
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



Uniqueness of the Positive Radial
Solution on an Annulus of the

Dirichlet Problem for
Au — u + u3 = 0

Charles V. Coffman
Carnegie Mellon University

Research Report No. 94-NA-024

June 1994

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



iivtt tea'"*/ li^"~ 'r-*

HP



Uniqueness of the positive radial solution on
an annulus of the Dirichlet problem for

Au — u + u3 = 0

Charles V. Coffman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213 USA

June 30, 1994

1. Introduction.

The purpose of this note is to prove uniqueness of the positive radial solution to

the Dirichlet problem for

(1.1)

on the annulus H = {x € R3 : Ri < \x\ < R2) where 0 < Ri < R2 < oo; (the

Dirichlet condition at R2 = oo is interpreted, as usual, to mean that the solution

belongs to L2(fi)). In [2], uniqueness on a ball and uniqueness to within translation

on R3 were proved for the positive radial solution of the Dirichlet problem for this

equation.

The proof in [2] made use of features peculiar to the case of dimension 3 and
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to the cubic non-linearity. (However, contrary to a statement made there, the

proof does still apply if the cubic non-linearity is replaced by uv with 1 < p < 3;

this was first brought to my attention by George Hanna.) In [11], McLeod and

Serrin generalized the results of [2] both in regard to the dimension and to the

form of the non-linearity. For the case of the power non-linearity in R3 these

results still gave uniqueness only for powers in the range 1 < p < 3, while one has

existence for 1 < p < 5. The situation in [11] was similar for other dimensions.

Subsequently, Kwong, [8], proved uniqueness, in all dimensions, for the equation

with power non-linearity and for all values of the exponent for which there is

existence. McLeod, [12], further generalized these results to a larger class of non-

linearities. A phase-space geometric proof has been given by demons and Jones,

For the equations to which they apply, any of proofs described above can be

adapted to yield uniqueness for the positive radial solution, on an annulus or

radial exterior domain, for the mixed boundary value problem with Neumann

condition on the inner boundary and Dirichlet condition on the outer boundary.

This appears to have first been noticed by Kwong,[8], see also [9]. The Dirichlet

problem on the annulus seems to require further analysis. It is the purpose of this

note to provide that analysis.

It should be remarked that the well-known results of Gidas, Ni and Nirenberg,

[4],[5], imply that any positive solution to the Dirichlet problem for (1.1) on the

ball or on R n must be radial. On an annulus, on the other hand, it is known that

non-radial positive solutions exist, [3], [10].
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2. Method of proof.

The problem of course is an ordinary differential equations problem, the equation

to be studied,

(2.1) s/" + V - y + y3 = 0.
JO

The basic method is common to the earlier papers [2], [8], [9], [11], [12]. It uses

the "shooting method" applied to the initial value problem for (2.1)

(2.2) */(O = 0, y'(xo) = ay

(x0 > 0,a > 0) together with Sturm comparison of the solutions of (2.1) to

solutions of the initial value problem

(2.3) 8" + -8' - 8 + 3y28 = 0, *(*o) = 0, *'(so) = l,
x

for the variational equation corresponding to (2.1). In (2.3), y = y(x,a,xo) de-

notes the solution to (2.1), (2.2). By standard results (see e.g [6], Ch. V) the

solution 8 = (x,a,a:0) to (2.3) satisfies

6(x,a,x0) = — y(x,a,x0),

(2.4)

8\x, a, x0) = -^-y'{x, a, x0).oa

The basic ideas have their origin in Kolodner, [7], (although the equation treated

there involves a different sort of non-linearity).

If we think of xo as fixed then, depending on a > 0, solutions to (2.1), (2.2)

do one of three things: (i) remain positive on (xo, oo) and oscillate about the line



y = 1 as x —> oo; (ii) vanish at some x4 > x0; (iii) remain positive on (xo, oo) and

tend to 0 as x —• oo with the asymptotic behaviory

(2.5) y(x) = cx~1e-* + o(x-1e-*),

y'(x) = -cx^e" + o{x~le-x).

We shall denote by A\{x0) the set of values a > 0 for which the solution to (2.1),

(2.2) has the behavior (i) and by A2(xo) the set of a > 0 for which the solution

has the behavior (ii); A${x) will denote the set of a for which the solution has the

behavior (iii). It is clear that A\(x0) and ^ ( x i ) are open subsets of (0,oo).

Our object is to show the following.

Proposit ion 2 .1. Let t/(x,a,x0) and <5(x,a,x0) be as above. Ify(x,a,xo)hasthe

behavior (ii) above, with j/(x,a,a:o) > 0 on (xo,x4) and y(x4) = 0, tier* 8(x,a,xo)

vanishes exactly once in (xo,x4) and, if x4 < oo,<5(a;4,ayx0) < 0. If y (x,a,a:0)

Aas t i e behavior (iii), then 8{x,a,x0) vanishes exactly once in (#0,oo) and is

unbounded there with [<$(#, a, rro)| growing exponentially as x —> oo.

From Proposition 2.1 it follows that for a 6 ^2(^0) and x4 as above, x4

moves strictly monotonically to the left as a increases and ^2(^0) Q (0>°°) ls a

semi-infinite interval. For a such that j/(x,a) has behavior (iii) we must have

a G Ai(xo) n A2(xo). The uniqueness assertions then follow. Further details can

be found in the papers quoted above.

