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ABSTRACT

We study the asymptotic limit of the reaction-diffusion equation

E , E 1 r/ EX 1 / E. * eut = Au - - 2 / ( u ) + - g ( u ) \ t

as £ tends to zero in a radially symmetric domain in Rn subject to the constraint

J h(uE) dx = const. The energy estimates and the signed distance function approach
Q

are used to show that a limiting solution can be characterized by moving interfaces .
The interfaces evolve by nonlocal (volume preserving) mean curvature flow. Possible
interactions between the interfaces are discussed as well.



1. Introduction

Let Q be a bounded domain in Rn with an outward normal vector n( x), xe dft and con-
sider the following nonlocal reaction-diffusion equation:

u | = A u £ — T / ( U E ) + ^ . xe ft, t>0,
£

dn
= 0, xe9ft , (1)

uE(x,0) =

Here |Q| is a volume of ft, /(u) = W(u)and W(u) is a double-well potential. <|>€ C~(Q) is

a function satisfying compatibility condition —
an

= 0 while

dx. (2)

This problem was formally studied by Rubinstein and Sternberg in [11. They observed that (1)
is a particular regime of the viscous Cahn - Hillard equation, introduced by Novick - Cohen in
[2]:

aut = A (/(u) -pA u+vuj (3)

Then (1) corresponds to the case when a is much less than p, v and 1. Thus, by assuming that
u£ is a concentration of one component in a binary mixture, (1) can be viewed as a model of

phase separation in that mixture with (2) representing the mass conservation law:

u dx- const. (4)

The small parameter e was introduced in such a way so that the diffusion term in (1) is negligi-
ble compared to the reaction term except in a narrow (~ e) transition layer where gradients are
large. Rubinstein and Sternberg analyzed (1) using the method of matched asymptotic expan-
sions and multiple time scales. They found that the phases rapidly separate as e -* 0 and that
the propagation of the interfaces between these phases is a coarsening process depending in
nonlocal manner on mean curvature. Namely, the limiting equation for (1) as e ->0 is:

V = mean curvature + X (t) in ft, (5)

where X(t) is such that the volume of the region enclosed by the interfaces r t , corresponding

to a limiting solution of (1), is constant in time and Vis the normal velocity of T . The pair

(T , X (t)) is called a volume preserving mean curvature flow. The associated geometric PDE

is:



( (D UDILDLL)}

u f Au-- - — - \-X(t)\Du\ = 0 inKnx(0,oo).
^ \Du\ '

In 1992 Barles, Soner and Souganidis [31 developed a rigorous approach for obtaining the
asymptotic limits of reaction-diffusion equations using the notion of signed distance function to
the front. They also conjectured that this approach can be successfully used for studying the
asymptotic limit of (1) under certain restrictions on the behavior of the Lagrange multiplier
X(t) as E->0.

In our work we provide a rigorous version of [1] for a model (7) similar to (1), following the
technique developed in [31. First, in Section 3 we show that, as in [11, model (7) represents a
gradient flow for the energy functional

t +~W(uE))dx, (6)

then following [6] find that as e -» 0, the functions ue-» va.e. inflx[0,T], where v (x, t)
assumes values +1 or -1 almost everywhere in (x, t) e Qx [ 0, T] (phase separation is achieved).
Then concentrating our attention on a radial domain (Q. = { I x I < R}) and special choice of ini-
tial data, using monotonicity of Ef[uB] (•) and estimates found in [12] and [3], we establish the
asymptotic behavior of the Lagrange multiplier Xe (Section 5), the limiting equation governing
the motion of the interfaces and the validity of the mass conservation law for v (Section 6).
Finally, in Section 7, we extend some of these results to the initial data more general than the
one assumed in Section 4 and discuss possible interactions between the interfaces.

After this work was completed I found that the similar results were obtained at the same
time by Bronsard and Stoth [4].

I would like to express a deep gratitude to my advisor, Prof. H.Mete Soner for his encour-
agement, patience and advice. I also wish to thank Prof. Barbara Stoth for her comments on a
draft of this paper.

2. Formulation of the Phase Field Model.

As we have already mentioned we work with the model slightly different from (1). This is
motivated by the use of a travelling wave representation of solutions of (1) in the distance func-
tion approach for finding the asymptotic limit of the reaction-diffusion equation. Suppose that:

W(u) = I ( u 2 - 1 ) 2 , /(u) = W ( u ) = 2 u ( u 2 - l ) ,

f 3 >\
h(u) = 2[~--uJ, g(u) = h'{u) = 2(u2-l).

The choice of W( u) and h I u) is motivated purely by the simplicity of calculations. Our results
can be easily extended to the arbitrary double-well potential W. Consider now the following
problem:



u* =

dn

t>0,

= o, (7)

Here Q and n are as before, <j>e e C°° (Q) for all e > 0 and X£ is chosen in such a way that

J h(\f) dx = const.

The initial data are assumed to satisfy:

E E [<}>E] < M for all e > 0,

<)>E-»<|> inL^Q),

(8)

(9.a)

(9.b)

(9-c)

where M>0 is a constant independent of e and EE is the energy functional defined in (6).
Multiplying equation (7) by g{ ue ), integrating over Q and using (8) we obtain that:

=e
92(u)dx

Then using (10) and the fact that:

g2(u) = 4 ( u 2 - l ) 2 = 8W(u).

fif'(u) = 4u,

/(u)fif(u) = 4 u ( u 2 - I ) 2 = 8uW(u)

(10)

we have:

Jw(uE)dx
(11)

The next theorem allows for a travelling wave representation of ue:

Theorem 1. Suppose that ue is a solution of (7) and that (9.c) is satisfied. Then | ue (x, t) | < 1
[0, T] .

Proof: The proof easily follows by the standard application of the maximum principle as



u0 = ±1 are solutions of (7). Indeed, suppose for example, that ( XQ, to ) is such that

maxji{x, tQ) = u£(x0, tQ) = 1 and u£(xQ, (Q) >0 , then Duz(xQ, tQ) = 0 and

A u (xQ, t0) < 0 . Substituting into (7) and using (9.c) we obtain a contradiction.

•
As in [1J we remark that since a local solution to (7) exists by a fixed point argument, it can

be extended to a global one using the previous theorem.

Now set q: = tanh and let u =: q (z£/ e). By the properties of the hyperbolic tangent
q' = 1 - q 2 then q " = - 2qq'. Hence, as q' > 0, (7) and (11) take the form:

z!-Az £ + 2X£(0 + — ( | D Z £ | - l ) = 0 , (12)

J(q' (z£/e)) dx

where z E satisfies Neumann boundary conditions while ze(-,0)=;aee C°°(Q) and

<t>£ (x) = q (ae (x) / e). We also assume in addition to (9.a) - (9.c) that:

|DOC£| < 1 , (14)

a£ -» do( •) uniformly in Qf

where do( •) is the signed distance to the set 3 {<(> (x) = 1} .

3. Energy estimates

Recall that

)dx. (15)

Then multiplying equation (7) by u£ , integrating over Q and using (8) we have that:

t
E£[u£](t) = E£[u£](O)-eJ J(u£)2dxdt. (16)

As a direct consequence of this equality we obtain:

Theorem 2. Assume (7), (9.aj - (9.b). Then:



(a) suptz0E*[u](t)<M, (17)

. P 2 2
( b ) s u p t s o j ( ( u ) - 1 ) d x < 2 M e . (18)

h
(c) tjj(ut)

2dxdt= Et[u)(tl)-E
t[u£](t2) Jort2>t1. (19)

We also adopt the following result from Bronsard and Kohn [6J:

Theorem 3. Assume that (7), (9.a) - (9.b) are satisfied Then for any sequence ofz's tending
£.

to zero there is a subsequence tt such that the limit lim u J (x, t) = v (x, t) exists for a.e.

