
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Securing Multi Agent Societies

Rahul Singh and Katia Sycara

CMU-RI-TR-04-02

Securing Multi Agent Societies

Rahul Singh
The Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
USA

kingtiny@cs.cmu.edu

Katia Sycara
The Robotics Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
USA

katia@cs.cmu.edu

ABSTRACT
When large Multi Agent Systems operate over open plat-
forms such as the Internet, there is the possibility that some
agents will endeavor to disrupt the MAS with the aim of
achieving their own agendas at the cost of the others. For
the protection of the agents in it's domain, each society
of agents should make available certain services that al-
low agents to detect and avoid such attempts by malicious
third parties. One of these is a rigorous method of identify-
ing agents, so that each agent's actions can be referred to,
recorded and evaluated. A robust identification mechanism
can allow the construction of higher level-functions such as
authentication, non-repudiation and secure communication.
Agents can then use these basic functions provided by the
MAS infrastructure along with their beliefs, current state
of the MAS and the current goals to make decisions about
trust. In this paper we present one architecture that allows
agents to be named robustly, even in open environments,
and build upon this scheme to provide MAS services that
can allow agents to authenticate each other, digitally sign
communication tokens and encrypt messages and data that
is exchanged. We explore possible scenarios of the agent
life in an open agent society and give an implementation
independent architecture to secure agents and their envi-
ronment.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; C.2.4 [Computer-Communication Networks]:
Distributed Systems; K.6.5 [Management of Computing
and Information Systems]: Security and protection

General Terms
Multi Agent Security

Keywords
Multi Agent Systems, Security

1. INTRODUCTION
In open systems deployed over a platform such as the In-
ternet the requirements for robust mechanisms for security
are considerable due to the large number of exploits possi-
ble. Depending upon the type of system and the services
provided the threats may vary. Foner presents a number
of exploits [13] that may be carried out against the Yenta
[12, 14] matchmaking system and explores possible means of
counteracting them while Wong & Sycara [27] present a se-
curity architecture for the RETSINA [24] agent system with
emphasis on agents and their deployers to allow for human
accountability for the actions of their deployed agents. Finin
et. al. [20, 26] describe a high level mechanism for security
in communication protocols with a security infrastructure
for KQML [11]. In addition to this there are a number
of ongoing efforts for the development of mechanisms and
architectures for security frameworks for the variety of dis-
tributed systems that are slowly emerging on the Internet.
XKMS [15] intends to provide a mechanism for key manage-
ment in the domain of distributed web services and S2ML [4,
5] provides a framework for marking up security assertions
and policies in XML.

Most security frameworks developed focus on mechanisms
for security and trust across human-agent boundaries and
apply to agent systems that interact closely with human
society. Imagine an agent society consisting of a number
of agents that have no contact with any human beings at
all save for ones that accept commands (goals) and those
that return results. All the other agents in the system do
not need to interact with any entity except their peers in
the agent system. They are invisible to the humans issuing
commands and receiving results. Hence any malicious activ-
ity on their part cannot directly affect the human domain.
Any malicious activity on the part of an agent can only di-
rectly affect other agents in the system. The only recourse
for the victim of such an attack is to record the disruptive
nature of the attack, the name of the offending agent and
to refrain from further interaction with that agent thus boy-
cotting that agent. As long as all the members of the MAS
adopt such a policy the actions of the attacker will have no
effect on any agents in the system. Hence it is only by dis-
rupting the MAS infrastructure that a malicious agent can
affect the lives of the agents in the system.

In order to prevent agents from causing disruptions in an
MAS two major components are required.

1. Agents should be aware of their peers and their actions
and be able to identify threats and malicious activity
so that they may be avoided in the future

2. The MAS infrastructure should have mechanisms to
protect itself from attacks that can cause failures in
the agent society

Security mechanisms at the infrastructure level can be pro-
vided as services to agents and be seamlessly integrated with
other MAS services such as naming, location and discovery.
Agents can then use these services along with their current
beliefs, goals and the state of the environment to make as-
sertions about trust.

2. THE CONCEPT OF TRUST
Trust is a term that is widely used in a number of contexts
and most often associated with security and privacy. Gmy-
trasiewicz et. al [17] outline a mechanism of communication
among agents that allows the participants to select the best
messages to exchange based on their rational behaviour and
expected utilities. The claim is that it sets the grounds for
building trust within the context of a conversation. The ac-
tual definition of trust or a theory to prove its depth (ones
trust has been established) is however not presented.

