cost change from (d) are shown in (e) and (f).

PAO*, short for Propagating AO*, is an algorithm which attempts to capture the
clear benefits of using a heuristic-based search while minimizing the possible draw-
backs of using partial solution graphs. It does this by propagating cost changes not
only upwards to parents in the partial solution graph, but sideways to neighbors (in the
complete AND-OR graph), and downwards to children. The resulting approach makes
full use of all received information and thus allows for more informed decisions to be
made at each stage of the process.

The key insight behind PAO* is that cost changes are rarely isolated. If a node
updates its cost based on an altered child cost, it is likely this update will affect the costs
associated with that node's neighbors. Consider the simple scenario described in Figure
5, where a robot (at the position R) must navigate to a goal within an environment
containing 4 doors. Each door may be open or closed and the robot is equipped with
a proximity sensor to tell, upon reaching a doorway, which possibility prevails. For
clarity we have only dealt with the four reachable faces from the robot's initial position
and have shown only relevant arc costs. We have slightly abused notation and used
C(bt,G) to express the cost between face b and the goal (assuming there is no door at
b).

Initially, all the faces have heuristic cost values associated with them, correspond-
ing to their cheapest possible costs. In this particular scenario, all these costs corre-
spond to paths through face b. As explained previously, these heuristic values are the
result of a value iteration over the state of the environment where all the doors are open.
Given these initial face costs, the best successor from R is b, giving R an initial cost of
C[R] = C(R, b) + C[b] = 20. So b is placed as the child of R in the partial solution
graph (see Figure 5(c)).

After a single further expansion of the graph, the cost associated with b changes
dramatically. Its two possible outcomes are computed and its resulting cost is forced
to reflect the possibility that the adjacent doorway may be blocked, in which case no
path to the goal is possible. However, AO* only uses this new information to update
the value of the root node, which in turn chooses a new child (one of the faces whose
cost is the original heuristic value - see Figure 5(e)). This does not make effective use
of the information gained in the previous expansion. Because all the faces depend on
b to reach the goal, their costs are affected by any cost changes associated with b. By
ignoring this, AO* ends up expanding each of the faces reachable from R one by one
in order to arrive at the same cost values that could have been computed directly from
this initial expansion.

PAO* propagates information concerning updated costs more thoroughly through
the information state space. The complete algorithm is given in Figure 6. There are
four key differences between its operation and that of AO*.

The first difference allows PAO* to overcome the difficulty AO* faces in domains
such as our simple robot navigation example of Figure 5. In its propagation of cost
changes, PAO* propagates the updated child cost through the entire child information
state, so that dependencies between faces will be reflected in their costs and the parent
will be able to use the most accurate information possible in determining its own cost
and (currently) optimal child (see Figure 5(0).

Secondly, PAO* propagates cost values down the solution graph. Given an AND
node with two children corresponding to the two possible true values of the node's
pinch point (traversable and obstacle), the cost of the parent node should never be
greater than the cost of the obstacle child node. Similarly, the parent should never have
a lower cost than the traversable child. This makes intuitive sense: if the true value
of a given pinch point is known to be traversable, then we are certainly in at least as
desirable a state as if we did not know anything about that pinch point's true value.
However, because a face in a given information state can be reached through a number
of different paths, often this will not hold for a given parent and child combination.

10

1. The initial solution graph consists solely of the start node, s, in the original
information state H.

2. While the solution graph has some nonterminal leaf node:

(a) Generate fringe node: Starting from the root, traverse down the solution
graph until a nonterminal leaf node is encountered. Along the way, update
obstacle child states to have their face costs lowerbounded by their parent
state.

(b) Expand best partial solution: Expand the nonterminal leaf node and com-
pute cost values for the information states of its children. Traversable child
states are given heuristic costs. Obstacle child states inherit their parent's
cost values as lowerbounds then perform a limited VI over their heuristic
counterpart to potentially increase these values. Add the children to the
solution graph, noting whether they are nonterminal.