(x, t) € ft x (0, «>) . The function v takes only the values ±1 and there are positive constants C
and Cj depending only on M such that:

I
tjl5 for any t2 , t ^ O , (20)

Cv (21)

and its initial value is the limit of the initial data for u£ a e . inx:

limt_^QV(x, t) = <$>(x). (22)

Denote

K P e r o ( { u = 1}), if u(x) € {-1, 1} a.e. in ft ,
(23)

oo, otherwise ,

where K = P j j2W(s)ds (In our case K=4/3) and Pera{ A) is a perimeter of A in ft (For the

definition of perimeter see e.g. 15]) .Then we find that E° is a HL^ftJHimit of Ez (See e.g. [7], (8]
or [9]). In other words the following holds:

Theorem 4. Let Ez and E° be as above. Them

(1) If u£-> u° inLl(Q) then liminf Ez[v£] >E°[v°]. (24)

(2) For any v° e L1 (Q) there exists a family ( uE ) such that v£->v° in Ll{ £1) and

lim E z[vz] = E ° [ D ° ] , (25)
e > 0



We can also obtain some additional information on a limit of E e[ ue J as a function of t
Fix T> 0. Then, being monotone on 10fT], each of the functions Ee[ ue ] also belongs to
BV ([ 0,T ]) and by (9.a) and (16) the set { Ee[ ue ] J ^ is uniformly bounded in BV-norm and
thus is relatively compact in Ll{ [ 0,T]). Moreover, the following theorem holds ([17]):

Theorem S.LetFbean infinite family of increasing functions, defined on an interval 10, T J.
If all functions of the family are bounded by the same number,

\f(x)\<K, feF, 0<x<T.

then there is a sequence of functions {fn} n € N in F which converges to an increasing function g at
every point of I a, b ].

Therefore, there exists a subsequence IE J [u J j} . and a bounded monotone decreas-

ing nonnegative function E such that E J [u JJ converges to E pointwise at every point of [ 0,T J.

It will be shown later that E [v] (t) = E(t) everywhere except finitely many t *s.
Since E is monotone, it is well known that a set of points where E is discontinuous is at

most countable and that both left- and right-hand limits of E exist at every point of ( 0, T). This
enables us to prove the next theorem.

Theorem 6. Let E J\ju Jj and Ebe as above. Then if t is a continuity point ofE

Urn

s->t

££/[u£j](s)-E(0 =0. (26)

Proof: Let t be a continuity point for E. Set a = Urn
0

s t t

(s)-E(t) . Suppose that

a > 0. Then for sufficiently small e we can choose two subsequences { Sj }j€N and {£j }jeN such

that E J [u J ] ( s , ) -E(t) >^ where Sj 11 and £j-> 0 as j-><*>. Since both E^Lu^J and Eare

monotone decreasing we obtain for any fixed j > 1 that:

Z k [ k ] (sk) >E(t) + | .

Therefore for any j> 1 ,we find that E(Sj)>E(t) + a/2 . But since Eis continuous at t,

limj^ E{sj) exists and is greater than E (t) + a/2. Therefore E has a jump at t which contra-

dicts the fact that t is a continuity point of E. We can show that Tim E J[u JJ (s) - E(t)

well, then (26) follows.

= 0 as

r



4. Additional estimates. The radial case.

We now restrict our attention to the radial case £1 = { Ix I < Rn}. We will work in two
dimensions for the reason of notational simplicity only - our results can be immediately
extended to any dimension. All functions from now on will be assumed radially symmetric. Then
the phase-field model (6) takes the following form:

foruM r, t);

uE =

uE(t,O) = = 0

(27)

(28)

-1 ) = 0 , (29)

zEU0) =z£
rUR) = 0 (30)

for ze(r,t). Here £&T: = [0, R] x [0, 71 . For now we will suppose in addition to (14) that:

dQ (•) has a finite number N of zeroes T{(0) , i = 1 ,..., N in ( 0 , R), (3La)

zE(-,0) has TV- 1 zeroes sE(0), i= 1 ,..., N- 1 in ( 0, R), (31.b)

zE
r(sE(0),0) i = foranye>0,

EE[<t>E]->|pern({<t)= 1}) a se ->0 .

We make these assumptions in order to simplify the presentation. They will be removed later in
Section 7 when collisions between the interfaces will be discussed. Until then we will use the
following definition:

Definition 1. Let ae BV( [0,K]) be such that a (r) e {-1,1} cue. A point roe ( 0, R) will
be called an interface provided there exists 8 >0such that a(r) =+1 (-1) a.e.for re ( rQ-8, rQ)
anda(r) = - 1 (+1) a.e. on re (rQ, rQ+ 8). We denote the set of these points as F.

Observe that r0 is an interface only if it belongs to the support of the Radon measure
I Da I where Da is a gradient of a in the sense of distributions. Also, when (a) - (d) hold, the set
9 {<(> (x) = 1} consists of N circular interfaces with radii r ((0), i= 1 N.

Our assumptions lead us to the another series of estimates:

Theorem 7. Assume that (14) holds. Then ze
r(r,t) < 1 on nTforz > 0.



Proof: From (29) we have that w£: = zT satisfies the following problem:

u^u^u^u^u/u^ifVau,6)2- 1) = 0, (32.a)

where q and q1 are evaluated at zE/e. At the same time:

u>£(0, t) = uf(R t) = 0, t€ (0, 7), (32.b)

l, re (0,H). (32.c)

Then the proof immediately follows by the maximum principle.

Corollary 1. For all te [0, T\ we have |eAr(t)| <2.

Proof: From the previous theorem and by (13) we find that:
2 i
J

Theorem 8. Suppose that wz (•, 0) has W - 1 zeroes in (0, R )for any £ > 0 . Thjen wz (•, t)
has at most N - 1 zeroes in (0, R )for allte [ 0, T J and e > 0 .

The proof is based on the following lemma:

Lemma 1. Denote as sE (0), i =1 N-2 the position of the i**1 interior zero ofwe (-, 0) .

Then:
E(s*(a) Foreachi=l iV-2, there exists a continuous curve sz

((t) suchthat wE(s*(t)9t) = 0

and wz{rA)*0 if re (sE(t), s\+1(t))forcM t<tz
Q. Here tE

Q is suchthat either sz(tl) = 0 or

s*(£) =Ror s^tl) = s'±1(£).

(b) Suppose that two or more curves intersect at (r, t) = (SQ, *Q) If the number of the inter-

secting curves is odd, then for t> t^ there is a single continuous curve originating at the point of

intersection. If the number of the intersecting curves is even, there exist 6, y > 0 dependent on e

suchthat u>E ( r , t )*O for all (r,t)e ( s o - 8 , s o + 6) x (t0 , £0 + y) .

(c) Let SQ (0 s 0 and sz
N(t) =R. Then the result of part (a) can be extended for

i = o N-1. Also ifx^is such that sE (xe.) = 0 , then there exist 6, y > 0 depending on e such that

wHr,t)>0(<0) where ( r, t ) e (0 , 8) x (xE x^ + y). The similar result holds if sE (x^) = K .

10



A more general result for a solution of a parabolic equation was obtained by Angenent in
[10].

Proof of Lemma 1: The proof is based on a maximum principle.

we obtain by implicit function theorem that smooth sE
((t), i = 1,..., itf- 1 exist for some small

(a) As a solution of (32.a) - (32.c), wt is smooth. Then from our assumption on wz (•, 0 ),

y implicit function theorem that smooth sE
((t), i = 1,..., itf- 1

time, say xe. By the strict maximum principle and the smoothness of wt
% the curves s{ must

also remain continuous for i = 1,..., AT- 2 as functions of t after x e . The sign of wz follows by

the strict maximum principle as well. Observe that since wz is smooth, then for every

i = 1,..., N- 2 the curves s\ cannot terminate without intersecting either adjacent curve s* or

hitting the boundary r = 0 or r = R.

(b) Suppose that the even number of curves, for example s^ and sz
(+ j , intersect at

(r, t) = (SQ, tQ> for some ie { 1,..., N] . We have for t = to that w£ ( r, t) > 0 ( < 0 ) on

( V 1 (£)> s< <£)) u (s< (£)> ^ + 2 ^ ) ) and ^ £ (^(£) , & = °- Then tf 1̂ > l0 is such that

s^_ 1 ( 4 ) ^ s^+ 2 ^ 1 ^ • ̂ e s t r i c t maximum principle implies that w£ {r, t) >0 ( < 0 ) f o r

t€ (tQ, tj) and re (s^_ j (t) , s^+ 2 (0 ) • ̂ e similar proof works when the odd number of

curves intersect at one point.