Teng et. al. [25] show how Dempster-Schafer theory of
evidence can be used to design a theory of trust and its
propagation. While claiming that trust cannot be accurately
measured quantitatively they nevertheless outline a number
or variables and parameters to define trust. It is on the
basis of these variables that they then build trust matrices
to capture the level of trust between two parties that are
interacting. The matrices are defined after trust has been
established and they reflect that level of trust. There is no
general theory presented that can determine the appropriate
level of trust that an agent a should put in agent b when the
transaction is initiated.

It may argued that a simple solution is to start with no trust
and then build trust based on the history of previous trans-
actions. This approach is flawed since there are examples (in
human society) where trust is established based on factors
other than past interactions and even when there have been
no past interactions.

Eckel &; Wilson [10] present results of experiments on human
subjects where facial expression plays an important factor in
the behaviour of the individuals interacting. They conclude
that trust is something that depends largely upon (among
other things) the beliefs of the participants.

In the context of computer science and e-commerce the term
trust is most widely used in the field of security and privacy.
Many research papers speak of managing trust, establishing
trust through authentication and verifying trust in a variety
of systems. All these approaches base their theories on the
widely accepted security mechanisms developed by research
in the field of cryptography. The CCITT standard X.509 [7]
is extensively used over the Internet to authenticate various
parties in dialogue, and in SSL [6] for secure communication.
There is a general feeling that the mere possession and ver-
ification of public key certificates (i.e. X.509 certificates)

is enough to establish trust between two parties in a com-
munication. This is evidenced by the fact that the phrase
"trusted third party" is frequently used to describe entities
that have X.509 certificates that have been verified. But
as Gerck [16] explains, the simple employ of these excellent
techniques does not establish trust. If agents a and b both
possess verifiable X.509 certificates then a can be sure that
any communication with b is indeed with an entity whose
identity is b. Similarly b can establish beyond reasonable
doubt that any documents that it received from a did in-
deed originate from a. Additionally either party can also
use information in each other's X.509 certificate to ensure
that none of the conversation can be overheard by a third
party. However, none of the above implies that a trusts 6 or
that a will not lie to b. In the context of a MAS it does not
imply that an agent a will not falsely advertise services that
it does not intend to provide.

We believe that trust is a function of the high level cognitive
processes that occur in an agent. Hence the level of trust
that an agent establishes in another agent in the MAS will
depend upon the current state of the agent, the state of the
MAS, the current goal being achieved and other constraints
that affect the life of an agent in its environment.

We now present a design for a security infrastructure to sup-
port a society of agents based on work previously conducted
by Wong & Sycara[27]. We present an implementation in-
dependent architecture for enforcing security policies in a
distributed MAS, so that agents can proactively and au-
tonomously protect themselves from attack without human
intervention.

3. AGENT NAMING IN OPEN SYSTEMS
An agent in a multi agent system is referred to by its name,
much in the same way that humans are referred to by their
names in society. An agent's name must be unique in within
the domain of the MAS so that every agent may refer to ev-
ery other agent unambiguously. Within a closed system with
any number of agents this poses a minimal problem. The
system designer merely ensures that every agent in the sys-
tem is assigned a name that is unique. With no interactions
with any other entity or system (since this is a closed sys-
tem) agents may use the same names for themselves in any
number of life cycles.

Open systems however have no human "arbitrator" that en-
sures that agents' ID's (or names) will be unique within ev-
ery lifecycle. There are no guarantees that agents possessing
a certain name will not come across another agent with the
same name. Internet naming suffers from the same problem
and uses DNS to assign unique names to websites. However
the volatile nature of a MAS (especially when one consid-
ers the possibility of mobile agents) makes such a solution
infeasible.

In a lookup based MAS such as RETSINA [24] we present
a service centric model as a solution to the agent naming
problem in open worlds such as the Internet. In this scheme
every MAS consists of its domain of operation and every
agent within this domain is uniquely named. This mech-
anism is facilitated by an Identity Service (IS) that runs
within each MAS. The IS ensures that every agent within

its domain (the domain of the MAS) is assigned a unique
name. The IS also doubles as a certification authority (CA)
and issues Identity Certificates (public key certificates) to
agents as proofs of identities. Interaction with the IS is
carried out with the exchange of Identity Request Records
(IRR) which are submitted to an IS for approval and certi-
fication. We formally define an Identity Request Record as
follows.

Definition 1. Let IR be an Identity Request Record. Then
IR is represented by a tuple defined as

(1)

where

• Ns is the agent's self generated name that will be as-
signed to the agent if it is unique within the domain
of the IS. If the name is not unique the IRR request
fails. If this is null then the IS will generate and assign
a unique name to the agent.

• Cs is the optional common name of the agent and is
usually human readable and not required to be unique.
It may also be null.

• Ks = (Es. Ds) is the agent's generated assymetric key
pair such that Vm,Ea{Da(m)) = Da(Ea(m)) = m l.
If this is not specified the IS will generate it for the
agent.