In what follows we shall think of xo > 0 in (2.2) as fixed but arbitrary, the ar-

guments a,xo will be omitted henceforth. We denote by x\ < £2 < #3 (depending
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on a) the points defined implicitly by

0 < y(x) < 1 on (xo,xi), 1 < y(x) on (xux3),

If a G A2(xo),X4 is defined by

0<y(x)<l, on (x3,x4), y(x4) = 0;

for a € ^3(xo) we take x4 = oo.

We define z\ and z2 by

0 < ^ ( x ) on (xo,zi), ^(zi) = 0,

0 < S(x) on (x0, z2), *(̂ 2) = 0.

The first step of the proof is to show that

3. Proof that z\ > x\.

Associated to a solution y = y(x,a) of (2.1), (2.2) we introduce the auxiliary

function $ defined by

(3-1) ^(x) = (j/'(x))2

and to the pair (y, 6) we associate the function \I> defined by

(3.2) * (x) = y' (x) 6' (x) - 6 (x) (y (x) - y3 (x))

Note that

!;*(*)= 2* (*).



Proposition 3.1.

(3.3)

and

(3.4)

We iave

*'(*) =

4
X

—X
y

Proof. This is the result of a straightforward computation. •

Lemma 3.2. We have

(3.5) 0 < 6'(x) < a~ly\x), on (xo, zx).

Proof. If we put v(x) = a~ly(x) — S(x) then v satisfies the differential equation

v" + -v'-v + 3y2v = 2a-1y3,
x

where 2a~1y3 > 0 on (xo,^i). The result follows by Sturm comparison of this

equation with the differential equation in (2.3). O

Lemma 3.3. If a 6 A2(x0)U ^3(^0) then

* (x) > 0 on [x0, zi],

consequently

(3.6) zi > xx.
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Proof. From integration of (3.4), using the boundary conditions in (2.2) and

(2.3)

(3.7) *(*) = « - 4 / y W ( * ) 7 -
Jxo I

For a € A2(xo) there is an x4 > Xi such that y(x4) = 0, hence $(z4) > 0, while

for a € A3(z0),

(x) = 0.

In either case, since $ is a decreasing function of x,

and hence it follows from (2.2) and (3.3) that

From Lemma 3.2 it then follows that

whence from (3.7) and the Schwarz inequality

(3.8)

Since

*(*l) = -«(*!) (*(*!)-*»(*!)),

the inequality (3.8) implies (clearly 6(zi) > 0) that 2/(21) > 1, hence z\ > x1# D



4. Completion of the proof.

The completion of the proof makes use of the following two identities (for y,

satisfying (2.1), (2.2) and (2.3) respectively)

(4.1) *; (*) = [(xyf + „ - 1) (xSf + 8)-x2(y- y3) 6]' = -x6(y - I)2 (2y + 1),

(4.2) % (x) = [x3 (y'6' - (y - y3) S) + x2 (y - 1) 6*]' = xH (y - 1) (3y + 1),

(here ^i(x) and ^2(^) are to be understood as identical to the terms in the square

brackets in (4.1) and (4.2) respectively) cf. formulas (4.29) and (4.20) of [2].

Let £ be such that

x2 < £ < x3 and £y'(£) + y(£) = 1.

It follows from (3.6) that

thus, by integration of (4.2),

from which it follows that 6(£) > 0 and hence

(4.3) z2>£> x2.

Putting u> = y — 1 we have

(4.4) w" + -J - u> + (y2 + y + l ) u = 0
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Since 3y2 > y2 + y + 1 for y > 1 it follows from Sturm comparison of (4.4) and

the differential equation in (2.3) that

z2 < x3.

Lemma 4 .1 . The function

xy'(x) + y(x)

is decreasing in (xi,x3); if a € A2(x0) U A3(x0) then this function is negative on

(x3,x4).

Proof. We have

(xy'(x) + y(x))' = x{y - y3),

so the function is decreasing on (xi, x3) as claimed and increasing on (x3, X4). The

function is negative at X4 if X4 < 00 and tends to zero at 00 otherwise and thus

must be negative on (x3,x4). •

Suppose that a € A2(xo) U A3(x0). From Lemma 4.1, the definition of £ and

(4.3) it follows that

(4.5) ^ (22) = x(xyf + y - l)($'(x)|x«2 > 0.

If we suppose that 8 vanishes at z3 € (^2^4) and is negative on (2:2, z3) then

integration of (4.1) from z2 to z$ gives \&i(z3) > 0 and this contradicts the fact

that S'{zz) must be positive. When X4 < 00 the same holds if z3 coincides with

x4.



Finally, suppose that a £ A3(xo). We know from what has just been demon-

strated that 6 is negative on (z2, oo). If 6 remains bounded then it has the asymp-

totic behavior
S(x) = cx-le-x + o{x~le-x),

8\x) = -car^- ' + ofa-^e-*),
where c < 0. This would imply that ^i(x) tends to 0 as x tends to oo. Integrating

(4.1) and using (4.5) however implies that this limit must be positive. Thus our

assumption has led to a contradiction and 8 must be unbounded. This completes

the proof of Proposition 2.1.

Concluding remarks .

1. The conclusion of the proof, as presented in this section, is a slightly

compressed version of the argument given in [2] for the case of the ball.

2. The argument here applies also if y3 is replaced by yp with 1 < p < 3. The

limitation arises with the use of the formula (4.2); the positivity of the derivative

for y > 1 fails for p > 3.
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