(c) Consider, for example, the endpoint r = 0. Let t = x̂  be such a time that

Sj (T^) = 0 . Assume t < x^. Then one can easily check, following e.g. [111, that even though

equation (32.a) has a singularity at r = 0, the strict maximum principle applies inside the para-

bolic region bounded by r = s^it) from the right r = s^(t) from the left and t = 0 from

below. Then, as in (a), we have that u>e ( r$ t) is strictly positive (negative) for re (s^(t), s^(t) )

if wz (r; 0) is strictly positive (negative) for re [s£
Q (0), s\ (0)). After the time x^, we can apply an

analysis similar to the one in part (b) to show that the curve s^ disappears when it crosses the

boundary r = 0 and no additional curves are created. The same results hold for r = R.

Proof of Theorem 8 10: Follows immediately from the previous lemma.

5. Asymptotic behavior of the Lagrange multiplier

We will extensively use the following estimates, due to Stoth [121. that are obtained by:

(a) Multiplying the equation (27) by zrur and integrating in rby parts from y to L/J where y

11



and i/je [ 0,R ]:

(33)

>-J h(u (r))dr
y

b). Differentiating the equation (27) in U multiplying the result by em* and integrating in
r by parts over [ 0, R ):

R
(34)

0

Remark 1. Since "z£ (x, t) = ze ( r (x), t)H and z e (x, t) is smooth in Qx [0, T\ as a solu-

tion of (12) then z^r and -z* are bounded in £iT for every e > 0.

Remark 2. Multiplying (19) by ea for any a > 0, using (17) and passing, if necessary, to a
subsequence in e, we find that

e 1 + o c j (u\)2rdr -> 0 cue. te[O, T ] .

0

Remark 3. After multiplying estimate (34) by 2e2, integrating it over [t,^] for any
t, tj € [ 0, Tl and using (17), (19) and Corollary 1 we get:

R

(35)

£3J(i4)2rdr|J1<c[Ee(t1)-E
E(t)]. (36)

where C is a constant independent of e.

Remark 4. Now multiply the estimate (33) by e. Then the first term can be bounded by

12



I Z
rutTdi\ <e [u^rdH Ut^Y rdr

(37)

<M2M£3(u5)2rdr i 0 d.e. te [0, T\.

The third term in (33) when multiplied by E, converges to zero by (17). Moreover, if the constant
in (8) is not equal to zero, then for each t e [ 0, T] we can choose y and y\ e ( 0, R) arbi-
trarily close to each other, such that, for example uE(y,t)-+ -land ue ( ylf t) -» +1 (If the
constant in (8) is zero then by (20) we can find x > 0 such that there exist y and yx e { 0, R)
with the same properties as above for t < x.) Choosing y and y\ to be the limits of integration in
(33), one can easily see that the coefficient of £^e approaches a nonzero constant as E -» 0 while
the term

converges to zero . This implies that zkz i 0 as e -» 0 a.e. t e [ 0, T).

Theorem 9. eXe i 0 as e -» 0 at the continuity points qfE.

Proof: Suppose that t is a continuity point of E. Then according to Remark 2 we can pass
to a subsequence (independent of t) such that in any small neighborhood of t we can find ti

R
for which e3 f (u^) rdr -» 0 at tj as e i 0. At the same time by Remark 3 we have:

0
r R \\ / R \

2rdr ( t)< E3J ( i4)2rdr (tj) + c[lf {tx) - E £ ( t ) ]

f Q f F 2 |
hence Iim \e^\ (ut) rdr (t) < C [ £ ( t , ) - E ( t ) ] . The right-hand side of this expression

£ - + 0 J L \ 1

v o /
can be made arbitrarily small by choosing t\ close enough to t which proves that the

( R }
Urn £3 f (u!) rdr (t) exists and equal to zero. Then by the same procedure as in

Remark 4, Iim tXe(t) =0 .
E->0

Theorem 10. Iim £ XE (s) = 0 at the continuity points qfE

Proof: Assume again that t is a continuity point of E. Then following the proof of the pre-
vious theorem and using t as t\ and s as t we obtain by Theorem 6 and Theorem 9 that:

13



Urn | a E ( s ) | < Clim
£->0 £-»0

S->t

e3 j(u^) 2e3j(u^)2rdr
0

= 0.

6. Asymptotic behavior of reaction - diffusion equations. Small
time.

We will start by considering the asymptotic limit of the reaction - diffusion equations for
the short time and then in the next section will investigate the limiting behavior of our model as
time progresses, while allowing for disappearance of the interfaces and their interactions.

a. Asymptotic limit of ze.

By (24), (31.d) and Theorem 4.Theorem 5 we have that:

« N

8n ^ ^ 4
— > r((0) = -xPer^i {<)> = 1}) = E(0) >E(£)

<=l for all t >0, (38)

where rt(0), i = 1, ... , N are the positions of the interfaces at t = 0. At the same time by Theo-
rem 3:

R

J|u(r, 0 -<t>(r)Irdr<Ct1/2, for all t >0. (39)
0

Then, as v and <f> take the values ±1 a.e., we can prove the following simple lemma:

Lemma 2. Assume that for t > 0

R

J|u(r,t)-4>(r)|rdr<I
0

where I = min{rl(0)i R-rn(O); rul(O)-rt(O) , l < i < N - l } is the smallest distance
between two interfaces or the interface and the boundary at time zero. Then there are at least N
interfaces at time t

Remark 5. The similar result will hold in JRn, n > 2 although with different constant.

14



R
Proof of Lemma 2: Let 0 : = {a e BV ([ 0, R ]): f |a2 - l| dr = 0, a has N - 1 interfaces}.

0
We want to show that for a e 0:

R
J|a(r)-<|>(r)|rdr>(. (40)
0

The proof can be done by using a simple geometric argument. By varying the positions of the
interfaces for a, relative the ones for <|> and taking into account that | a (r) - <|> (r) | is equal to 0 or
2 a.e. on [ 0, R ] we find that:

R

inf f | a ( r ) - < ( ) ( r ) | r d r = 2 t > l . (41)
a,0J

Suppose now that v (•, t) has N - 1 interfaces, then v{,t) e © and thus satisfies (40). But this
contradicts the assumption of the lemma. Furthermore, it is easy to observe that if 0 contains
a's with less then N -1 interfaces, (41) will still hold. Then there are at least N interfaces at
time t.

Denote x = P/C2 with C as in (39), then (39) and the above lemma show that if t < x, then there
exist at least as many interfaces at time t, as there are at time zero.

Theorem 11. For any t<x there are exactly N interfaces, 0<r^ (t) < ... < ^ ( 0 <R, at the

time t Furthermore, u £ (-, t ) converges to +1 or -1 uniformly on [rt(t) + 8, r<+ j (t) - 8] , as

e-> 0 for each i= 1, ... , N and any 8 < 0 .

Proof: (a) By Lemma 2 we know that there are at least N interfaces. Suppose now that
their number exceeds N and is N + K. Let r((t), where 1 < t < N+ K, be a position of the ith inter-
face at time t < x. Fix i and choose small 8 > 0. We want to show that for e small enough, ue( •, t)
has a zero inside ( rt ( t) - 8, r{ ( t ) + 8). Indeed, if this is not the case, then we can choose a sub-

e.
sequence \£j}jzjqsuch that uJ(•, t) > 0 ( < 0 ) on ( rt[ t) -8, rt( t) +8) for every Jlarge enough.

Since uJ(-,t) converges to v (•, t) in Ll( [ 0, R ]) we obtain that v ( , t) > 0 a.e. on

( rt ( t ) - 8, rt ( t ) + 8 ) which contradicts our definition of the interface. Thus, for £ > 0 small,

uH,t) has at least one zero near each of the N + K interfaces and u^i^t) has at least N +K-1

zeroes inside ( 0, R) by the Rolle's theorem. This contradicts Theorem 8. Therefore, there are
exactly N interfaces at time t

(b) Fix 8 > 0 and t < x. By (18),

( l - |u E | )dx<8Af£ for any t £ 0 . (42)

By (a) there exists £Q > 0 small, such that ue( •, t) has a zero inside {r^t) - 8/2, rt(t) + 8/2 ) for

15



each i = 1 AT and e <£Q. It is easy to observe that luE| does not have local minima on an

interval l^l t), r^ { t)] for every i = 1 N. Then for every £<£Qthe minimum of |uE| on

each of the intervals I rt {t) + 8. ri+1 ( t ) - 8 ] occurs at one of the endpoints. Hence if |uE| does
not converge to +1 uniformly on [ rt ( t) + 8. ri+1 (t) - 8 ] for some i = 1. ..., JV, then

liminf |uE(r, t)\ = : a < 1 where either r = rt(t) + 8 or r = r((t) - 8. Therefore.

