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Abstract

The world wide web represents vast stores of information. However, the sheer
amount of such information makes it practically impossible for any human user to be
aware of much of it. Therefore, it would be very helpful to have a system that au-
tomatically discovers relevant, yet previously unknown information, and reports it to
users in human-readable form. As the first attempt to accomplish such a goal, we pro-
posed a new clustering algorithm and compared it with existing clustering algorithms.
The proposed method is motivated by constructive and competitive learning from neu-
ral network research. In the construction phase, it tries to find the optimal number
of clusters by adding a new cluster when the intrinsic difference between the instance
presented and the existing clusters is detected. Each cluster then moves toward the
optimal cluster center according to the learning rate by adjusting its weight vector.
From the experimental results on the three different real world data sets, the proposed
method shows an even trend of performance across the different domains, while the
performance of our algorithm on text domains was better than that reported in previous
research.
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1 Introduction

With the rapid progress of computer technology in recent years, there has been an
explosion of electronic information published on the Internet. The world wide web
represents vast stores of information. However, the sheer amount of such information
makes it practically impossible for any human user to be aware of much of it. Nei-
ther the depth nor the extent of possibly useful information is known to the human
user of the web. This problem will only get worse, without efforts to deal with such
information overload.

In particular, such a phenomenon is more serious for the decision maker, who has
to determine what to do at the right time. Timely decision-making can be accom-
plished by awareness of the ever-changing surroundings. In order to make a decision
on a timely basis, the decision maker or decision supporter should monitor information
broadly and track, in depth, specific items relevant to the decision. However, consid-
ering the tremendous volume of surrounding information, it is practically impossible
for decision makers or decision supporters to discover and monitor all of the pertinent
information or knowledge. Therefore, it would be very helpful to have a system that
automatically discovers relevant, yet previously unknown information, and reports it to
users in human-readable form.

Topic Detection and Tracking (TDT) was proposed as the endeavor to find the so-
lution for problem of "well-awareness" on a user's surroundings [1], [13]. The topic
detection is the problem of identifying stories in several continuous news streams that
pertain to new or previously unidentified events. It consists of discovering previously
unidentified events in an accumulated collection ("retrospective detection"), or flag-
ging the onset of new events from live news feeds ("on-line detection"). Both forms
of detection by design lack advance knowledge of the new events, but have access to
(unlabeled) data in chronological order. Given the facts that it should deal with unla-
beled data and a subset of news reports with similar contents is grouped together, the
clustering algorithms are a good choice to discover unknown events. For the purpose
of our goal that finds out what happens in the past, the retrospective detection is the
right direction to pursue.

In this paper, the approaches for event detection are presented as the first attempt
at building a system for providing awareness of of the surrounding infosphere. This
system should be able to group the incoming data into a cluster of items of similar con-
tent. Then, it should report the contents of the cluster in summarized human-readable
form. Finally, it should be able to track events of interest in order to take advantage
of developments. To accomplish this, we applied the newly devised and the existing
clustering algorithms to the retrospective detection and compared them with each other
within the standard metrics.

The rest of the paper is organized as follows. Section 2 describes how the text
documents and the clusters are represented in computational form. Section 3 details the
proposed clustering method and the existing ones. The experiments and conclusions
are described by Section 4 and 5 respectively.



2 Data Representation

This section describes how a text document is represented in machine-readable form.
The data representation for use by clustering algorithms that are discussed in this paper
are based on the conventional (real-valued) vector space model [12]. This is one of the
most widely used models for information retrieval because of its conceptual simplicity
and the appeal of the underlying metaphor of using spatial proximity for semantic
similarity.

In this model, each document is represented in a high-dimensional space, in which
each dimension of the space corresponds to a word (a unigram) in the document set.
This model is realized by means of the word-by-document matrix, M = T x TV, where
there are T word features and Ar documents, W = {w\, ...,wt, ...,WT} and D =
{d\, ...,^i, ...,div},^i € RT respectively. The word feature set (W) is constructed
by eliminating infrequent words and high frequency words. The elimination of words
indicates that words are only considered as features, if they occur greater number of
times than indicated by frequent threshold or at most smaller number of times than
indicated by infrequent threshold. These threshold values are determined empirically
at Section 4.

Each word has its weight Wt that indicates how important it is for a given text
learning task. A variant of TFIDF (Term Frequency x Inverse Document Frequency)
[12] is used for calculating a weight. The idea of this weighting method is to ensure
that the weight of a word is scaled from 0.0 to 1.0 while preserving the original idea
of TFIDF, which gives a word higher weight if it is frequently appeared in a document
and less frequently occurred across the document collection. The weight of a word, wt

defined as:

( l + l o g ( t / M ) ) x l o g ^
0)

Is + I)2

where tfijt is the number of times word t occurs in document di and dft is the number
of documents in the collection in which the word t occurs. The weight is then nor-
malized by a document length. This model is often called the "bag-of-words model"
because the factorial expression reflects conditional independence assumptions about
word occurrences in di.

