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ABSTRACT

We study the asymptotic limit of the reaction-diffusion equation

€ e 1 g 1 3
u = Au -;Ef(u ) +=g(u ) AE
as € tends to zero in a radially symmetric domain in R" subject to the constraint

jh(u") dx = const. The energy estimates and the signed distance function approach
Q
are used to show that a limiting solution can be characterized by moving interfaces .

The interfaces evolve by nonlocal (volume preserving ) mean curvature flow. Possible
interactions between the interfaces are discussed as well.



1. Introduction

Let £ be a bounded domain in R" with an outward normal vector n(x), xe oQ and con-
sider the following nonlocal reaction-diffusion equation:

€ e 1 € €

u,=Au —-—f(u)+A, xe Q,t>0,

t e2f
€

g—i =0, X€ 0%, 1)
N

u¥(x0) = 6(x), xe Q,t=0.

Here || isa volume of Q, f(u) = W ’'(u)and W(u) is a double-well potential, ¢ € c” (Q) is

a function satisfying compatibility condition g—% = 0 while
oQ
1 €
A= Sf(u)dx. )
Y (J;

This problem was formally studied by Rubinstein and Sternberg in [1]. They observed that (1)
is a particular regime of the viscous Cahn - Hillard equation, introduced by Novick - Cohen in
[2]:

au, = A (f(w) -BAu+vu) 3)

Then (1) corresponds to the case when a is much less than B, vand 1. Thus, by assuming that

u® is a concentration of one component in a binary mixture, (1) can be viewed as a model of
phase separation in that mixture with (2) representing the mass conservation law:

J'uedx = const. 4)
Q

The small parameter ¢ was introduced in such a way so that the diffusion term in (1) is negligi-
ble compared to the reaction term except in a narrow (~ g) transition layer where gradients are
large. Rubinstein and Sternberg analyzed (1) using the method of matched asymptotic expan-
sions and multiple time scales. They found that the phases rapidly separate as € — O and that
the propagation of the interfaces between these phases is a coarsening process depending in
nonlocal manner on mean curvature. Namely, the limiting equation for (1) as € — O is:

V = mean curvature + A (t) in Q, )

where A (t) is such that the volume of the region enclosed by the interfaces I';. corresponding
to a limiting solution of (1), is constant in time and V is the normal velocity of T',. The pair

(r ¢ A (t)) is called a volume preserving mean curvature flow. The associated geometric PDE
is:



- (A - (D?*uDu, Du)

5 )-x(t)luuz =0 inR"x(0,).
|Dul

In 1992 Barles, Soner and Souganidis [3] developed a rigorous approach for obtaining the
asymptotic limits of reaction-diffusion equations using the notion of signed distance function to
the front. They also conjectured that this approach can be successfully used for studying the
asymptotic limit of (1) under certain restrictions on the behavior of the Lagrange multiplier
A(t) as e—0.

In our work we provide a rigorous version of [1] for a model (7) similar to (1), following the
technique developed in [3]. First, in Section 3 we show that, as in [1], model (7) represents a
gradient flow for the energy functional

2
B () = [ Gloud 4 2wad)) ax, (6)
Q

then following [6] find that as € — O, the functions u®— va.e.inQx|[0, T], where v(x, t)
assumes values +1 or -1 almost everywhere in (x, t) € Qx [0, T] (phase separation is achieved).
Then concentrating our attention on a radial domain (Q ={ | x | £ R} ) and special choice of ini-

tial data, using monotonicity of Ef [us] (-) and estimates found in [12] and [3], we establish the

asymptotic behavior of the Lagrange multiplier A® (Section 5), the limiting equation governing
the motion of the interfaces and the validity of the mass conservation law for v (Section 6).
Finally, in Section 7, we extend some of these results to the initial data more general than the
one assumed in Section 4 and discuss possible interactions between the interfaces.

After this work was completed I found that the similar results were obtained at the same
time by Bronsard and Stoth [4].

I would like to express a deep gratitude to my advisor, Prof. H.Mete Soner for his encour-
agement, patience and advice. I also wish to thank Prof. Barbara Stoth for her comments on a
draft of this paper. .

2. Formulation of the Phase Field Model.

As we have already mentioned we work with the model slightly different from (1). This is
motivated by the use of a travelling wave representation of solutions of (1) in the distance func-
tion approach for finding the asymptotic limit of the reaction-diffusion equation. Suppose that:

W = %(u2-1)2. f(w) = W'(u = 2u(u2—-l),

3
h(w) = 2(-%——u). g(w = k(W = 2@?-1).

The choice of W(u)and h(u)is motivated purely by the simplicity of calculations. Our results
can be easily extended to the arbitrary double-well potential W. Consider now the following

problem:



=4 us——laf(ue) +%g(us)l€, xe Q,t>0,
€

ou®

— =0, X€ o, @)
an 0N

u¥(x0) = 65 (). xe Q,t=0.