<Wn f ( l - | u E | ) dx .

This contradicts (42).
•

We are now in a position to find the asymptotic limit of ze:

Theorem 12. Let x be as above. Thenz* {•9t0)-*d[;t6) uniformly a s£->Oif io € [0. x]
is a continuity point ofE. Here d (•. (Q ) is a signed distance function to the set Tt of interfaces.

Proof: The proof is based on the method in [3J to which we refer the reader for a more
detailed treatment. Let us first make the following definitions:

z*(r,0 = liminf z*(rys), (43)
£->0

z (r, t) = limsup z£(rys). (44)

Then z* is an upper semicontinuous and z# is a lower semicontinuous functions on
Qz : = [ 0. R ] x [ 0, x ] . Moreover, by Theorem 7. both z*[,t) and z* (•, t) are Lipschitz contin-
uous for all t > 0 with Lipschitz constant L = 1.

(a) Let ¥ G Cx( [ 0, R ]) be such that ( z* - *¥ ) (•. to) has a maximum at r = r0, where

f*o 6 ( ri (*o) + 5, ri+1 ((o) ~ 5) for some fixed i and 8 and suppose that ue (•, tQ) converges to -1

on this interval. As q' > 0 then zE (•, tQ) < 0 on the same interval if £ is sufficiently small; there-

fore z* (•. to ) < 0 by Theorem 11 and Theorem 3 .

{r-ro)Z (t-t0)
2

Let ga(rtt) = ¥( r ) + — + — for a > 0. y > 0 small. Then, as z* is an

upper semicontinuous on a bounded domain, z* - ga has a global maximum at some
( rot' *a) e ^x • By t h e construction of ga and the boundedness of z*we have that
( ra» ̂ a ) ^ I O, K } x [ O, x 1 u [ 0, R 1 x { 0, x } for a and y sufficiently small. Furthermore, even
though this maximum might not be strict, it is attained inside some small region, determined by
the values of a and y-

If we keep y fixed and let a -» 0 then:
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( a 0 ) Ua0)
Hz -ga)(ra,ta)<z (ra,ta)-V(ra) ^—.

As ( ra, t^) is contained in a bounded domain, we can choose a subsequence {a^} k£N such that

(ra , t^ ) -» (rj, tj) G Q . Then immediately tj = fo and as

(z* - 40 (r0, t0) < z* (rOfcf t^) - V (rOfc, ̂ ) .

by passing to the limit in ak we obtain:

(z*-V)(rOfto)<limsupa _>oz*(ra , ta ) -
#C K K

<z (rv tQ) - V ( r r t0) < (z* - V) (r0, tQ).

Therefore, rj = r0 and since any sequence contains a subsequence convergent to the same limit

C ra> â ) "* ( r0' <6 ) a s °

(b) As z* - £fa attains its maximum on some small subset A of Qx , by definition of z* we

know that z e - gamust attain a local maximum (r^, t̂ ) in some neighborhood of A for suffi-

ciently small e's. Notice, that passing, if necessary, to a subsequence, (r^, ^) -» (ra, ta) s A.

Then by (12) we have at (r*, £ ) that

E * 2

Multiplying this estimate by £ and letting e-^Owe obtain that by Theorem 11 and Theorem 3

2liminf tX£- 2( "' l

£-^O
a t

s->ta

Now if we send a to zero, use (a) and Theorem 10, we arrive at 1 - ¥ 2 (rQ, tQ) < 0. On the other

hand, by Theorem 7, if ¥ e Cl( [ 0, R ]) is such that (z* - ¥ ) (•, fo) has a minimum at r = r0 then
1 "^r ( r0' V ~ ° * H e n c e t*1^ 2*( •• fe ) is a viscosity solution of 1 - \Dz\2 =0 in ( r£( ̂  ) +
8, ri+i { to ) - 6 ) for arbitrary 8 > 0 (Since z* (-, *o ) is Lipschitz continuous for
fixed to.)

(c) As

z*(r,to)zz*ir,to) (45)

the fact that the interface is located at r^to) requires that z ( r{(to ), to ) - z#(r£(to ), ô )

since z* (•, ̂  ) a n ^ z* (•• *o ) a r e continuous. Then (b) and comparison result for viscosity solu-

tions of the equation 1 - I Dz 12 = 0 imply that z* (-, ̂  ) = di -, ̂  ) on { z* < 0 }. Similarly,
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z# (•, to ) - di •, to ) on { z« > 0 } by the uniqueness of a viscosity solution for the problem

IDzl2- 1 = Oon{z.>0},

Finally by (45) and the restriction on the growth of z* (•, to ), z* (-, ^ ) we obtain that

z (•. fe ) = z* (-, *Q ) = d( •. to). that is zE (•, ^ ) -» di •, ^ ) uniformly.

b. Asymptotic limit of Ez { u e ].

Let T again be the time until which the initial number of interfaces is preserved. We want to
prove that E is continuous on [ 0, x) and that E = E° ( See Theorem 4 and remarks before it for
definitions).

Remark 6. Since by (17) and (19) j e2 ut \ is bounded in L1 ([0, R] x [0, T]) for any

T > 0, Fatou's lemma implies that:
T / R \
[ U m f n / e f ( u ^ ) 2 r d r d t < M,
0 v 0 /

and thus liminf I e f (u!) rdr is bounded for a.e. t e [ 0, T]. Denote the set of such t 's as A

Then, by the definition of a lower limit, for every t e A there exists a subsequence {e (t) }^= j

en J l u t
 kJ rdr < oo . Denote the bound on {en j\ut

 k\ r d r } ^ = 1 at

0 J o

time t as at. Observe that since both A and the set of continuity points of E have a full mea-
sure, so does their intersection.

Lemma 3. Lett e A be a continuity point ofE. Then, passing to a subsequence

U ,+,}Z i, iuehai>e limp vOUE(0l ^C(M, af), where C depends on uniform in £ bounds on

the energy and its time derivative at a time t (We suppress index nk for notational simplicity.)

Proof: Multiplying equation (27) by euE and integrating it in r from y to yx we have that:

Eju^dr-[^(q'(z£ /£))2((4)2-1)] | ~£J ( ^ ^ - ^ ( u 6 ) \y = 0. (46)
,i y it

18



By the previous theorem we can choose y, yx e ( 0, <R ) ( depending on t) such that:

y
u/ £/ _L2 i as £->0

The third term in (46) can be bounded by:

r e 2dr<2M

y y

and the first by:

J|u*u*|dr<l ej (u^rdr e J (ut)
2rdr

(2Mat)
2

y y
Then the proof follows from (46).

Lemma 4. Let the as inLemrna 3. Then on a subsequence {enk(t)ik= 1-

a s (47)

Proof: (a) Let rt, i = 1,..., N be the positions of the interfaces at time t ( For notational
N

simplicity we omit variable t). For any fixed 8>0, denote C$: = [0, K]\ ^ J [ r ( - 8 , r^+8].As

zz{, t) -> d{ , t) uniformly, we immediately obtain that:
If p 2 p 2

— I (q'(z/e)) ( l - ( z p )rdr->0 as for any 8 > 0 small.

b). Now along with 8t fix i € {1 N} and integrate (33) in y over [ r( - 8, r£ + 8 ] while
Ui = r̂  + S.Then:

£ J J u^rdrdy+-[ (r ( +8)(q ' ( (z £ (r^8) ) / £)) (1-(zJ(r (+8, t)) )]
r r 5 y

r.+ 6

- ^ J (q'(zE/£)) ((zj) -l)rdr- J J
r.-S

r> W(uZ)
+ drdy
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r r 8

[rh(u)\y J- J h(uz)dr dy = 0.