An identified cluster is represented in the similar way of that of document. A
cluster is represented by a mean vector /XJ, often called a centroid or a cluster center,
of documents which are grouped by their close similarity. We assume that there are
if-clusters C = {/xo, ••-, PK}> which optimally partition a given data collection. Thus
the goal of document clustering is to partition Ar number of documents into K clusters
disjointly.

When text document and cluster are represented by the vector space model, the
similarity of those vectors is determined by estimating the cosine angle between two
vectors.



3 Methods for Clustering

This section details each of the clustering methods that we used for text clustering.
They are categorized into two classes: hierarchical and iterative clustering.

3.1 Hierarchical Clustering Methods

Hierarchical clustering proceeds either bottom-up, by starting with the individual in-
stances and grouping the most similar ones, or top-down, by starting with all the objects
and dividing them into groups so as to maximize the given objective function.

3.1.1 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) is a sequence of partitions in which each
partition is nested into the next partition in the sequence [8]. Agglomerative cluster-
ing is defined by disjointed clustering, which individualizes each of the Ar documents
within a cluster. This process is repeated to form a sequence of nested clusters in
which the number of clusters decreases as the sequence progresses, until a single clus-
ter containing all N documents. It consists of three combining methods, differentiated
in terms of how they group data at each sequence of clustering; single-link groups the
closest members, complete-link groups the farthest members, and average-link groups
the closest members on average. The resulting tree of clusters is called a dendrogram,
which shows how the clusters are related to each other. By cutting the dendrogram at a
desired level, a clustering of the data items into disjoint groups is obtained.

3.1.2 Principal Direction Divisive Partitioning

Principal Direction Divisive Partitioning (PDDP) is a hierarchical divisive clustering
[4]. It constructs a binary tree in which each node holds the documents. PDDP binary
tree starts with the root cluster representing all documents. The algorithm then recur-
sively splits each leaf cluster into two children, until a given criterion is satisfied. In
order to keep the binary tree balanced, PDDP uses the scatter function to determine
whether the node is partitioned. The scatter function measures how cohesive the in-
stances within a cluster are. For example, if the mean squared distance of a cluster is
greater than a given threshold value, the cluster should be partitioned. The word-by-
document matrix is used to obtain the principal direction and the hyper-plane partition
that is used to split the documents within a given node into two partitions.

For instance, we have the original word-by-document (M = T x TV) at the be-
ginning of partitioning. In order to split a matrix into two sub-matrices (or nodes),
each document is projected on the leading principal direction. The principal direc-
tions of the matrix is the eigenvectors e — {ei,.. . , eV} of its covariance matrix £ =
(d — p)(d — jl)T. The projection of document d* is applied as:

v = e(di - p)

where v is the value which is used to determine the splitting for the cluster and ft is
the centroid of the matrix. All the documents for which v < 0 are partitioned into the



left child node, and all the documents for which v > 0 are put into the right child.
The projection can be interpreted by the fact that we can obtain the hyperplane, which
divides a set of multi-dimensional vectors into two distinct groups by projecting the
vector d{ onto the line in the direction of e that passes through the centroid.

3.2 Iterative Clustering Methods

Iterative clustering usually produces clusters by optimizing an objective function de-
fined either locally (among documents belong the same cluster) or globally (defined
over all of the data set) [3]. The most popular objective function is the mean squared
distance function, which tends to work well with isolated and compact clusters. The
basic algorithm of iterative clustering works as follows:

1. Choose k cluster centers by either the random initialization or pick up randomly
a number of documents and calculate their center,

2. Assign each document to the closest cluster center,

3. Recompute the cluster centers using the current cluster members,

4. If an objective criterion is not met, go to step 2.

The typical stopping criteria of this iteration are that there are no re-assignment of
instances to new clusters or the mean squared distance of a cluster is less than the
predefined threshold. A major problem of the iterative clustering is that it is very
sensitive to the initialization and consequently converges to a local minimum of the
target function value if the initial clusters are not properly chosen.

3.2.1 K-Means

The A:-means is a well-known iterative clustering algorithm based on iterative relo-
cation that partitions a data set into k clusters, minimizing the mean squared dis-
tance between the instances and the cluster centers. Given a number of documents
D — {d0, ...,dN},di 6 RT, the fc-means algorithm creates ^-partitioning so that if
{pi,..., [Ik} represent the k partition centers, then the following objective function [3]

J =

is (locally) minimized.