Here Q and n are as before, ¢ C(Q) forall ¢ >0 and Af is chosen in such a way that
[ ne u%)dx = const. (®)
Q

The initial data are assumed to satisfy:

E(¢°1 <M foralle>O0, 9.2)
¢ — ¢ in L}(Q), (9.b)
lof0l<1, xeQ, ©.c)

where M >0 is a constant independent of e and E¢® is the energy functional defined in (6).
Multiplying equation (7) by g( u®), integrating over Q and using (8) we obtain that:

j[g'(us) Ipul®+ izf(u‘)g(ue)de
€
AE(t) = e 2 . . (10)
[d® (w5 ax
Q

Then using (10) and the fact that:

Pw =4-17% = sww.
g (u) = 4u,

fwg(w = 4u®-12 = suw(w
we have:

e[€] g2 1 s]
f[u [ilDuI +EW(u) dx

A () = 1

j w(u) dx
Q
The next theorem allows for a travelling wave representation of u®:

Theorem 1. Suppose that u® is a solution of (7) and that (9.c) is satisfied. Then luE (x t)l <1
onQx [0, T].

Proof: The proof easily follows by the standard application of the maximum principle as



u, = 1 are solutions of (7). Indeed, suppose for example, that (xp, t5) is such that

max u" (x tg) = u (xy tg) = 1 and uf(xy ty) >0 , then Du(xy, t;) = O and
xe Q
adt (Xg tg) <0 . Substituting into (7) and using (9.c) we obtain a contradiction.
|

As in [1] we remark that since a local solution to (7) exists by a fixed point argument, it can
be extended to a global one using the previous theorem.

Now set q: = tanh and let ut = q(ze /€). By the properties of the hyperbolic tangent
g’ =1-q2%then q” =-2qq’. Hence, as g’ >0, (7) and (11) take the form:

3 € € 2u€ €|2
z;~Az +2) (t)+T('Dz| -1) =0, (12)
2 2
[a@re @ &1~ 1+ID21) ax
AB() = 1.2 . (13)
€ . £, 2
[ (@@ /e ax
Q
where z¢ satisfies Neumann boundary conditions while z%(-,0) =: ofe C” (Q) and
05 (x) = q(af(x)/e). We also assume in addition to (9.a) - (9.c) that:
|Dafl <1, (14)
a® - do(-) uniformly in Q,
where dg( - ) is the signed distance to the set d{¢(x) = 1}.
3. Energy estimates
Recall that
2
E®[f = j(flpuel +Lwad)yax (15)
2 €
Q
Then multiplying equation (7) by ui , integrating over Q and using (8) we have that:
¢ 2
E&f (b = E $[uF] (0) -sJ' j(u‘:') dxdt. (16)
o Q

As a direct consequence of this equality we obtain:

Theorem 2. Assume (7), (9.a) - (9.b). Then:



() sup,, oE U] (1) <M, 17

g 2 2
(b) sup,, o[ (W™= 1) dxs2Me, (18)
Q
2 2
© ¢ [upaxdt= E°[f) (1)) -E F1u) (i) Jorp> . (19)
Q

t
1
We also adopt the following result from Bronsard and Kohn [6]:

Theorem 3. Assume that (7), (9.a) - (9.b) are satisfied. Then for any sequence of €'s tending

E
to zero there is a subsequence g such that the limit limouj (x,t) = v(xt) exists for a.e.
-

§

(x, 1) € Qx (0,%) . The function v takes only the values +1 and there are positive constants C
and C, depending only on M such that:

1
j|v(x, t)) -v(x t2)|dxs0|t2—t1|2 forany ty, t; >0, 0)
Q

suptzolev(x, )ldx< Cy, 2D
Q

and its initial value is the limit of the initial data for u® a.e. in x:

lim, o v(xt) = ¢(x). (22)

Denote

K-Pern({u=1}), if u(x)e {-1,1} ae. inQ ,
EC[u = Q 23)
o, otherwise ,

where K = J‘ll J2W(s)ds (In our case K=4/3) and Perg( A) is a perimeter of Ain Q (For the

definition of perimeter see e.g. [5]) .Then we find that E?is a NL!(Q))-limit of E€ (See e.g. [7], [8]
or [9]). In other words the following holds:

Theorem 4. Let E¢ and E° be as above. Thern:

(1) If v 5 v° inL'Q) then liminf E5[v%] 2 E°[0°). 4)

eE—0
(2) For any voe Ll (Q) there exists a_family ( v¢) such that - vo in LY(Q) and

lim E f(v%1 = E °[v°). (25)
€e—-0



We can also obtain some additional information on a limit of E [ u®] as a function of t.
Fix T> 0. Then, being monotone on [ 0,T], each of the functions E ¢ u®] also belongs to
BV ([0,T }) and by (9.a) and (16) the set { E®] u®] ). is uniformly bounded in BV-norm and

thus is relatively compact in L!( [ 0,T]). Moreover, the following theorem holds ( [17] ):

Theorem 5. Let F be an infinite family of increasing functions, defined on an interval | O, T].
If all functions of the family are bounded by the same number,

U(0|<K feF, 0<x<T,
then there is a sequence of functions {f,} ne N inF which converges to an increasing function g at
every pointof [ a, b].

e[ E;
Therefore, there exists a subsequence {EJ [u -’] }je N and a bounded monotone decreas-

E[ E;
ing nonnegative function E such that EJ [u J] converges to E pointwise at every point of [ 0,T'].

It will be shown later that E ° [v] (1) = E(t) everywhere except finitely many t’s.

Since E is monotone, it is well known that a set of points where E is discontinuous is at
most countable and that both left- and right-hand limits of E exist at every point of (0, T'). This
enables us to prove the next theorem.

€ €
Theorem 6. Let E/ l:u J] and E be as above. Then if t is a continuity point of E

Eno |E£J'[u£J] (s) —E(t)l =0. (26)
s>t

— e €

Proof: Let t be a continuity point for E. Set a = lim0 IEJ [u J] (s) —-E( t)l . Suppose that
£
sTt

a > 0. Then for sufficiently small ¢ we can choose two subsequences { s;};y and {g; };ey such
Er E e €
that IEJ[uj] (s) - E(t)l > g where s; T tandg; — 0 as j— . Since both Ejl:uj] and E are

monotone decreasing we obtain for any fixed j2 1 that:
g E — £ E
. ; k k a
E(s) = lim, , E k[u k] (sp 2limy , E [u™](sp 2E® +3-

Therefore for any j= 1,we find that E( sj) 2 E(t) +a/2. But since Eis continuous at ¢,
lim .. E ( ;) exists and is greater than E {t) + a/2. Therefore E has a jump at t which contra-

—_— E[ E

dicts the fact that t is a continuity point of E. We can show that lim0 lE J [u -’] (s) - E(t)! =0 as
£—
sit

well, then (26) follows. -



4. Additional estimates. The radial case.

We now restrict our attention to the radial case Q ={ Ix | < R"}. We will work in two
dimensions for the reason of notational simplicity only - our results can be immediately
extended to any dimension. All functions from now on will be assumed radially symmetric. Then
the phase-field model (6) takes the following form:

u:: = uf_r+lrui—izf(u£) +—i—g(u£) At, (rnt) e Qp @7
E
€ €
u (£0) = u (tR) =0 (28)
foru®( rt):
€
25 25— 2+ 205(0 +2-£”—(]zﬂ2— 1)=0, (nheQ (29)
2z (t0) = Z.(tR) = 0 (30)

il

for z8 (r, t). Here Qr [0, R] x [0, T] . For now we will suppose in addition to (14) that:

dy () hasa finite number N of zeroes r (0),i=1,..,N in (0, R), (31.2)
zﬁ(-,O) has N -1 zeroes si(O), i=1,..,N-1in (0O, R), (31.b)
z,s.r(sf(O),O) #0, i=1,.,N-1foranye >0, (3l.0)
E 169 -—)%Pern({(p: 1}) as e—O0. (31.d)

We make these assumptions in order to simplify the presentation. They will be removed later in
Section 7 when collisions between the interfaces will be discussed. Until then we will use the
following definition:

Definition 1. Let a € BV ([0, R]) besuchthat a(r) € {-1,1} a.e. Apointrge (0, R) will
be called an interface provided there exists & >0 such that o (r) =+1 (-1) a.e.forre (rO—B, o

ando(r) =-1 (+1) ae on re (ro,r0+8).Wedenotethesetofthesepointsasl".

Observe that ryis an interface only if it belongs to the support of the Radon measure
IDa.l where Da is a gradient of a in the sense of distributions. Also, when (a) - (d) hold, the set
0{¢(x) =1} consists of N circular interfaces with radii r,(0),i=1,..,N.

Our assumptions lead us to the another series of estimates:

Theorem 7. Assume that (14) holds. Then lz,g_(r, t)| <1 on QTfors > 0.