Here the terms admit the following bounds:

(1)

r{+8

I J
r r 8 y

* J . J (u^rdr e / *rdr\ dy

<28(2Ma t)
2

by Holder *s inequality, definition of A and (19);
(2) The term

- (z^(r(+8, t))2)]

converges to zero when e -> 0 (as in (a));
£ 2

,3, j J • + W(u)
4M54M5

drdy < by (19);

(4) Urn

rf+8

rr6

and the previous lemma.
Thus:

u£)|y
l J- J h{u)dr dy

8
<^C(M,at)R$ by definition of hi u£

Urn

rj+8
1 0

^ J (q'(z£/e)) (l-(2r) r d r

r r «

For a given 8 > 0 similar estimates hold for all i = 1 JV.
(c) From (a) and (b):

R

Urn C{M,atmin r{) 8

for any 8 > 0. Letting 8 - » 0 we deduce that:

0

Lemma 5. Let t and rt, i = 1,..., TV be t/ie same as in the previous lemma. Then on a subse-

quence {e f *\ )fc= i LUe ' 7 a u e (suppressing index nkjor notational simplicity):

20
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N

Proof: Fix 6 > 0 small. Then by (15) we have:

R

0

6 [O,R]\C6

N

t= 1

2n t

r r 6

- (4 ) )rdr

(48)

(49)

where C§ is as in Lemma 4. Observe that the first and the second integrals on the right-hand
side converge to zero by the previous lemma and the uniform convergence of zH •, t) -> d( •, t).
Also by Theorem 12, zf has a constant sign on each of [ r( - 8, rt + 8 ] if e > 0 is small. Then by
computing the integral in the third term by parts and letting e -» 0 we obtain:

N
lim X
£ ~ > 0 < = 1

2rc2n f , / v 2 el • 8K

f = 1

which together with Theorem 4. implies (48).

Theorem 13. E is continuous on [ 0, x) and

8 "
(50)

< = 1
for every te [ Ot x ) .

Proof: Since for every continuity point t of E in A, we have that Ee [ ue ] (t) -»E (t) on the

whole sequence, E(t) = -5-5L r /(0 by the previous lemma. By Remark 6, the set of points for
t= 1

which Lemma 5 holds, is dense in [ 0, x ). Then, since the positions of the interfaces are contin-
uous in time (see Theorem 3) and since E is monotone, we conclude that E is continuous on
I 0, x) and thus E = E ° [ v ] on [ 0, x).

•
Remark 7. As E is continuous on [ 0, x ) using Theorem 12 we obtain that z£ -» d locally

uniformly on I 0, R ] x [ 0, x ) .

Theorem 14. IfE is continuous on (0, x) then EE[if] -> E uniformly on compact subsets
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o/*(0,1) as £->0.

Proof: More generally, suppose that there is a family { Jn } ne N of uniformly bounded

monotone continuous functions on an interval (a, b), converging to a monotone continuous

function / in L1 ((a, b)). For all 8 > 0 and ne N denote A£ : = {t: | /(£) - / n ( t ) | > 8}. Then

meas (A£) -* 0 as n -> « for any 8 > 0, where meas (A) is a Lebesgue measure of the set A.

Choose [tj, t^l c (a, b) and suppose that / n does not converge to j uniformly on [ tj, t^]. Then

there exists 8 > 0 and a subsequence { nk]keN such that [ tx, t^] n A^k ?t 0 for all ke N. For

c then passing yet to another subsequence we have thatevery ke N select sn e [ ^

sn -»S€ [ t p ^ ] as Jc->«>.

In what follows we will omit index k for notational simplicity. Suppose that {Jn } n € N and

/ are monotone decreasing. Since j is continuous on (a b), there exists h> 0 such that

| / (s+h) ~ / ( s - h ) | < 8/4. As meas (A" ) ->0, we can find IG iV such that

SjG (s~ h,s+h)and there exist Pj € ( s - ^ s ^ n A g ^ and p 2 e ( s r s+h) nA^ / 2 . Assume at

first that f(st) -/^(sp ^ 0 then f(s{) - 8 ̂ /jCs^ . At the same time:

= /(P2) + (f(st) - +8/4 < + 38/4,

then

- a contradiction since /{is monotone decreasing. If /(s^) ~/^(sp <0 then the same procedure

works with Pj substituted by p 2 . The case when { Jn } n € N and j are monotone increasing can
be handled in a similar manner.

•
Theorem 15. E is loccdly Lipschitz continuous on (0, x).

Proof: As in the proof of (20) (See [6]) we have by Holder's inequality that for any

JJe(u*Ut))'
1/2 ^ 2

(W(u£))
2e

1/2

1/2

<C(( 2 ~t 1 ) 1 / 2 (E E [u E ] ( t ^ - E 6 ! ^ ] (t2>)

where hB (x, t) = /I(UE(A; t)) and Cis independent of £.
At the same time:

JJ| ht
E(xt)|dxdt>J
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Then, by Dominated Convergence Theorem, we have for any tv t e (0, x) that as e -»0

1/2

i ( E ( t j ) - E

Here h(.x; t) = h(v(x,t)). Since u takes values +1 or -1 a.e.,

| h(x, <2> - h ( * tj)| = | | v(x, <2> - o(x; tj)) a.e.

Choose compact A e (0, x). Then as v(x, t) is known explicitly on (0, x),
N

<= 1

> - min
3 t€ A

f o r a n y £ j , t e A , w h e r e C j d e p e n d s o n l y o n A . T h e r e f o r e f o r a n y t ^ t e A :

1 /O

E(tj) - E ^ ) < C ( t 2 - t 1 ) 1 / 2 ( E ( t ^ - E
1/2

ides by (E (tj) ~E (t^)) , we conclude
on (0, t) with Lipschitz constant depending on the energy bound M and the set A.

1/2
Dividing both sides by (E (t^) - E (t^)) . we conclude that Eis locally Lipschitz continuous

This result is expected, since each of the interfaces move by its mean curvature and the
limiting energy depends linearly on a position of every interface. Then, if at least one of them
shrinks to zero at a time t, the limiting energy, while remaining continuous, cannot be differen-
t ia te at t.

Remark 8. By slightly changing the proof of the previous theorem, one can show that rt

are locally Lipschitz continuous on (0, x) for all i = 1 N.

Remark 9. Multiplying (46) by E and choosing y j appropriately we have that for any

[tj,^] C(0,T)

( q ' ( z £ / e ) ) ( ( z j ) - l ) - > 0

uniformly on [0, R] x [tv t^].

Remark 10. Choose a sequence { hn } R € N c Rf such that hn -> 0 as n -» «>. Integrating

equation (46) in t for the appropriate y and y^, using the previous remark and passing if neces-

sary to a subsequence, we obtain that the averages:

n .
Xh ( t ) : = TT

converge uniformly to a limit X. for each ne JV. Moreover, by Theorem 15. the sequence
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} ne ff is locally uniformly bounded on (0, x).

c. Asymptotic behavior of phase - field equations.

Our next goal is to determine the dynamics of the moving interfaces on an interval [ 0, x ).
We will use the following strategy. First, as in [31, we are going to show that the distance func-
tion d satisfies certain differential inequalities in a viscosity sense. Then using these inequalities
we will determine that the interface position functions solve a system of the ODE's (again in a
viscosity sense). Finally, we will prove that given the initial positions of interfaces the unique-
ness of viscosity solution to latter system of ODE's implies that rb i = 1 N is also a classical
solution of the same system.

We can prove the following refinement of Remark 10:

Lemma 6. Let XE be as in (51). Then there exist Xhe C ([ 0, x - y ]) and

X £ C ([0, x - y]) such that

a. Xz -> X, uniformly on [ 0, x - y 1 as e -> 0;

b. X, -> X uniformly on [ 0, x - y J as h -> 0.