3.2.2 Expectation-Maximization with Mixture Model

The underlying assumption of the mixture model [2] is that a given document collec-
tion, D = {dijcfej . . . ,dn}, is generated by a set of k unknown distributions ni,ri2, —,rik
which are represented by their parameters,6 = {61,62, •••, 6k}. In particular, the prob-
ability density of d% with respect to 6j is given by Pj(di\6j) for some unknown set



of parameters Oj. In addition, suppose that the probability that di belongs to a distri-
bution 6j is zij. Given these definitions, the goal of the mixture model is to find the
parameters 9 and Zij that maximize the likelihood:

2=1 j=l

The parameters of Oj are the mean vector {jij) and covariance (Ej) of each distribution
if the unknown distribution is modeled by the multivariate normal distribution. It is
often called the Gaussian Mixture model. In this model, the model parameters can be
estimated by the Expectation Maximization (EM) algorithm [5].

The EM is a general method of finding the maximum-likelihood (ML) estimate of
the parameters of an underlying distribution (i.e. for estimating Gaussian mixtures)
from a set of observed data that has incomplete or missing values (e.g. unlabeled) [6],
[11]. In the E-step, the probability of each observation belonging to each cluster is
estimated conditionally on the current parameter estimates. In the M-step, the model
parameters are estimated given the current group membership probabilities. When the
EM converges, each observation is assigned to the cluster with the maximum condi-
tional probability.

In the clustering text documents, we assume that there is an unknown number of
Gaussian distributions governing the generation of each document in a given data set.
Each Gaussian distribution corresponds with a cluster. The goal of the EM process is to
find the parameters, mean vector (/^), covariance matrix (£*•), and probability of each
document belonging to a Gaussian distribution (ZJJ).

3.2.3 Constructive-Competition Clustering

The proposed method for clustering, called Constructive-Competition Clustering (C3),
is motivated by constructive and competitive learning from neural network research
[7]. When a multi-layered neural network is trained under the "constructive" fashion,
a hidden node is dynamically appended to network architecture when it detects the in-
trinsic difference between input patterns and the learned weights. Correlation analysis
is often used to discover intrinsic difference. The proposed method is also closely re-
lated to competitive learning in that the adjustment of cluster centers is confined to the
single cluster center most similar to the instance presented.

Informed by these analogies, constructive-competition clustering first identifies the
desired number of cluster centers by adding the new cluster center incrementally as
long as there is a substantial dissimilarity between the existing cluster centers and
the presented instance. We made use of cosine-measure (equation 2) and a empiri-
cal threshold to detect dissimilarity. In other words, if the cosine angle between a
document and the center of cluster discovered is greater than threshold 6, then two
vectors are considered to be dissimilar. The assignment of documents' membership
is deferred until it finishes the "construction" of the desired number of cluster cen-
ters. Each of the k desired number of cluster centers is discovered and normalized
11/2} 11 = 1, (j = 1,..., k). When a new instance is presented, each of the clusters calcu-
lates its similarity by using equation 2. The most similar cluster is permitted to update



Input:
- Desired number of clusters, dc,
- Learning rate, rj and its initial value, 770
- Current number of clusters, cc,
- Maximum iterations = T, Current iteration = t
- Threshold, 6

Construction:
pj «- di
Do while cc <> dc

1. J = arg maxj cos(di, pj)
2.

• Create a new cluster, if substantially dissimilar,

• Update the weights of j cluster center, otherwise
Pt,j *- Pt.j + ridtj

3. Go to Step 1.

Competition:
t «-0

Do while 7? <> 0
ri{t) <- T?O(1 - f )

1. Assign di to pj, J = arg max cos(di,pj)
2. Update weight, t/Jj -f- Wj 4- T](t)di
3. Normalize weight, itfj ^- ^ j / | | ^ | |

Figure 1: Constructive-Competition Clustering Algorithm.

its weights. The winner's weights are updated as:

Wj <- wJj 4- r](t)di

where r? is a learning rate at the iteration t. The weights are then normalized to ensure
S l= i w? — 1- Throughout this "competition" among the cluster centers, each cluster
center moves toward the optimal cluster center in equivalence with the learning rate.
In summary, the procedure of the constructive-competition clustering consists of two
phases: "construction" and "competition" phases. In the constructive phase, it tries
to find the desired number of cluster centers by adding a new cluster center whenever
a substantial dissimilarity is discovered. Then it makes the discovered cluster centers
move toward the optimal cluster centers by putting the cluster centers into the com-
petition with one another. The "construction" phase is one of the solutions for the



fluctuated results that occurred by the random initialization. Figure 1 describes the
algorithm in detail.