Proof: From (29) we have that w': = zi satisfies the following problem:

e € 1 £ 1 € 4q ¢ & 2q ¢ £ 2
wt—wrr~;wr+r—-2-w +qu wr+-€—g—w ((w) -1) =0, (32.2)

where g and q' are evaluated at z%/¢. At the same time:

w0, = w(Rt =0, te (0,T), (32.b)
lw®(r, 0y <1, re (O,R). (32.)
Then the proof immediately follows by the maximum principle.
u
Corollary 1. Forall te [0, T] we have Isks(t)l <2,
Proof: From the previous theorem and by (13) we find that:
2 2 2
[a 70 (@@ ren” a+ID2ax | 2[(q /e ax
leat (p] = 2 5 < 2 —<2.
@@ ren ax [@@renax
Q Q
|

Theorem 8. Suppose that we(-,O) has N-1 zeroes in (0, R) foranye >0 . Then we(-, t
hasatmost N- 1 zeroes in (0, R)forallte [0, T)ande>0.

The proof is based on the following lemma:

Lemma 1. Denote as sf (0), i=1,..., N-2 the position oftheith interior zero of w® (-, 0).
Then:

(a) Foreachi=1,..., N-2, there exists a continuous curve sf(t) such that ws(sf(t),t) =0
and we(r, )20 ifre (sf(t), s‘f+ 1 (t)) for all tstf). Here tf') is such that either sf(tg) =0or
si(tg) = Ror s;(tg) = si, (f)-

(b) Suppose that two or more curves intersect at (r, t) = (sg, tg) If the number of the inter-

secting curves is odd , then for t> tg there is a single continuous curve originating at the point of
intersection. If the number of the intersecting curves is even, there exist §, y > O dependent on ¢

such that we(r, t) 20 forall (r,t) e (sg-39, so+6) X (g tg+ 7).
(c) Let sg(t) =0 and si,(t) = R. Then the result of part (a) can be extended for
i=0,.... N-1. Alsoif 7 is such that sf(tf) = 0, then there exist 8, y> O depending on ¢ such that

w¥rt)>0(<0) where(rt)e (O, 8)x(17,tf+y).Thesimilarresz_dtholdsifsf('tf) =R.

10



A more general result for a solution of a parabolic equation was obtained by Angenent in
[10].

Proof of Lemma 1: The proof is based on a maximum principle.
(a) As a solution of (32.a) - (32.c), w¢ is smooth. Then from our assumption on we (-, 0),
we obtain by implicit function theorem that smooth sf (1), i=1,..., N-1 exist for some small

time, say t¢. By the strict maximum principle and the smoothness of w¢, the curves sf must

also remain continuous for i=1,..., N-2 as functions of tafter 1¢. The sign of w® follows by
the strict maximum principle as well. Observe that since w¢ is smooth, then for every

i=1,..., N-2 the curves sf cannot terminate without intersecting either adjacent curve sf or

hitting the boundary r= O or r = R.
(b) Suppose that the even number of curves, for example sf and sf +1 » intersect at

(r,t) = (sg,tg) for some ie {1,..., N}.We have for t =ty that wé(r, t) >0 (<0)on
(57_ 1 (15). S; (1)) U (S} (fg), St, o (5)) and w' (s (£5). tg) = 0. Then if ] > tg is such that
sf_ 1 (t‘;) ¢sf+2(t§) , the strict maximum principle implies that wé (r,t) >0 (<0) for

te (tf), tﬁ) and re ( sf_ 1 (v, sf +9 (t)) . The similar proof works when the odd number of

curves intersect at one point.
(c) Consider, for example, the endpoint r=0. Let t = ‘cFi be such a time that

s€l (‘ci) =0 . Assume t < ‘t§ . Then one can easily check, following e.g. [11], that even though
equation (32.a) has a singularity at r = 0, the strict maximum principle applies inside the para-

bolic region bounded by r = s&i (t) from the right r = sg (t) from the left and t =0 from
below. Then, as in (a), we have that w® ( r, t) is strictly positive (negative) for r e (sg(t), si (t) )
if w®(r, 0) is strictly positive (negative) for re (sg (0), s'; (0)). After the time 1%, we can apply an

analysis similar to the one in part (b) to show that the curve sf disappears when it crosses the

boundary r =0 and no additional curves are created. The same results hold for r=R.

Proof of Theorem 8 10: Follows immediately from the previous lemma.
|

5. Asymptotic behavior of the Lagrange multiplier

We will extensively use the following estimates, due to Stoth [12], that are obtained by:
(a) Multiplying the equation (27) by eruﬁ and integrating in r by parts from y to y; where y

11



and y;€ [O,R]:

Y

3 j uiuirdr— [il—er[(q')z((zi)z— I)J:H
y y

Y

Y
o [[@? @D+ n]ar (33)
y
Y
-lyph( W) ~yh e @) - [ R (m)dr| 2% = 0.
y

b). Differentiating the equation (27) in t, multiplying the result by srui and integrating in
r by parts over [ O, R}:

R
14 £ 2
—ia(sj(ut) rdr}
0
R i IR , (34)
= ._e“V uﬂ rdr- Ej () -ertg’(uf)] (ui) rdr.
0 0

Remark 1. Since “z%(x, t)=2z%(r (x), t)"and z ¢ (x, t) is smooth in Qx [0, T] as a solu-

rr r

, are bounded in Q. for every € > 0.