Moreover,

X(t) =
N

f= 1

Here N is the number of interfaces and aN is a function depending on the geometry of the prob-

lem:

aN(t) =
u(R,t)-u(O,t)

Proof: Multiply the equation (27) by er| i£| and integrate over I 0, R] by parts. Then for
e > 0 small we obtain:

R R
(53)

0 0 0 0

Since zz -> d uniformly on [ 0, R ] x [ 0, x - y) and by our condition on the number of zeroes of zr

we immediately obtain that zeroes of zT are uniformly on a distance of order 1 away from the

interfaces if e > 0 is small enough. It is also easy to observe that the coefficient of XE,
R N

BE : = -

o n t =
uniformly as £ > 0 since zz -> d uniformly on [ 0, R ] x [ 0, x - y ]. As rtare uniformly away from
zero on [ 0, x - y ] for i = 1, .... N, then for sufficiently small e > 0 and h > 0 we can divide (53) by
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B£ and integrate the result over (t, t+h) to obtain

t+h t+h

- e J Bz* (s) j\i$utrdrds + J B^ (s)
0

( r t + 6

X { 1 (|(uE
r)

2 + jW(uE))drJ

f £ e 2 1 E(-(u) +-W(u
J 2 r £

t+h
(54)

ds+o(l) = J XE(s)ds

for any small 8 > 0, where o( 1 ) denotes the terms uniformly convergent to zero on [ 0, t - y ] as
e -» 0 while A + is a set of indices of the interfaces with dr>0 and A _ is a set of indices of the
interfaces with dr<0. Note that:

t+h R

2£ J ase-»0
t 0

uniformly on I 0, t - y ]. From (8) and since q' = 1 - q 2 = g(q) we have:

J? R R
f\ f £ ~

0 = -̂ - I h(u ) rdr =
0 0

then by (55) and Holder's inequality:

R

t 0
t+h R

t+h R

1 J B^1 (s) J (q'(ze/e))2|z'|z'rdrds

(55)

n+h R

<sup BZl(s) f f(q'(zE/e)) 2 r E 2J(up rdrds
o >̂

as £ -> 0 uniformly on [ 0, t - y 1 by the remark above. It is easy to show that the remaining term
in (54) converges uniformly to:

Y a(s)Y a»(

J "TV

where aN defined in (52) is either +1, -1 or 0 depending on the relative number of the interfaces
of A+ and A _ types. Thus for any h > 0 small:
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f + h

t=

uniformly on [ 0, t - y ] as e -» 0. Now as - ^ is continuous on a compact set [ 0, t - y 1,

1 r,C)
f = 1

uniformly on [ 0, t - y ] as h -» 0.

•
Theorem 16. Assume that^e C~ {( 0, R J x [ 0, x) ) is such that d - 4 has a maximum at

( r0, to) € ( 0, J?) x ( 0 t t) and d ( r0, ^ ) < 0. Then:

<J>t-A (f>-hX<0 at (rQ, tQ), (56)

where X[ t) is as in Lemma 6.

Remark 11. Without loss of generality we can assume that the maximum of d - <|> is strict.

(r-r0)
4 (t-ty2

Indeed, this can be achieved by replacing <|> with ty~ = + ^ and choosing a and

p small enough.

Proof: Fix y > 0 and let y > h > 0. Suppose fy: = [ 0, R ] x ( 0, x - y J. Denote:
t+h

4i = { J
t

t+h

t
t+h

•h-£ J
t

As z e -^ d uniformly on [ 0, R ] x [ 0, x) we have that:

(a) z^ -» d h uniformly as e -» 0 on ^

(b) d h ^ d, -^(|>, -^-£-(|>, ^-(|). -» ^ for i = l , 2 , uniformly on as h-» 0 on Oy since both d

and (J) together with its derivatives are continuous on compact [0, R ) x [ 0 , x - y + h ] .

As dh - <|>h converges to d - <(> uniformly for h > 0 small, dh - <{>h achieves its local maximum
in a small neighborhood A h: = [ r0 - ah, r0 + ah 1 x [ (Q - bh, to +bh 1 of ( r0, to) such that
ah. b h ^ 0 as h -> 0. Similarly as zh -^ d h uniformly, for e > 0 small z^ - <t>h has a maximum in a
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small neighborhood Ath: = [ r0 - a^, r0 + a^ ] x [ ^ - beh, ^ +beh ] of ( r0, to) and such that
ath i ah, bth ^ bh as e -» 0. Observe also that if h and e are given, I A e h I can be made arbitrarily
small by choosing a and p small enough, where a and p are as in Remark 11. This implies that
we can find hi, £1 > 0 such that for any E] > e > 0 and hi > h > 0,

z e ( r , t ) < 0 if U t)e [ r o -

By integrating equation (12) in t we obtain:

t+h t+h . e v

Axt-*zh\ J ^^^hi I ^\c^^)«z\(r>s»2-l)ds=0 (57)
t t

on Oy. Then by definition of u e and Theorem 7, the last integral is positive in Aeh. Fix any

( r£ht tZh) e Aeh where z ^ - <)>, has a local maximum, then by (57) we have:

*ht-A*h + Xth*° at <re
where X^ (t) is as in (51). By Lemma 6, X* -» X, uniformly as e -» 0 and, in turn, Xh -> X uni-

formly as h -» 0. Let e -» 0. Then passing to a subsequence, we obtain that

( re/v t e h ) -> ( rh. t h ) € Ah and that:

Letting now h -» 0 and repeating the above procedure for h we obtain:

at (r o , t o ) . (58)

Suppose now that <t> e C°° (10, R ] x [ 0, x )) is such that d - 0 has a maximum at
( rf (to ). *b ) a31^ i ̂  interface is such that dr{tOtri{to))>0. Since in the neighborhood of
( H ( (Q )• *b) th e distance function d[?; t ) sr -r t ( t ) and r( is continuous on [ 0, x - y ] we have that
for d > 0 small:

0g; = 0( r + 8, t) + 8 G C ~([ 0, R ] x [ 0, x ))

is such that d - <(>$ has a maximum at ( r{ ( (Q ) - 5, to )• Then by (56):
<|>6t-A<[>6 + X<0 at (r<(t o ) -8 , t o ) ,

and thus:
<t>t-A<() + X<0 at ( r ^ M o ) .

Therefore, d is a viscosity subsolution of:

z t - A z + X = 0 at ( r ^ ^ ) , ^ ) . (59)

Similarly, we can show that d is also a viscosity supersolution and thus a viscosity solution of
(59) at ( r( ( to). to ) for any tQ e [0, x - y] . Since d is known explicitly for any t e [ 0, x ) and con-
structing a test function in a way , similar to that of Theorem 12, we find that r{ is a viscosity
solution of:
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7t

I'I
t = 1

The same procedure for the interfaces with dJito,ri{to))<0 shows that rt satisfies:

<= i

in a viscosity sense. Given the initial locations of the interfaces, the system of ODE's (60) and
(61) has a unique classical solution. Then due to the uniqueness of viscosity solution for the
same system, r = (rv...,rN) is a classical solution of (60-61) on [ 0, x - y ] and, since y is arbi-
trary, on [ 0, x). The mass preservation property of the limiting flow follows directly from (60)
and (61) or by considering an asymptotic limit of (8).

Any subsequence of our original sequence in e contains a subsequence such that u con-
verges in L1 ([0, R] x [ 0, x )) to a limit v (that may, in general, depend on the subsequence) sat-
isfying:
(a) v(x,t) e {-1, 1} a. e. on [0, R] x [ 0 , x ) ,
(b) limt^ ov(x, t) = 4>(x) a. e. on [0, R],

with interfaces moving according to (60-61). However, since a function with these properties is

unique in L1 ([0, R] x [ 0, x ) ) , then v is the same for all subsequences. Therefore, v is an

asymptotic limit of ue on the whole sequence.
Observe that if TVis even, then X is zero and therefore interfaces simply move by their mean

curvature and our solution exists at least up to the time when the innermost interface shrinks
to zero. No interfaces can collide with each other in this case. However, latter may occur if Nis
odd. We consider these situations in the next section.

7. Asymptotic behavior of reaction-diffusion equations.

Interactions.

Observe first, that if two interfaces of the opposite sign collide and so called "ghost* inter-
face is formed, then the assumptions (31) become useless. Therefore, in order to continue our
analysis, we have to generalize the results of Section 6 to a wider class of initial data.

Suppose that (31) is no longer valid. First, we have to prove the analog of Theorem 12 in a
new setting. This theorem was demonstrated using the facts that the interfaces, defined in Sec-
tion 4, move continuously in time and that uE is uniformly negative (correspondingly, positive)
between the interfaces. We want to extend this result to the "ghost" interfaces (See Definition 2.)