An agent that specifies none of the fields in the IRR is guar-
anteed an identity. It may also submit an IRR with certain
fields specified thus putting constraints on the identity that
it may be issued. If the value for Ns is not unique within
the domain of the IS then the request for an identity will fail
and the agent will need to submit a new IRR. The response
to a valid IRR is an Identity Certificate that establishes an
identity for the agent. We formally define the response to a
valid IRR as follows.

Definition 2. Let w be an Identity Certificate. Then w is
represented by a tuple defined as

w = (v,n,Aa,Ni.p,NB.Es) (2)

where

• Ns is the assigned unique name of the agent i.e. the
subject of the certificate.

• Es is the public key of Ns corresponding to Ds such
that Vm,E8(D8{m)) = Da(Ea(m)) = m.

The wary reader will notice that the concept of the IS and
IRR are analogous to Internet Naming Authorities (NA) and
X.509 Certificate Signing Requests (CSR). We have com-
bined the NA and the CA into a MAS infrastructure entity
that performs both functions. Identity Servers may also
form a hierarchy within the domain, effectively splitting the
MAS into subdomains. The name of the IS issuing a certifi-
cate is used in the Nt field in definition 2 and thus uniquely
identifies the MAS domain within which the agent name Ns

is used.

4. VALIDATING AGENT NAMES
All agents in the MAS receive an Identity Certificate w in
response to a valid IRR. The Identity Service issuing the cer-
tificate also possesses a valid identity (and a corresponding
identity certificate2) which is used to populate the Nz field in
defintion 2. The issued certificate is a digitally signed doc-
ument that can be used to verify the identity of the agent.
Digital signatures [21] are based on the Public Key Cryp-
tosystem (PKI)[21, 2] and allow a signed document to be
verified for authenticity. Agents and MAS infrastructure
components can use this property of Identity Certificates
to ensure that a certificate presented as proof of identity
is genuine. We formally define the predicate sign(d.w) as
follows.

Definition 3. Given any document d define

sign(d,w) = {d.d)

where

(3)

• (d.d) is the signed document consisting of the original
document and its signature

• d = Ds(hash(d)) is the signature on the document

• hash(x) is a hash function (such as SHA [3]) that re-
turns a unique hash of x

• w = (v,n,As,Ni,p,Ns,Es) is the identity certificate
belonging to the signer of the document

• v is the version of the identity certificate issued.

• n is the serial number of the identity certificate.

• As is the signature algorithm used for signing the cer-
tificate.

• Ni is the unique name of the IS that is issuing the
certificate.

• p is the period of validity of the certificate.
1Es(x) = m\ &; Ds(x) = 7712 are the results of respectively
applying the public and private parts of the asymmetric key
Ks to x in order to obtain cyphertext mi & 7712.

The signature on a particular document d can be verified
using the verify(d, d , w) predicate defined as follows.

Definition 4- Given any signed document (d.d) define

verify(d,d ,w) = true <$ hash(d) = Es(d) (4)

where

• (d,d) is the signed document consisting of the original
document and its signature

2An IS may obtain an identity certificate from another IS
or from a commercial Certification Authority (CA)

• d = Ds(hash(d)) is the signature on the document

• hash(x) is a hash function (such as SHA [3]) that re-
turns a unique hash of x

• w = (v.n.As.Nj.p.Ns,Es) is the identity certificate
belonging to the signer of the document

5.1.1 Authentication
Prior to any communication, agents must be able to authen-
ticate each other in order to ensure that that the commu-
nication partner is indeed the one that it claims to be. We
formally define the authentication predicate auth(cn.w) as
follows.

Any agent that is issued an identity certificate w possesses
a signed document (w. w), where w is the signature on the
certificate. The IS issuing w obtains (w. w) by generating w
and applying sig7i(w, W), where W is the identity certificate
belonging to the IS. Any other third party can ascertain the
validity of the certificate w by applying verify(w.w .W).
So long as the third party can ascertain that W is not forged
(by recursively applying verify(W,W ,W), where W is
the identity certificate of the parent IS or root CA) it can
verify that the certificate w is genuine.

5. THE MECHANICS OF SECURITY IN AN
AGENT SOCIETY

Numerous papers [18, 27, 13, 20, 26] outline the possible
threats to a multi agent system and we draw upon research
in that area to look at the various methods of attack that
need to be protected against. For completeness we briefly
mention them here.

• Falsification or corruption of documents in the MAS
infrastructure services.

• Eavesdropping of communication by malicious third
party agents.

• Replay attacks by malicious agents with the aim of
producing desired reactions from their peers or the
MAS infrastructure.