Remark 2. Multiplying (19) by €* for any a > 0, using (17) and passing, if necessary, to a
subsequence in ¢, we find that

R
£1+°‘j (uﬁ)zrdr - 0 aetel0,T]. (33)
o

Remark 3. After multiplying estimate (34) by 2¢2, integrating it over [t, t,] for any
t. t, € [0, T] and using (17), (19) and Corollary 1 we get:
R
&2 (& ?rdriy < C[ES(t) - ES(h) ). (36)
o
where C is a constant independent of .

Remark 4. Now multiply the estimate (33) by €. Then the first term can be bounded by

12



1 1
Yi R R . 2 R 0
g2 I uﬁu;:rd <eg? Juﬁuﬁrdrl < [J'e(uf.) rdr] [J&:?'(ui) rdr]
Yy 0 0 0

@37

1
1R 2
<M? [ 53(uf)2rdr] l0ae te [0,T].
0

The third term in (33) when multiplied by &, converges to zero by (17). Moreover, if the constant
in (8) is not equal to zero, then for each t € [0, T] we can choose y and y; € (0, R) arbi-
trarily close to each other, such that , for example u®(y, t) = -land uf(y;, t) — +1 (If the
constant in (8) is zero then by (20) we can find 1 > O such that there exist yand y, € (0, R)
with the same properties as above for t < 1.) Choosing y and y; to be the limits of integration in

(33), one can easily see that the coefficient of €éA* approaches a nonzero constant as ¢ — O while
the term

Y
1 2, , €2
sTL@2zH -] ]

converges to zero . This implies that eA* L Oase —> O a.e. t € [0, T).

Theorem 9. eA® | 0 ase — O at the continuity points of E.

Proof: Suppose that t is a continuity point of E. Then according to Remark 2 we can pass
to a subsequence ( independent of t) such that in any small neighborhood of t we can find t;

R
2
for which 83I (ui’) rdr - O att ase 4 0. At the same time by Remark 3 we have:
0

R R
(s""[ ) ’rdr ](t) < {e3j (i rdr ](tl) +C[E*(t)) -EF (1]
0 0

R
. 2
hence lim0 [esj (ui) rdr J(t) <cC [E(t)) - E(t)] . The right-hand side of this expression
£—
0
can be made arbitrarily small by choosing t; close enough to t which proves that the

R
2
lim {53 I (ui) rdr J (t) exists and equal to zero. Then by the same procedure as in
e—-0

0

Remark 4, lim eA8(t) =0 .
€E-0

Theorem 10. lim eA%(s)= 0 at the continuity points of E
£—0
st

Proof: Assume again that tis a continuity point of E. Then following the proof of the pre-
vious theorem and using t as t; and s as t we obtain by Theorem 6 and Theorem 9 that:

13



R
o £ < T 3 £ 2 € oy pE a
Eui)nolt»:x ()| < clim Hs !(ut) rdr J(t) +C, [E%(s) -E (t)]jl = 0.

st st

6. Asymptotic behavior of reaction - diffusion equations. Small
time.

We will start by considering the asymptotic limit of the reaction - diffusion equations for
the short time and then in the next section will investigate the limiting behavior of our model as
time progresses, while allowing for disappearance of the interfaces and their interactions.

a. Asymptotic limit of z°.

By (24), (31.d) and Theorem 4.Theorem 5 we have that:

N
8
5 3 1(0) = gPerg ({0=1}) = E(0) 2E()
(=1

forallt >0, (38)
, € 0 4
= lim E "(t) 2E "~ (t) = < Per, v(-,t) =1
ey (t (1) 3 o({v(, 0 }9)
where r,(0), i=1, ..., N are the positions of the interfaces at t =0. At the same time by Theo-
rem 3:
R
_[|u(r, &y —o(r)|rdr<Ct/?, forall t >0. (39)
(0]

Then, as v and ¢ take the values +1 a.e., we can prove the following simple lemma:

Lemma 2. Assume that fort >0

R
le(r, t) —o(n)|rdr<l
0

where | = min{r1 0); R—rn(O); rH](O)-—rl(O) , 1 <i<N-1} is the smallest distance

between two interfaces or the interface and the boundary at time zero. Then there are at least N
interfaces at time t.

Remark 5. The similar result will hold in R", n > 2 although with different constant.

14



R
Proof of Lemma 2: Let©®:={ae BV(|[O,R]): Ila2-— lldr = 0, o has N - 1 interfaces}.