(c) Propagate cost changes and update solution: Compute an updated cost of
the original leaf node given the costs of its children. If the node's cost
has changed, update the cost estimates for its entire information state and
update its parent's cost to reflect these changes. If the parent is an OR node,
the current node may be replaced if it no longer provides the minimum cost.
If the node is a traversable child, update the costs associated with the entire
parent state to be lowerbounded by the current state. Continue propagating
up the graph until a node is reached whose cost does not change.

3. Return the optimal solution graph.

Figure 6: The PAO* algorithm

It is even more likely that other faces in the same information state as the face of
the child/parent node will have unrealistic costs. To take advantage of this piece of
intuition, PAO* updates the face costs of the states associated with obstacle nodes so
that they are lowerbounded by their parent state values. The update looks at each face
in the child state and assigns it the maximum of the costs assigned to it by the two
respective states, parent and child. PAO* performs this update as it traverses down the
solution graph to select the next nonterminal node for expansion.

As an example, consider again the simple environment given in Figure 5(a). As-
sume this time the robot starts not from the position marked R but rather in the room
blocked by the doors attached to faces a and c. Let's assume further that the robot
initially expands the face on the other side of the door from a (call this face a'). If it
then chooses to expand the traversable child of a\ it will receive an updated value for
face b which takes into account its probability of being untraversable and precluding

11

any solution. When it propagates this information back to its parent and on up to node
a\ suddenly the traversable child of a! has a higher cost than its obstacle child, since
the obstacle child still uses the heuristic cost of each unexpanded face (including b).
PAO* propagates the updated information to the obstacle child on its next pass down
the graph and, as a result, arrives at a much better heuristic estimate of its cost.

The relationship works both ways, however, and PAO* also updates the face costs
of parent information states from their traversable child states. It performs this update
as part of its propagation of cost changes back up the solution graph. These two prop-
agation steps combine to allow information gained at one end of the solution graph to
be accessible at the other.

The final difference resides at the node expansion stage. In the AO* expansion of a
nonterminal node, indifference is shown towards the nature of the two children. Both
are assigned initial heuristic values and these values are then used to update the parent.
However, it is possible to exploit the relationship between the face costs of parent and
child states described above to produce more realistic values for at least one of the two
children. PAO* allows the obstacle child state to inherit the values of the parent state,
then performs a VI over the heuristic counterpart of the obstacle state which carefully
ensures the resulting costs are not less than the parent costs. This is done by initializing
each face with the cost of its arc to the goal (if one exists), then performing standard
value iteration. If, at any point during the VI, the cost of a particular face becomes
less than that face's cost in the parent state, the face has its cost fixed to the parent cost
for the remainder of the value iteration. This inheritance allows all the information
concerning the parent state to be retained and utilised by the obstacle child state.

4 Results

Figure 8 compares the performance of PAO* to all 3 alternate approaches discussed
here. The algorithms were tested over 20 different fractally generated environments1,
each with 10 pinch points (selected manually from the environment). Each fractal
environment was generated using a different density to simulate varying degrees of
terrain difficulty. For each environment we varied the probabilities associated with
each pinch point randomly to produce 10 different test cases.

In each case, the task was to find the optimal path given a start state at one end of
the environment and a goal state at the other. Each environment was 200 x 200 cells
in size. The time taken for the initial arc cost propagation is independent of which
approach is used and is highly dependent on the size of the environment, so it has been
left out of our comparison. On average, this propagation took about 6 seconds.

We used 10 pinch points in our analysis in order to keep the numbers down. Al-
though the relative performance of each approach alters slightly given an increased
quantity of hidden state (the advantage of reachability analysis over the complete solu-
tion, for example, will increase), we found that 10 pinch points was enough to portray
the general trend.

'see [10] for details of the fractal generation process. We used a gain of 20 and varied the number of
levels from 1 to 20

12

Figure 7: An example fractal terrain used in testing. 10 pinch points were manually
selected from each environment.

The first criteria used to evaluate the approaches was the number of information
states examined. For the complete approach, this is a fixed number, as it exhaustively
solves each information state from the deterministic cases upwards. Reachability anal-
ysis allows us to reduce the number of examined states quite considerably. AO* at
times examines only a fraction of the states, however on occasion it was forced to deal
with the complete information space. PAO* was able to keep the number of considered
states extremely low, on average looking at only 406 (out of a state space of 59048).