4 Experimentation

4.1 Data Sets

The data sets used in this paper are comprised of three real world data sets: one nu-
merical data set and two textual data sets. The combination of data sets with different
characteristics is intended to verify the applicability of the proposed method.

4.1.1 Heart Disease

The "Heart Disease" data set * has come from a study of heart disease screening and has
been used for various classification and clustering tasks in the machine learning field.
Each instance consists of 76 attributes with real value. The 'label" is the first attribute
in the instance: 0 = no heart disease, 1 to 4 = heart disease (different types or sever-
ities of the heart disease). Accordingly, there are five possible classes. The remain-
ing attributes indicate features such as, history of disease in the family, smoking/non-
smoking, and results of several medical tests. There are four separate data sets, all
coming from the same study, but from different hospitals with very different demo-
graphics. We combined them in order to facilitate computation without problems since
their format is identical. The total number of instances is 920.

4.1.2 20 Newsgroups

The 20 Newsgroups data set 2 is a collection of approximately 20,000 newsgroup arti-
cles, partitioned (nearly) evenly across 20 different newsgroups [9]. Except for a small
fraction of the articles, each document belongs to exactly one newsgroup.

4.1.3 TDT Pilot Corpus

The Topic Detection Tracking (TDT) Pilot Study Corpus 3 comprises a set of stories
that includes both newswire (text) and broadcast news (speech). Each story is repre-
sented as a stream of text, in which the text is either taken directly from Reuters or
is a manual transcription of CNN. It consists of 15,863 chronologically-ordered news
stories spanning the period from July 1, 1994 to June 30, 1995. There are 25 events
manually identified in this corpus. Each story was assigned a label of "YES", "NO" or
"BRIEF" with respect to each of the 25 events.



output \ target
Yes
No

Yes No
a b
c d

Table 1: A contingency table for evaluating a binary classification. In the table, the
column a is the number of items that match a (i.e. clustering) method's outputs and
target values (i.e. the number of outputs correctly classified or clustered), b and c are
the number of items that mismatch a method's outputs and target values respectively.

4.2 Evaluation Measures

The performance of the clustering methods is evaluated statistically in terms of how
well the documents belonging to each of the target clusters match the documents be-
longing to the corresponding cluster. This presents a problem, because it is not known
which of the clusters corresponds to a particular target cluster. Therefore it is required
to associate each true label with (exactly) each of cluster outputs to determine this cor-
respondence. This was accomplished by associating each target label with the cluster
that best matches it. The degree of match between a target label and a cluster is defined
as the number of instances that belong to both the target label and the cluster [1].

After finishing the association of the clustering result with corresponding target
values, the contingency table 1 for a cluster is then used to measure a clustering result
by means of the standard metric from Information Retrieval [10]. In order to evaluate
the global performance of a clustering algorithm, we first sum up the scores in each cell
for all clusters to make a single contingency table and then the following five metrics
are computed for the single table.

• Recall, r = -£-,

• Precision, p = ^ ,

• Fl Fl- 2HL - 2a

• Miss, m = -~, and

• False Alarm, / = ^ ^

4.3 Experimental Results

The first experiment was carried out by using the non-text data set: "Heart Disease."
Each instance consists of a number of (real-valued) attributes and is represented by
matrix-form, attributes x instances. We see the characteristic of this data set is very
similar to that of textual data sets, even though the degree of dimensionality and the
relationship among the attributes are considered to be different.

'The Heart Disease data set is publicly available at http://www.ics.uci.edu/~rnleam/MLRepository.html.
2The 20 Newsgroups data set is available at http://www-2.cs.cmu.edu/~TextLearning/datasets.html
3The TDT pilot corpus is available via the Linguistic Data Consortium (http://www.ldc.upenn.edu/)



HAC
A;-means
EM

1
.8

.64

.65

2
.8

.51

.61

3
.8

.62

.54

4
.8

.43

.76

5
.8

.54

.74

6
.8

.72

.62

7
.8

.61

.73

8
.8

.63

.81

9
.8

.54

.75

10
.8

.51

.61

Table 2: The micro-averaged accuracy results of three clustering methods were pre-
sented after 10 different runs on the heart disease data set. In this experiment, the
optimal number of clusters which partitions the "Heart Disease" data set into subsets
disjointly is 5. The average-link of hierarchical clustering is used.