0
We want to show that for a € ©:
R
jla(r) -o(n|rdr>1L. (40)
0

The proof can be done by using a simple geometric argument. By varying the positions of the
interfaces for a, relative the ones for ¢ and taking into account that|a (r) - ¢ (r)| is equal to O or
2 a.e. on [ 0, R] we find that:

R
inf Jla(r) -o(D|rdr=21>1. 41)
e 60

Suppose now that v (-, t) has N-1 interfaces, then v(-, t) € © and thus satisfies (40). But this
contradicts the assumption of the lemma. Furthermore, it is easy to observe that if © contains
o's with less then N - 1 interfaces, (41) will still hold. Then there are at least N interfaces at
time t.

Denote 1 = I2/C2? with C as in (39), then (39) and the above lemma show that if ¢t < 1, then there
exist at least as many interfaces at time t, as there are at time zero.

Theorem 11. For any t <1 there are exactly N interfaces, O < n ()< .. < rN(t) <R, at the
time t. Furthermore, u® (-, t ) converges to +1 or -1 uniformly on (r (D) +39, Tie1(D- 81, as
€ —> O foreachi=1,..,Nandanyd<O.

Proof: (a) By Lemma 2 we know that there are at least N interfaces. Suppose now that
their number exceeds Nand is N + K. Let ri (1), where 1 <i< N+ K, be a position of the ithinter-

face at time t < 1. Fix i and choose small § > 0. We want to show that for € small enough, u®(-, t)
has a zero inside (r;(t) -8, r;( t) +8). Indeed, if this is not the case, then we can choose a sub-

€
sequence {¢; }; ¢ y such that uJ(-,t) >0(<0)on (r;(t)-8 r;(t)+8) for every jlarge enough.

£
Since uJ(-, t) converges to v(- t) in LY(10, R]) we obtain that v (-, t) > Oa.e.on
(ry(t) -8, r;(t) +38) which contradicts our definition of the interface. Thus, for € > 0 small,

uf( -, t) has at least one zero near each of the N + K interfaces and uﬁ(-, t) has at least N +K-1

zeroes inside ( O, R) by the Rolle’s theorem. This contradicts Theorem 8. Therefore, there are
exactly N interfaces at time t
(b) Fix 8 >0 and t<1. By (18),

j(l-lu‘l)dxssm for any t>0. (42)
Q

By (a) there exists eo>0 small, such that u®(-, t) has a zero inside (r; (t) - 8/2, r;( t) +8/2) for

15



eachi=1,...,Nand e< €y- It is easy to observe that Iusl does not have local minima on an
interval [r;(t), riy; (t)] forevery i=1,..., N. Then for every € <g,the minimum of |u8| on

each of the intervals [r;(t) +8, ry; (t) - 8] occurs at one of the endpoints. Hence if |uf| does
not converge to +1 uniformly on [ r;(t) +8, rjyy (t) - 8] for some i=1, ..., N, then

éim%nf|u€(r, t)l =: a < 1 where either r = r () +38 or r = r/(t) - 8. Therefore,
-

d(1-a)
2

This contradicts (42).

<tim [a-luf)ax
e—)OQ

|
We are now in a position to find the asymptotic limit of z&:

Theorem 12. Lett be as above. Thenz® (-, tg) » d (-, t5) uniformlyase -0 iftye [0,1]
is a continuity point of E. Here d (-, ty) is a signed distance function to the set T’y of interfaces.

Proof: The proof is based on the method in [3] to which we refer the reader for a more
detailed treatment. Let us first make the following definitions:

z. (1, ) = liminf ~ze(r, s). (43)
£-0
st

z.(r, t) = limsup ze(r, s). (44)
e—>0
st

Then z* is an upper semicontinuous and z.is a lower semicontinuous functions on
Q.:=[10,R]x][0, t].Moreover, by Theorem 7, both z*(-, t) and z.(, t) are Lipschitz contin-
uous for all t> 0 with Lipschitz constant L = 1.

(a) Let We C( [0, R]) be such that (2z*-¥) (-, ty) has a maximum at r = ry, where

ro€ (ri(tg) +3, riyy (to) - 8) for some fixed i and & and suppose that ut (+, ty) converges to-1

on this interval. As q’ >0 then 2 (-, ty) < 0 on the same interval if € is sufficiently small; there-
fore z* (-, tg) < O by Theorem 11 and Theorem 3 .