• Corruption of exchanged messages by a third party,
also known as a "Man in the Middle" attack.

• Spoofing attacks where an agent falsely masquerades
as another agent.

• Denial of Service attacks where a malicious agent may
overload the service provider thus making it inopera-
tive.

Regardless of the architecture being developed, the major
threats common to distributed systems and multi agent sys-
tems are some form of those listed above.

5.1 Fundamental Requirements of an MAS
Security Mechanism

Counteracting the threats outlined in section 5 above re-
quires the adoption of certain security policies and proto-
cols. The details of the policy used usually depends upon
the system being developed and takes the assumptions and
constraints into account. However in order for any security
implementation to be robust the three primitives of authen-
tication, non-repudiation and secure communication must
be implemented. We critically examine these primitives and
present formal predicates that allow assertions to be made
within the context of a Multi Agent System.

Definition 5. Given any agent a; in the MAS, an Identity
Certificate w = (v,n,As,Nt,p,Ns,Es), a private key Ds

corresponding to Es and a random string s we can define
auth(di,w) as

auth(ai,w) = true <$ Es(Ds(s)) = s (5)

Definition 5 says that if a principal Ns can successfully de-
crypt any random string s encrypted by a* using the public
key Es belonging to principal Ns, then Ns is said to have
been authenticated by di. This definition of auth(a^ w) is
based on the challenge response protocol given in figure 1.
In this procedure if a* wants to authenticate the subject Ns

associated with the Identity certificate w then en generates a
plaintext challenge string s (usually a random number) and
sends it to N8. Ns encrypts s using D8 (the secret part of
Ks) to obtain cyphertext si and returns it to a*. a» then
applies Es to si to obtain S2- If S2 = s then the authen-
tication suceeds and di can be sure that Ns is the subject
associated with the identity certificate w.

cii —• N8 : s, where s is the challenge string.
Ns : si = Ds(s), by applying the secret part of

the asymmtric key Ks to s
Ns -> di : si

Qi : s-2 — Es(si), by applying Es the public
part of Ks obtained from w. The authen-
tication suceeds if s = S2.

Figure 1: Challenge Response Authentication Pro-
tocol

ai may also choose to validate the authenticity of the cer-
tificate w using the verify predicate defined above.

5.1.2 Non-Repudiation
Parties involved in an exchange must be able to ensure that
communication tokens (messages, documents etc.) do in-
deed originate from the entity that claim to generate them.
This can then allow agents to ensure that certain documents
that they expect from their peers do indeed originate from
them. Non-Repudiation can be achieved by using the pred-
icates sign(d, w) and verify(d, d , w) defined in section 4.
Figure 2 shows the interaction where agent Ns sends a doc-
ument d to agent di which can then verify the signature
on the document. Here the transmitting party, Ns digitally
signs the document d by appending d = Ds(hash(d)) to d.
The receiving party can verify the signature as belonging to
Ns by generating hash(d) and comparing it to d = Es(d).
This technique ensures that the document d did indeed origi-
nate from Ns and was not tampered with in any way enroute
to the receiver.

Ns : (d.d) = Sign(d.w). where d is the docu-
ment being signed, d is the signature and
w is the identity certificate belonging to N8

Ns -*at : \(d,d'),w]
a% : result — verify(d. d . w)

Figure 2: Protocol Enforcing Non-Repudiation

5.1.3 Secure Communication
Mechanisms must be available to ensure that no communica-
tion is overheard by a third party. A popular technique is to
encrypt all communication, a method used by SSL[6]. More
advanced techniques further randomize the commnunication
channel in order to prevent attacks that use techniques such
as traffic analysis. If a standard protocol implementation
such as SSL[6] is not used then the communicating partners
may use each other's public keys to encrypt messages they
exchange. In cases where it is computationally infeasable to
use public key encryption to encrypt messages (eg. when
the number or size of the messages exchanged is very large),
the agents may use the asymmetric key system to exchange
symmetric keys such as DES [19] and then build and main-
tain a secure communication channel for the duration of
the dialogue. In situations where asymmetric encryption is
infeasable, methods such as the Diffie-Hellman [9] key ex-
change may be use to exchange keys that can be used for
maintaining a secure communication channel.

5.2 MAS Infrastructure Components for Se-
curity

In an MAS such as RETSINA [24] the infrastructure plays
an important role in the operation of the agents that it sup-
ports. Agents usually register themselves with the infras-
tructure so that their peers in the MAS may know about
their existence and interact with them. Typical examples of
infrastructure components are an Agent Name Server (ANS)
used by many MAS architectures such as RETSINA [24] and
JATLite [1]. An ANS is a repository that maps agent names
to physical locations that are network dependent. When
agent a wishes to communicate with agent b. a will request
b's network address from the ANS and then attempt to con-
nect to b and initiate a dialogue.