Let:
Nt: = int cl{re (0,R): uE(r, t ) - > - l } ,
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(62)

Pt: = int cl{re (0,R): uE(r, t)

where int A is an interior of the set A and cl A is its closure. Nt and Pt are clearly non-empty
for all t > 0 (except when u(r, 0) = + 1 a.e or u(r, 0) = - 1 a.e. re (0, R)). For each 8 > 0
denote:

N? : ={r€ Nt: Tim u£(s, t) > - 8} .
1 l E->0

5 - e
 ( 6 3 )

P f : = { r e P f : l i m u ( s , t ) < + 8 } .
1 L E » 0

Remark 12. Fix fo > 0 and 8 > 0. Since the energy is bounded, passing, if necessary, to a

subsequence, one can assume that there are finitely many points in N^ n [ rQ ,R] and in

Pt n [rQ ,R] for any r0 e (0, R).

We are now in a position to prove the following technical lemma that is somewhat similar
to the clearing - out lemma ( See [13], [14], [15] or [16]):

Lemma 7. Let T > 0 be given. Then there exist a 8 > 0 and a set n§ c [ 0, T ] containing the
finitely many points such that the following holds:

Let tn e [0, 71 \ EL and Acz Nt \ AT bean open set where N; is as in Remark 12. Thenu ° lo o o
there exists an a (A , t0) > 0 for which

A^o [rQ 9R] nA = 0 (64)

for any te [ t^ tQ + a (A , tQ) ) and any r0 € ( 0, R). The same result holds for Pt.

Proof: Let T > 0 be given. Fix 6 > 0. Since the "limiting energy" £ is a bounded, monotone
decreasing function of t, there are at most finitely many points te [0, T] such that

E(C) -E(t ) > 0 / 2 . Denote the set of the such points as ns. Then [0, T] \ U^ consists of the

finitely many intervals on which the variation of £ does not exceed 9/2:

(0,7)\

where E(tt~) = lim £(t) . Then, by choosing [tj_ j , t(] c (t(_ j , t̂ ) for i= 1 n, we have for
t-4tf

e sufficiently small that the variation of ET [u ] on each of these intervals does not exceed 0.
Applying the procedure of Theorem 9, we find that for every point t0 e [0, T] \ U^ one can
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choose y(tQ) >0 such that

|eX£(t)|<C(Af)e2 + o(£) (65)

uniformly on (tQ, tQ + y (tQ)). Fix now tQ e [0, T] \ n§ and £0 > 0. Denote

2 = 2 : = C(M)62 + o(£0) . (66)

Let A be an open set such that AczNt\ 7s£ and suppose for simplicity that A lies between two

consecutive points in N£ (which is possible by Remark 12.) Suppose that for every

te «

J * 0 . (67)
his implies that for every te (t^ tQ +y(t0)) there exists anr ( eA and a subsequence
j (t))k€jv such that

Urn u e ( r f , t ) > - 8 . (68)
0

Fix te (t0, to + y(to)). We can choose an open set B such that BczNt \ N£ and A<zB. By

our assumption, u£ (r, tQ) < - 8 uniformly on B for e > 0 small. Let dB = {8B~, 3B+} (assuming

again that B lies entirely between two consecutive points in AL ). Fix e > 0 small. Suppose that

u£(r, t0) <- 8 on 3Bx (0, t). Then the remark above and (68) imply that for some x e (0, t)

there exists an interior maximum on Bx (0, T] at (rr t) with u£ (rr x) < - 8. At the point of the
maximum we must have (following the usual proof of the maximum principle):

- contradiction. Thus for some xe e (0,T) we have that, for example, uE (dB , x ) * — 8 and

there must exist a continuous curve re[t) such that i/i^it)^) * - 8 for te [ xe , 11 and

rE(xE) = 3B+, rz(t) = rr In other words, for any re (rt,dB*) there exists t£
re [tQ,t] such

that uE(r, tE
r) « - 8. Consequently,

t
J |^(r,s) |ds>|h £(t e

r)-h £(t 0) | ~ h£(t0) -h( -8 ) . (69)
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Also, following the proof of Theorem 3, we obtain the following estimate:

h 1

J .f (70)

Then:

J (hE(t0)-h(-b))ds< J

£ 3
and as hE = —- u8 with ue -» - 1 a.e. on B:

(71)

I
As EQ in (66) can be chosen arbitrarily small, 8 = 2C(M) G2 . Similarly, 0 can be chosen initially
so small, that 8 < 1. Then the L.H.S. in (71) is strictly positive while the R.H.S. can be made arbi-
trarily small by choosing t sufficiently close to to- This is a contradiction. Thus there exists

a (A , tQ) > 0 such that A^ n A = 0 for any t e [ tQ, ^ + a (A ,1^) ) . The generalization to (64)
is obvious.

•
From now on we will assume that 8 is as in the previous lemma.

Definition 2. Fix t > 0. Then every point r^e N^uPt will be called a "ghost" interface at the

time t We will denote the set JV̂  u Pt of the "ghost" interfaces as TV.

The geometrical interpretation of this definition is shown on Fig. 1. In what follows we will refer
to the interfaces from r t (See Def. 1) as "regular" interfaces. Observe that our definitions of the
"ghost" and "regular" interfaces does not use any information about their inner structure. In
particular, each may have multiplicity higher than one.

Remark 13. Let [tv t^] c [0, 71 \ n s and choose an open set A c [0, R] x [tv t^i such

that for every S€ [tv t^], the set As: = An {t = s} cJVs\A^ and dist(As , A )̂ >a for some

a > 0 (Here dist (A B) is a distance between two sets A , B c [0, R].) Then following the proof of
Lemma 7, one can see that a (At, t) is uniformly bounded from below on [ tv t^]. The same

result holds for Pt.
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Figure 1: The "ghost" interfaces: (a) rQe rf.; (b) rQe P*
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The next three corollaries are immediate consequences of Lemma 7.

Corollary 1. The positionjunctionsofthe "ghost" interfaces are continuous on their respective
intervals of existence, except maybe the points from the set U^.

Corollary 2. The "ghost" interfaces can nucleate only at exceptional times te n g .

Corollary 3, For each te [0, T] \ U^ and each closed set A c Nt\ Pq there exists an h> 0

such that for e > 0 small u is uniformly negative on Ax [Ut+h]. The same result holds for Pt.

Then repeating the proof of Theorem 12 we obtain:

Theorem 17. Fix rQ € (0, R). Then z*(• , *0) -» d(- , £0) uniformly on [rQ, R] if

*0 € [0, 71 \ FL is a continuity point ofE. Here d(- , £Q) is a signed distance function to the set

Suppose now that a time tQ € [0, T\ \ Fig there are finitely many interfaces of either kind -

"regular" or "ghost* - and that they are all located away from zero. In a view of Theorem 8 this

will hold, for example, if it is assumed that ^ have uniformly bounded in e number of zeroes in

[0 , R] . Of course, the "ghost* interfaces depend, in general, on a subsequence chosen in
Lemma 7. We would like to show first, that the evolution of every "regular* interface depends in
a nonlocal fashion on its mean curvatures. By our assumption on tQ, there exists a number

a (t0) such that the positions of all interfaces are continuous functions r(( • ) on

[t0 , to + a(to)] for i= 1 AT + K Here N is a number of the "regular* interfaces and Kisa
number of the "ghost* interfaces. Furthermore, since there are finitely many interfaces (the set
T u r ' is finite ) for every t e [ t0 , 1Q + a ( £Q) ] then rQ can be set equal to zero in Theorem 17.

Then, with minor changes, the results of Section 6b still hold on (tQi tQ + a (tQ)). In particular,
Remark 9 enables us to describe an inner structure of every interface on (t^ tQ + a (tQ)). Geo-
metrically, each of the interfaces consists of finitely many jumps between + 1 and - 1 clustered
at a given point. On a scale - £ these jumps are located infinitely far away from each other. The
number of jumps constitute a multiplicity of the interface. If the total variation of v across the
interface is + 1 or - 1 we have a "regular* interface while, if it is equal to zero, we obtain a
"ghost* interface.