(r-rg)2  (t-ty)?
Let g, (rnt) = ¥(n)+ 2y + 5a
upper semicontinuous on a bounded domain, z* - g, has a global maximum at some

(re ty) € Q; . By the construction of g, and the boundedness of z*we have that

(re. to) € {0, R}x[0,7]U[0, R]x{0, 1) for aand y sufficiently small. Furthermore, even
though this maximum might not be strict, it is attained inside some small region, determined by

the values of o and 7.
If we keep v fixed and let a — O then:

for a > 0, y> O small. Then, as z*is an

16
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(2 =¥) (1. tg) = (Z -Gy (T tg)

. . (r(!.mro)2 (ta_t0)2
< (z _ga)(r(l‘ ta)SZ (Ta, t(l)_\P(ra)- 2 - o .

As (g, t,) is contained in a bounded domain, we can choose a subsequence { o } .y such that

(Tg > t“k) - (1), t)) € Q,. Then immediately ¢, ={ and as
k

Z —W) (1o ty) €2 (ry ,ty ) =¥ (ry » ,

( ) (To to) ( k“k) ( ktuk)
by passing to the limit in o, we obtain:

. *
(z =¥) (1, to)slimsupak_)oz (, g tak)—‘P(rl,to)
* *
<z (rty) —¥ (), t)) (2 -¥) (1, ).

Therefore, r; =ry and since any sequence contains a subsequence convergent to the same limit
(re, tg) > (g tp) as a— 0.

(b) As z* - g, attains its maximum on some small subset A of ., by definition of z* we
know that z® - g, must attain a local maximum (rs , tfl) in some neighborhood of A for suffi-
ciently small £'s. Notice, that passing, if necessary, to a subsequence, (rg, tg) = (re, ty) € A.

Then by (12) we have at (rt, t;) that

€
1 ¢ 1 £ 2u 1 ¢ 2
'&(ta —to)—‘}’"—?+2l +T(‘\Pr+§(ra_r0) -1)<0.

Multiplying this estimate by € and letting € — O we obtain that by Theorem 11 and Theorem 3

o 1 2
2l€1r_r)u(;1f erf- 2(¥,+ 31| -1 SO at (rty).

s—)tOl

Now if we send a to zero, use (a) and Theorem 10, we arrive at 1 - ‘P? (rn, to) <0. On the other
hand, by Theorem 7, if ¥ € C!([0, R]) is such that (z*-¥) (-, ) has a minimum at r = ry then

I—Wf(ro, to)zo. Hence that 2*(-, {y)is a viscosity solution of 1 - IDzI12=0 in(r(t)+

S, 1y (tg) -8) for arbitrary 8 > O (Since z* (-, ¢3) is Lipschitz continuous for
fixed tg.)

(c) As

2 (rtg)2z.(1 tp) 45)

the fact that the interface is located at r;(ty) requires that z°( r;( o) to) =2.(ri (), tp)
since 2" (-, o) and z. (-, ty) are continuous. Then (b) and comparison result for viscosity solu-
tions of the equation 1 - 1Dz12 = 0 imply that z*(-, to)=dl- ty) on{z*<0}. Similarly,

17



z.(-, o) =d(-, tp) on { z. >0} by the uniqueness of a viscosity solution for the problem
IDz1%2-1=00on{z>0),
Zla{z.>0} = 0.

Finally by (45) and the restriction on the growth of 2* (-, ty ), 2. (-, ¢, ) we obtain that
2’ (o) =2.(- tg) =d(, ), that is z¢ (-, ty) = d( -, ty) uniformly.
|

b. Asymptotic limit of E€ [ u®].

Let 1 again be the time until which the initial number of interfaces is preserved. We want to

prove that E is continuous on [ 0, 1) and that E = E° ( See Theorem 4 and remarks before it for
definitions ).

N =

Remark 6. Since by (17) and (19) {e uﬁ} is bounded in L' ([0, R] x [0, T]) for any
e>0
T >0, Fatou’s lemma implies that:

T R 0
liminf sJ‘(ui) rdridt< M,
Py €E—>0 Py

R
2
and thus liminf [ej (u;:) rdr] is bounded for a.e. t € [ O, T']. Denote the set of such t's as A. .
e—>0
0

Then, by the definition of a lower limit, for every t € A there exists a subsequence te, ) }:_ 1
" =

R e \2 R, e 2
such that lim {en J(ut ") rdr] < e . Denote the bound on{e I(ut k) rdr};':= , at
k— oo k k
0 0

time t as a; . Observe that since both A and the set of continuity points of E have a full mea-
sure, so does their intersection.