Agents may also register their capabilities with a middle
agent [28] thus allowing their services to be discovered. In
the RETSINA infrastructure an agent builds an advertise-
ment which describes the capabilities of the agent and the
services that it offers and then registers this information
with a matchmaker [28, 8] such as LARKS [23, 22]. The
matchmaker then maps agent capabilities to agent names
and serves requests for service providers. The ANS and the
matchmaker together allow agents to find other agents that
provide a required service.

There are a number of security issues that arise from such an
architecture. Wong & Sycara [27] outline the issues specifi-
cally related to ANS and matchmakers and give protocols for
securely interacting with them thus preventing agents from
falsifying their registrations and maliciously tampering with
the registrations of other agents. The security is based on

the Agent Certification Authority (ACA) which is incorpo-
rated into the MAS. We extend the AC A to also serve agent
identification requests as shown in section 3 and formally
include it as an MAS infrastructure component that man-
ages agent identities. An IS is a conceptual entity and can
be implemented either as part of the ANS or as a separate
service or a set of services. Identity Servers can also form a
heirarchy and manage subdomains in an MAS.

5.3 Interaction Protocols for MAS Infrastruc-
ture Components

A Multi Agent system depends upon the infrastructure for
its integrity and the seamless interoperation of the agents
it supports. Agents register with infrastructure services as
they come alive and the interaction with these services must
be robust and secure. We now examine the protocols re-
quired for robustly interacting with MAS services such as
an ANS, and discovery services such as matchmakers.

5.3.1 Simple ANS Registration Protocol
Figure 3 gives the simple ANS registration protocol adapted
from [27]. Here an agent a% interacts with an Identity Ser-
vice, Is and and ANS Ax. From the point of view of the
agent, the interaction consists of two broad steps namely,
(i) An agent obtains a unique name for itself and (ii) uses
this name to register itself with the ANS. The ANS on the
other hand merely has to ensure that the name supplied by
the agent is unique within the certification domain. This
prevents ambiguities when looking up agents in the MAS.
The ANS registration protocol given in [27] required that the
ANS actually verify that the agent requesting a registration
record be running at the physical location it claims. We
have relaxed this assumption without opening any security
holes in the system due to the availability of the auth(at.w)
predicate defined in section 5.1.1. Consider an agent a\ run-
ning at physical location h\ : p\. If ai registers with an ANS
and falsely claims to be running at location h-2 : p>2 then no
agent will be able to contact it since all lookup requests to
the ANS will return h-2 : P2 as the contact point for a\.

If agent a-2 is running at /*2 : p-2 then any agent, a% wishing
to contact a\ will actually contact 02- This discrepancy will
be detected when auth(as,w)3 fails. It will thus never be
in the interest of an agent to register itself using a fictitious
physical address.

ai —> Is : IR- where IR is an Identity Request Record
as defined in section 3.

Is —>• ai : w. where w is an identity certificate as de-
fined in section 3.

ai —•>• A% : (771), where m = register[w.h : p]. h : p
is the physical network address that a, is
running at.

Ai : result = Verify(w,w .W). where w is
the signature on the certificate w and W
is the certifcate belonging to Is-

Ai —> ai : result.

Figure 3: Simple ANS Registration Protocol

w is the identity certificate belonging to

5.3.2 Simple ANS Unregistration Protocol
An ANS maintains records that map agent names to phys-
ical network locations. It is essential that agents do not
modify these records unless they have the authority to do
so. Hence only agents that have registered themselves on the
ANS should be allowed to unregister themselves. In order
to enforce this policy the ANS should authenticate agents
that try to unregister from the ANS. This can be done us-
ing the simple ANS unregistration protocol given in figure
4. This protocol essentially requires an agent to prove that
it is indeed the one that originally registered itself with the
ANS and now wishes to unregister and shutdown. The un-
registration request will succeed if and only if the following
two conditions are met.

1. The agent wishing to unregister has the same name as
the name in the registration record on the ANS

2. The agent can authenticate itself and prove that it is
indeed the valid holder of that name, i.e. auth(Ai.w)
succeeds.

Ns —>• Ai : m, where in = unregister[w] and w =
(v,n,As,Ni,p,Ns,Es).

Ai : result = ((Ns == Ns) A (auth(At, w))),
where Ns is the name in the registration
record.

Ai : Unregister name Ns. if result == True
Ax -» Ns : result.

Figure 4: Simple ANS Unregistration Protocol

5.4 Counteracting Threats
The security infrastructure and mechanisms developed in
the previous sections can be used to counteract the threats
outlined in section 5. While the actual nature of an attack
will depend upon the system being protected, the general
concepts underlying the solutions will be similar.