Recall that for any h> 0
t+h

<*<r,s)ds.

t
Then as d is known explicitly we have for h small enough, that near the "regular* interfaces
either
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t+h

or

dh{ryt) = r - i J rt(s)ds, if dr(r,(t), t) >0 for t€ (tQ , to+a(to)-y) (72)

t+h

h(r,t) = i | r((s)ds-r, if dr(r((t),t)<0 for t€ (tQ , to+a(tQ) -y), (73)
t

for some small ye (0, a ( ^ ) and i = 1 N. Denote
t+h

'ihW—i J ri^d*-
t

Following the proof of Theorem 16 we obtain

Theorem 18. Choose { hn } n € Nfor which the conclusion of Remark 10 holds. For

ye (O,a(t )) small denote Q a = [0,K] x (tQ , to + a(tQ) -y) .Assume that $e C°° (Qa) is

such that dh - ty has a maximum at (r0, tQ) and dh (rQ, tQ) < 0. Theru
n n

• t - A 0 + Xh <Oat (r0, to),
n

where Xu is as in Remark 10.

Finally, by repeating the arguments following Theorem 17, we conclude that for every h small
( omitting the index n in hn ):

(a) If dr(rt(t), t) >0 for te (tQ , tQ + a(t0) -y ) , then r{h is a viscosity solution of

y), (74)

(b) If d r(r,(t), t) <0 for te (tQ , to+ a(tQ) - y), then r(h is a viscosity solution of

r ( h +-^ + Xh = O on ( t o , t o + a ( t o ) - y ) , (75)

where X, € C( [ tQ, tQ-f a(t^)]). Recall that, by Remark 10, the set { X, } n e N is bounded in

C([t0 +y, to + a(to) -y]) forye (O,a(tQ)) small enough.

Since the positions of all interfaces are known at the time t = t0, then so are the initial

conditions on rih for every i = 1, .... N. Then, given ^h, the equations (74) and (75) have the

unique classical and, therefore, viscosity solutions on [ t^ , tQ + a (tQ) - y ) . We assume for sim-

plicity that no "ghost" interface "opens up" on (t^ , 1^ + a (tQ) - y), creating one or more "regu-

lar" interfaces. If this had happened for some time tj € (tQ , tQ + a (t$) - y), we would have two

different systems ( 74 - 75 ) on two consecutive time intervals, (t^ , tj) and

(t2 , tQ + a (tQ) - y). Then both systems can be solved separately and their solutions "glued"
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together at t = t j .

Now we can prove the following

Theorem 19. Fix ye (0,<x(t0)). There exists Xe L° ([tQ + Y, £0 + a(£0) "?]) suchthaton

[tQ + Y, tQ + a (tQ) - Y] the function r{isa weak (in a sense of distributions) solution of

r ( + ! - A . = O i fd r ( r . ( t ) , t )>0 , (76)

and

f ( + I + X = O i / d r ( r . ( t ) , t )>0 , inhere i = l N. (77)

Moreover, X satisfies

[t0 +Y, fo + a((o)-Y] (78)

where aN is as in (51).

Proof: Let A: = [t0 +y, tQ-i-a(t0) - Y] . Since IIX- II < C for every ne Nf then on a
11 n|lL~(A)

subsequence h-> 0 (omitting the index n in hR):

X,—^ X weakly - * in L°°(A) for some X e L°(A).

We also know that when h -> 0,
r ^ -^ r. uniformly on A,

by definition of rih for i = 1,..., N. Then, as r ^ are uniformly bounded away from zero on A for

every i = 1,...,N,

> — uniformly on A for i = 1 N.

Hence, by (77) and (78)

fih -^ p. weakly - * in L°° (A) for some p e L°° (A).

1 oo

At the same time, since rt is locally Lipschitz on A, the function r.e W ' (A) for every
£= 1 JV. Therefore, p. = f{ for every i= 1 N, where f{ is the derivative of r4 in the sense

of distributions. Passing to a limit in the equations (77) and (78), we find that r( is a weak solu-

tion of

and

f1 +I_X = 0 if dr(r((t),t) >0,
r i

r.+ I + ̂ o if d r ( r (t),t) >0,

where/= 1,...,N.
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Multiplying the equations (77) by - r{ and the equations (78) by r{ for their respective i *s

and adding the resulting equations together, we have for every h> 0 that

- X W(h+ X r(h^h+fXr

dr>0 dr<0 \=i

where aN is as in (51). Integrating this expression over [tv t^] for any tv t^ e A and using the
mass preservation property of the limiting flow:

jv(tx)dx= Ju(t,O)dxforall t>0,

we conclude that for every h> 0 and any tp ̂  e A:

since a^ is constant on A. Then as /i-» 0

a N ( t 2 ~ t l ) for anyJ f

Remark 14. For the "ghost" interfaces our procedure would only identify the bounds on
the positions of eveiy "ghost" interface at any time t e A (Assuming, of course, that their posi-
tion at the time t0 is known.)

In order to identify X explicitly one has to use the procedure of Lemma 6. Unfortunately, in
general, this requires to identify an asymptotic limit of the quantity:

R

N (u )\uArdr =
1 H e-

= ijq(ze/c)(q'(z£/e))2|z^|rdr (79)
0

This can be achieved if the rate of the uniform convergence of z to its asymptotic limit is of the
order e. The task of proving this fact is rather difficult and is beyond the scope of this paper.
However, in some special cases the necessity of estimating (79) can be avoided. We return now
to the problem from the previous section.

Recall that x is the first time when two "regular" interfaces collide or one "regular" inter-
face shrinks to zero. Assume the former and suppose that xe [0, 71 \ n § . Suppose without loss

of generality that a /v> 0 and that the "ghost" interface, appearing as a result of the collision,

does not disappear instantly. Then, by our assumption on T, there exists a number t j such that

every interface is continuous on [x, i j ] . By Theorem 19 for any tv t^ e [x, Xj]:

h N-2 <2 N - 2h N2 N2

I X r*hKdt= J X r<fdt=
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where JV is a number of the "regular" interfaces at the time t = 0.
On the other hand we can estimate Xh using Lemma 6 and the fact that the "bad" term in (79)
is positive. Then

a t+h JV-2 - 1
Xh~T J (P(S)+ X rt{s)) ds'

where rt(t) is a position of the fth "regular" interface for i= 1 AT and p(t) is a position of

the "ghost" interface. Substituting (81) to the L.H.S. of (80), using the fact that r((t) and p(t)

are bounded away from zero on [x, x^ for i = 1 JVand letting h-»0 we find that

<2 JV-2 N-2 - 1
a N ( t2 - t 1 )<J £ rc(s) p(s)+ X rf(s)

- contradiction. Therefore, there is no "ghost" interface past the time t = x. Moreover, as

x e [0, T] \ n g then by the maximum principle for z \ "extra" zeroes of zT will disappear as well.

Hence the procedure and the conclusions of Section 6c apply. This analysis can be continued

until we reach the time I when two "regular" interfaces collide and i e rig or until one "regular"

interface shrinks to zero.

We can analyze the case when at t = t0 the set T ' = 0 and one of the "regular" inter-

faces shrinks to zero in a similar manner after we notice that the limiting energy remains con-

tinuous at £0.

We summarize this discussion in the following
Theorem 20. Suppose that x > 0 is such that:
(a) aN(x) >0,

(b) P* = 0 ,

(C)T€ [0,T]\n& ,

(d) The setT u T ' is finite (There are finitely many "ghost" and "regular" interfaces at the

time x ) and the multiplicity of every interface does not exceed one. Then there exists x>x such

that the set of the "ghost" interfaces ry = 0 for every te (x,t) except, maybe, finitely many

points. The "regular" interfaces move by {60) and (61) on (x, x) . The same conclusions hold if (a)
and (b) are substituted by:

aN(x)<0,

i\£= 0.

Finally we conjecture that, in general, on time intervals where the limiting energy is con-
tinuous:

(t) The "ghost" interfaces do not exist (except, maybe, the origin),
( u) The multiplicity of the "regular" interfaces does not exceed one.

However to prove that, at least in the framework of our method, one has to show that the limit
of (79) as e -> 0 is equal to zero.
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