HAC
A:-means
EM
HAC with
HAC with
PDDP
C3

A:-means
EM

r
.54
.40
.62
.65
.72
.63
.65

P
.62
.41
.64
.69
.82
.75
.78

a
.80
.72
.76
.79
.81
.83
.84

Table 3: Clustering Results from the Heart-Disease data set. The threshold of deter-
mining the creation of a new cluster in the constructive-competition clustering was 0.8.

As mentioned earlier, the main drawback in using the iterative clustering methods
is that its performance is very sensitive to initialization of the cluster center. Thus It
is desirable to initially have more reliable center of a cluster. The clustering results by
hierarchical methods might be a good source for the initial cluster centers of an iterative
clustering. By staring up from the better-than-average ground, it is highly likely for an
iterative clustering to find the global optimum.

Table 2 shows a result from comparison of three clustering methods after carrying
out 10 different runs on the heart disease data set. The performance of iterative methods
measured in micro-averaged accuracy are fluctuated between 50% and 80%, whereas
those of hierarchical method showed a stabilized accuracy at 80%. Since we consider
the iterative clustering procedure to be the optimization of the objective function, it
is natural to think that it is heavily dependent on the initial search points to find the
global optimum. This confirmed our assumptions that the iterative clustering methods,
such as fc-means and EM, are sensitive to the initialization of the cluster centers and
such fluctuating results of iterative methods can be compensated for by combining the
hierarchical and the iterative clustering method. Table 3 showed that the combined
method showed a better performance than those of separate ones.

Table 4 and 5 show the clustering results on the text data sets: "20 Newsgroup"
and "TDT pilot corpus," respectively. The results on both tables were generated by
not allowing the duplicate association between a output and a target cluster. As we
showed before, only the best matched pair of the output and the target was eligible for
the evaluation. To construct the word feature set (W), the words are removed if they



HAC
/c-means
EM
HAC with
HAC with
PDDP
C3

/c-means
EM

r
.52
.49
.50
.55
.57
.61
.62

P
.54
.43
.56
.57
.53
.64
.62

F l
.56
.55
.60
.62
.63
.66
.69

Table 4: Clustering Results from the 20 news group data set were presented. The
optimal number of clusters in this experiment is 20.

HAC
/c-means
EM
HAC with /c-means
HAC with EM
PDDP
C3

CMU
UMass
Dragon

r
.53
.50
.52
.54
.60
.59
.69

.62

.34

.61

P
.56
.48
.57
.59
.66
.70
.74

.82

.53

.69

m
.47
.50
.48
.46
.40
.27
.32

.38

.66

.39

/
.20
.29
.30
.10
.30
.11
.09

.04

.09

.08

F l
.61
.57
.62
.67
.65
.68
.72

.71

.42

.65

Table 5: The result was shown from clustering on the TDT pilot study corpus.

occur more than 300, frequent threshold, or less than 3 times, infrequent threshold from
both text data sets. The text documents in both textual data sets are represented by the
(real-valued) vector space model.

In the Newsgroup data experiment, only the body of each news article, which is
the part of an article between the "Lines" field and the end of lines, was used for
the experiment. PDDP and the proposed method showed better performance than the
others. The TDT pilot corpus experiment showed similar tendencies. The result was
shown from the TDT pilot study corpus and the results from other works on the last
three rows are cited from [13], in order to compare performance. The desired number
of clusters is 25, as indicated in [ 13], but there are more clusters in the TDT pilot corpus
beyond the 25 labeled ones. This means that the clustering method may detect many
potential events, but only that which was evaluated on a subset of the system-generated
clusters best matched the manually-labeled events.
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5 Conclusions

In this paper, we proposed a new clustering method and compared its performance with
the existing methods. Generally a hierarchical clustering showed more stable results
than an iterative one, but it takes more time to generate the result due to its quadratic
time complexity. The computing time of an iterative clustering is linear in the number
of documents. Through the experiments, we confirmed that the performance of iterative
clustering methods fluctuated depending on the initialization of cluster centers and it
is possible to improve its performance by starting the clustering from the result of the
hierarchical clustering. The combined method showed better performance than that of
each method alone, but the performance of the experiments on the text data sets is not
promising.

To compensate for these drawbacks of the two major clustering methods, we pro-
posed the constructive-competition clustering algorithm. It is motivated by constructive
and competitive learning from the neural network research. For the construction phase,
it tries to find the desired number of clusters by adding a new cluster when there is
a intrinsic difference between the instance presented and the existing clusters. Each
cluster centers then moves toward the optimal cluster center in equivalence with the
learning rate by adjusting its weight vector. From the experimental results on the three
different real world data sets, the proposed method shows an even trend of performance
across the different domains, while the performance of our algorithm on text domains
was better than that reported in previous research.
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