In the context of multi agent systems, malicious or mal-
formed agents may disrupt MAS activities by corrupting
data records held by an MAS infrastructure component. A
typical example of this is the editing or the deleting of regis-
tration records from lookup services such as the ANS. This
can be prevented by the enforcement of a security policy
that ensures that only agents that have registered a partic-
ular name may unregister it. The simple ANS unregistration
protocol given in figure 4 enforces this policy by authenti-
cating agents prior to unregistration. If an agent Ns pos-
sessing identity certificate w, wishes to unregister itself, the
ANS Ai will process the unregistration request only if Ns

can authenticate itself, i.e. auth(Ai, w) returns true. The
ANS additionally ensures that the name of the agent gener-
ating the unregister request is the same as the name stored
in the registration record. The unique naming mechanism
provided by the IS will ensure that no two agents get the
same name. Therefore an agent should never need to unreg-
ister a name that it does not own. Capability description
services such as matchmakers can use a similar procedure to
ensure that registered capability description documents are
not accidently or maliciously edited or removed.

Agents can build and maintain secure communication chan-
nels by using standard protocols such as SSL[6]. Higher lev-
els of security can be achieved by generating and exchang-
ing (symmetric) session keys using the asymmetric keys em-
bedded in identity certificates owned by the communication
partners. Generating new keys for every dialogue ensures
that one compromised session key will not affect the security
of all conversations. Additionally, symmetric key encryption
is more efficient and can be advantageous when the number
or size of the messages is very large.

Replay attacks can be prevented by embedding nonces within
messages exchanged by the communicating parties. Ev-
ery transmitted message is given a newly generated random
string that is echoed by the reply. A conversation between
two agents thus forms a chain, where every message includes
the nonce from the preceeding message and a new nonce to
be included in the next message. A replayed message will
have a nonce that is from a previous sequence of messages
and thus any agent that tries to masquerade as another by
resending messages that it has overheard will be foiled when
the nonces do not match.

Digital signatures can be used by communicating agents to
ensure that messages are not tampered with in any way
enroute to the receiver. An agent ai wanting to send a mes-
sage mi to agent a 2 can digitally sign the message and send
(mi.uii) = sign(mi,w) to a-2- a-2 can verify the signature
on the message by applying verify(nii, ml, w) hus ensuring
that 7ni has not been modified by a third party. The digital
signature m\ can also be used by a2 to prove that ai did
indeed send the message.

Spoofing attacks can be prevented by rigourous authenti-
cation prior to any communication. A good example of a
spoofing attack is as follows. Consider an agent a» with
identity certificate w running at physical network address
(h : p). where (h : p) denotes the host:port pair of the agent's
network address. If ai disappears without unregistering it-
self another malicious agent a,j may take over its position at
(h : p) and masquerade as a». An agent as wishing to com-
municate with ai will actually initiate a connection with aj
but the spoof will be detected when auth(as.w) fails.

Denial of Service (DoS) attacks come in a variety of ways
and are domain specific. In the simplest DoS attack an
agent may overload a service provider by flooding it with
queries thus making it unavailable to other agents in the
system. This type of attack can be prevented by using poli-
cies that ensure that system resources are adequately dis-
tributed among the various clients requesting services. An
overloaded agent may ignore queries from a DoS attacker if
the number of queries received over a certain period of time
exceeds some threshold.

6. AGENT LIFECYCLES IN AN OPEN MAS
The security mechanisms developed in the previous sections
provide services that allow agents to obtain identities, au-
thenticate themselves and digitally sign messages. We now
examine certain cases of the Iifecycles of an agent and its in-
teractions with the MAS and show the procedures by which
an agent may be securely situated in the MAS.

6. ft 1 Agent Initialization
Every agent a; that intends to live in the MAS must first
obtain an identity for itself. It generates an Identity Re-
quest Record lx consisting of the three fields Ni, d and an
asymmetric key pair Ks = (Es.Ds). It then sends this in-
formation to the IS overseeing its domain and receives an
Identity Certificate w%. It uses the simple ANS registration
protocol given in figure 3 and registers with any ANS in its
domain. It can also register its capabilities with a match-
maker if it needs to advertise its services. It now possesses
an identity certificate associating it with a unique identity
and it is registered with an ANS and a Matchmaker. In
cases where ANS registrations are leased and expired after
a certain period of time, an agent merely has to re-register
with the ANS using its identity assigned by the IS. It also
has the option of changing its identity.