To compare PAO* with AO* more thoroughly, we generated results for the number
of information states which were expanded during the run of each algorithm. This
corresponds to the number of fringe elements which were further processed to produce
their traversable and obstacle children. Because the partial solution graph maintained
by these approaches is continually updated and reshaped, a single state can be expanded
several times. Thus, the number of expanded states can be much larger than the total
number of distinct states examined. AO* on average expanded more than 1.8 • 104

times as many states as PAO*.

The enormous difference in state expansions carried over into the run time results.
AO* performed on average much more poorly than the complete solution, although
certain environments it was able to solve very quickly. PAO* performed considerably
better than any of the other approaches, with an average run time of 0.03 seconds.

The effectiveness of each approach is highly dependent on the nature of the envi-
ronment in which we wish to plan. We have been interested in solving the navigation

13

Approach
Examined

Min
Max
Avg

Expanded
Min
Max
Avg

Run Time
Min
Max
Avg

Complete

59048
59048
59048

1.3278
2.8071
1.8250

Reachability

19684
59048

52924.8

0.4749
2.5056
1.3594

AO*

5
59048

25272.0

2
26748382
5794832.5

0.0004
1011.5316
232.5929

PAO*

5
2146
405.8

2
3150
314.8

0.0002
0.2827
0.0302

Figure 8: The results of our four approaches applied to a test set of 200 pinch point
environments. Each environment contained 10 pinch points. The three criterion dis-
played are the number of information states examined, the number of information states
expanded (in the case of AO* and PAO*) and the total run time required to find the op-
timal solution.

problem for outdoor environments and generated our range of test scenarios accord-
ingly. However, for different environments, particularly indoor scenarios, the relative
performance of the approaches may be a little different. In particular, in run time val-
ues the approaches would be even more separated, as only a fraction of the information
states are reachable when the order of the adjacency list between faces is small (a typ-
ical characteristic of indoor environments), and the inter-dependencies between face
costs are even stronger. These changes do not affect the overall performance advantage
of PAO*, however, which dominated every criterion in every environment we tested
(including some indoor scenarios which have not been reported).

5 Conclusion

We have described a new algorithm, PAO*, which solves AND-OR graphs using heuris-
tic search. It is similar to AO* in its maintenance of a partial solution graph but differs
in its ability to update heuristic values across the full AND-OR state space. We have
presented comparisons between PAO* and three other approaches used to solve a new
kind of decision problem, characterized by the incorporation of hidden state.

A number of promising directions exist for future research. In this paper, we have
dealt with environments where the pinch points are manually specified. We are cur-
rently investigating the automatic extraction of pinch points from outdoor data. We are
also looking at the application of these ideas to partially known or changing environ-
ments (such as those dealt with in [10, 6]).

14

References
[1] A. Bar-Noy and B. Schieber. The Canadian traveller problem. In Proceedings of the second

annual ACM-SIAM Symposium on Discrete Algorithms, pages 261 - 270, 1991.

[2] A. Blum and ML. Furst. Fast planning through graph analysis. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, pages 1636 - 1642,
Montreal, 1995.

[3] C. Boutilier, R.I. Brafman, and C. Geib. Structured reachability analysis for markov deci-
sion processes. In Uncertainty in Artificial Intelligence, pages 24-32, 1998.

[4] C.L. Chang and J.R. Slagle. An admissible and optimal algorithm for searching and-or
graphs. Artificial Intelligence, 2:117 - 128, 1971.

[5] L.P. Kaebling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 1998.

[6] S. Koenig and M. Likhachev. Incremental A*. In Advances in Neural Information Pro-
cessing Systems. MIT Press, 2002.

[7] A.W. Moore and C.G. Atkeson. Prioritized sweeping: Reinforcement learning with less
data and less time. Machine Learning, 13:103-130, 1993.

[8] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm
for pomdps. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

[9] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, 2 edition, 1992.

[10] Anthony Stentz. The focussed D* algorithm for real-time replanning. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 1652-1659, 1995.

15