6.0.2 Communication with Peers
Any agent a% that wishes to communicate with another agent
a3 must first lookup the address of aj with the ANS A% in
its domain. Assuming that aj is either registered with At or
with another ANS known to At the physical address of a3 is
returned to a\. Before any dialogue can be established how-
ever, at must authenticate a3. In order to do this it requests
af's identity certificate Wj. ai can verify the authenticity
and validity of the certificate by applying verify(w. w . W).
where w is the signature on the certificate and W is the
certificate belonging to the IS that issued w. at can be
sure of Qj's identity if the predicate auth(at.w3) succeeds.
If the authentication procedure fails then ai can infer that
the ANS registration record for aj returned from ANS A% is
actually false. In this case it may decide to terminate the
connection.

6. ft 3 Agent Shutdown Procedure
Before an agent at disappears from an MAS it must unregis-
ter its entries from infrastructure services such as the ANS.
In order to do this it follows the simple ANS unregistration
protocol given in figure 4. This procedure is for complete-
ness and situations where this is not followed do not lead to
any security breaches. Any registrations that exist after the
agents have shutdown will point to physical addresses that
have no agents running and hence no communication can
be established with these points. In the cases where other
agents take up these physical locations authentication prior
to communication (see subsection 6.0.2 above) will detect
the anomaly.

6. ft 4 Proxy Registrations
There may be cases where an agent wishes to run at multiple
physical locations (for example when firewalls prevent access
to it from certain networks) and it thus needs to register
itself with the ANS and maintain multiple ANS registration
records. In this case an agent ai can use multiple iterations
of the simple ANS registration protocol and register itself
at locations (hi : pi),(h-2 : p2),--,(hn : pn) where every
(hi : pi) represents a physical network host.port address
pair. This can allow any agent in the MAS to contact a,-
at any of the locations it is registered and running at. The
situation when a, falsely registers itself as running at address
(hi : pi) is not a security threat since any agent wishing
to contact ai at (hi : pi) will find nothing. A legitimate

agent running at (h% : p%) will not be affected because it will
maintain its own ANS registration record that points to its
location. Agents wishing to contact this legitimate agent
may communicate with it at will. Authentication prior to
communication will ensure that agents communicate only
with those that they intend to.

6. ft 5 Multiple Identities
The naming scheme using an IS as an MAS infrastructure
component allows agents to obtain and maintain multiple
identities with no effect on the security of the MAS. Every
agent a% that requires multiple identities Nn . N12 7V,-n is
issued identity certificates w%l. wl2..... Win . Each certificate
binds the agent's identity to a seperate public key thus allow-
ing the agent to maintain multiple ANS registration records.
It may choose to run at only one location, in which case
each ANS record will point to the same physical address. It
may also choose to run at multiple locations and hence any
name/address combinations are possible. This functionality
may be required when an agent wishes to run under different
domains certified by different identity servers.

6. ft 6 Communication A cross Certification Domains
Consider agents a\ and a 2 that possess certificates w\ issued
by IS I\ and W2 issued by IS I2 respectively. Furthermore
let W\ and W2 be the identity certificates belonging to I\
and 12 respectively. a\ and 02 must authenticate each other
before any dialogue is initiated and the identity certificates
w\ and W2 must be verified by a2 and a\ respectively. a\ and
<22 can be sure of the validity of the certificates W2 and w\ if
predicates verify(w2,w2',W2) and verify(w\. Wi, W\) suc-
ceed. There is however the additional implicit assumption
that the signer certificates W\ and W2 are valid. In order
for this assumption to be valid there must exist a common
IS lying in the certification chains of W\ and W2. In terms
of domains, it is necessary for both agents a\ and a2 to be
certified by identity servers that manage subdomains in the
the same parent domain. In the case when this does not hold
true (i.e. the certification domains are disjoint), the solution
lies in one of the agents obtaining two identity certificates
(and hence two identies), one for each domain or blindly
trusting the IS that certifies the agent being authenticated.

7. CONCLUSIONS
As agent systems become bigger and more ubiquitous, agents
will achieve more autonomy, slowly becoming transparent to
the human users. Agents in such large systems must be in-
dependent and must proactively protect themselves from at-
tack from malicious or malformed agents. MAS infrastruc-
ture services should include services such as robust agent
naming, which can be used to build higher level services for
authentication, non-repudiation and secure communication.
It is on the basis of these mechanisms of security along with
beliefs, intentions, currently unsolved goals and the state of
the MAS that agents will be able to spawn high-level cog-
nitive processes that can lead to the development of trust
among peers in a Multi Agent Society.

8. ACKNOWLEDGMENTS
This research was funded in part by the Air Force Office
of Scientific Research grant F30602-98-2-0138 and DARPA
grant F49620-01-1-0542 to Carnegie Mellon University.

9. REFERENCES
[1] Java Agent Template, Lite (JATLite),

http://java.stanford.edu/.

[2] Public Key Infrastructure (PKI),
http://www.ietf.org/html.charters/pkix-charter.html.

[3] Secure Hash Algorithm (SHA),
http://www.itl.nist.gov/fipspubs/fipl80-l.htm.

[4] Security Assertion Markup Language (SAML),
http://www.oasis-open.org/committees/security/.

[5] Security Services Markup Language (S2ML),
http://www.s2ml.org/.

[6] The SSL Protocol Specification Version 3.0.
http://www.netscape.com/eng/ssl3/.

[7] CCITT (Consultative Committee on International
Telegraphy and Telephony) Recommendation X.509,
The Directory - Authentication Framework. CCITT
Blue Book, 8:48-81, 1988.

[8] K. Decker, K. Sycara, and M. Williamson. Middle
Agents for the Internet. In International Joint
Conference on Artificial Intelligence (IJCAI), January
1997.

[9] W. Diffie and M. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22:644-654, 1976.

[10] C. C. Eckel and R. K. Wilson. The Human Face of
Game Theory: Trust and Reciprocity in Sequential
Games. Trust and Reciprocity: Interdisciplinary
Conceptual and Empirical Lessons, 2000.

[11] T. Finin, R. Fritzson, D. McKay, and R. McEntire.
KQML as an Agent Communication Language. In
Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM'94),
pages 456-463, Gaithersburg, Maryland, 1994. ACM
Press.

[12] L. Foner. A Multi Agent Referral System for
Matchmaking. In First International Conference on
the Practical Applications of Intelligent Agents and
Multi Agent Technology, April 1996.

[13] L. Foner. A Security Architecture for Multi Agent
Matchmaking. In First International Conference on
Multi-Agent Systerns (ICMAS '96), 1996.

[14] L. Foner. Yenta: A Multi-Agent Referral Based
Matchmaking System. In The First International
Conference on Autonomous Agents, February 1997.

[15] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway,
B. LaMacchia, J. Epstein, and J. Lapp. XML Key
Management Specification (XKMS),
http://www.w3.org/tr/xkms/.

[16] E. Gerck. Overview of Certification Systems: X.509,
CA, PGP and SKIP,
http://www.mcg.org.br/certover.pdf.

[17] P. J. Gmytrasiewicz and E. H. Durfee. Toward a
Theory of Honesty and Trust Among Communicating
Autonomous Agents. Group Decision and
Negotiation", 2(3):237-258, 1993.

[18] Q. He, K. Sycara, and T. W. Finin. Personal security
agent: Kqml-based pki. In ACM Conference on
Autonomous Agents, 1998.

[19] N. B. of Standards (U.S.). Data Encryption Standard
(DES). Federal Information Processing Standards
Publication 46, April 1977.

[20] M. Rabi, T. Finin, A. Sherman, and Y. Labrou.
Secure Knowledge Query Manipulation Language: A
Security Infrastructure for Agent Communication
Languages, citeseer.nj.nec.com/196978.html.

[21] R. Rivest, A. Shamir, and L. Adelman. A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM,
21(2):120-126, February 1978.

[22] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic
service matchmaking among agents in open
information environments. SIGMOD Record (ACM
Special Interests Group on Management of Data),
28(l):47-53, March 1999.

[23] K. Sycara, J. Lu, M. Klusch, and S. Widoff.
Matchmaking among Heterogeneous Agents on the
Internet. In Proceedings of the 1999 AAAI Spring
Symposium on Intelligent Agents in Cyberspace,
March 1999.

[24] K. Sycara, M. Paolucci, M. V. Velsen, and J. A.
Giampapa. The RETSINA MAS Infrastructure.
Technical Report CMU-RI-TR-01-05, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
March 2001.

[25] Y. Teng, V. V. Phoba, and B. Choi. Design of Trust
Metrics Based on Dempster-Shafer Theory,
citeseer.nj.nec.com/461538.html.

[26] C. Thirunavukkarasu, T. Finin, and J. Mayfield.
Secret Agents - A Security Architecture for the
KQML Agent Communication Language. In
Intelligent Information Agents Workshop held in
conjunction with Fourth International Conference on
Information and Knowledge Management CIKM}95,
Baltimore, 1995.

[27] H. C. Wong and K. Sycara. Adding Security and
Trust to Multi Agent Systems. In Proceedings of
Autonomous Agents '99 Workshop on Deception,
Fraud, and Trust in Agent Societies, pages 149 - 161,
May 1999.

[28] H. C. Wong and K. Sycara. A Taxonomy of
Middle-Agents for the Internet. In Proceedings of the
Fourth International Conference on Multi Agent
Systems, pages 465 - 466, July 2000.