Lemma 3. Let t € A be a continuity point of E. Then, passing to a subsequence
(e, (t)}:= - we have Tim , olAS (D] s C(M, a,) . where C depends on uniform ine bounds on
k
the energy and its time derivative at a time t (We suppress index ny. for notational simplicity. )

Proof: Multiplying equation (27) by sui and integrating it in r from y to y; we have that:

“ 1 £ 2 £2 Y
e [ ufufdr- [ﬂ(q'(z /)" ((z,) —1)]|
y

Y
1 2 Y,
e[ ad*Eafhad], =o. (46)
y .
y

18
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By the previous theorem we can choose y, y; € (0, R) (depending on t) such that:

Y
1, ¢ 2 g2
(52 (@ /)" (2D —n]ly -0

N

h(ue(yl,t))—mg as £¢—-0.

ht(y, 1) -»;c%

The third term in (46) can be bounded by:

<z

2

Y
2dr _2M
e
y y

and the first by:
Y % l
¢ 2 (2Ma)) 2
[ej (up) rdr] ST.
y

1
U 2

Y
3 J |uﬁu§| dr< 5 [ej (u;:)zrdr]
y

y
Then the proof follows from (46).

n
Lemma 4. Let t be as in Lemma 3. Then on a subsequence {e (t)}:= 1°
k
R 2 2
il—ej'(q'(ze/e)) (1- () )rdr-0 as e-0. 47)

0

Proof: (a) Let r;,i=1,.., N be the positions of the interfaces at time t ( For notational
N

simplicity we omit variable t). For any fixed & >0, denote Cs: = [O,RI\ U [r;-8, r+8].As
{

z%(-, t) - d (-, t) uniformly, we immediately obtain that:

1 ,, & 2 e 2
z—sj(q (z'/¢)) (1-(2) )rdr-»0 as e—0 forany & >0 small
C

d
b). Now along with 3, fix ie {1, ..., N} and integrate (33) in y over [ r; - 8, r; + § ] while
y; = r; + 8. Then:

ri+8 ri+d
S 2 2

3 J' | uﬁuﬁrdrdy+g[(r,+8) (@ () 1) - (Er+8,0)0)]
=% y

ri+% ri+8 r+d (8)2 c

1 , € 2 g2 u, W(u)
-5 | @@ renT @ -nrar- | [e o }drdy

ri—8 ri-8 y

19



q+8 q+8

¢ c ri+8 ¢

- A I (rh(u)ly j— J‘ h(u)dr{dy = O.
ri—8 y

Here the terms admit the following bounds:

1 1
r+d ri+38 ri+d ,r+d 2.,r+8 2
£ € £ 2 e 2
<
) € J ] u,u rdrdy| < J. {e J (u,) rdr) [s J (uy) rdr] dy
r-% y ri-9% y y
1
<28(2May) 2
by Hélder 's inequality, definition of A and (19);
(2) The term

5 2 2
e @@ E a8 1) - E s )]

converges to zero when € — 0 (as in (a));

rt+5 ri+5 (5)2
u
(3) J. I[e 4 +W(u€)}drdy 54TMS by (19);
ri—8 y

2 {
B ry+d red ri+d o
(4) lim |[Af j (rh(ue){ J— I h(ue)dr dy| < =C(M,a,) RS by definition of h( u¢)
e—>0 y 3 t
ry=9% y
and the previous lemma.
Thus:
ri+6
— 1 £ 2 £, 2
. —_ 7 — <
im |5 j8<q (2°/e) (1= (zD )rdr| < CMa.1)8.
r.—

i
For a given § > O similar estimates hold foralli=1, ..., N.
(c) From (a) and (b):

R
lim ij(q'(z‘/e))z(l-(z‘)2)rdr < C(M a,min )3
-0 280 r 1<ISN

for any & > O. Letting 8 — O we deduce that:

R
2 2
lim -l—J'(q'(zs/e)) (1-(z) )rdr=0.
5—40250

Lemma 5. Lettand r;,i=1, ..., N be the same as in the previous lemma. Thenon a subse-

quence {¢ ) we have (suppressing index n; _for notational simplicity):

nk(t)}k=
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N
8
ECf) ()5 Y (0. 48)
t=1
(49)
Proof: Fix § > O small. Then by (15) we have:

R R
G Tl a2 € 2 Trean2 e, 2
Eff1 =< [ @20+ @ )rar< [ @)=z rdr
0 0

rl+8

N
2n , 92| € 2n 2|_¢
+——£— j q) IzArdr+ Z Y q) ‘z,_l rdr|,
[0,RI\C, {=1 r-8
where Cj is as in Lemma 4. Observe that the first and the second integrals on the right-hand

side converge to zero by the previous lemma and the uniform convergence of z&(-, t) —» d( -, t).

Also by Theorem 12, z;: has a constant sign on each of [ r;- 3, r; + 8 ] if € > O is small. Then by
computing the integral in the third term by parts and letting ¢ - O we obtain:

ri+d

. o 2r , 2| € 8n N
lim 2 . I (q) |erdr = —é-z r (1)
=1 ri_s (=1

which together with Theorem 4. implies (48).

Theorem 13. E is continuous on [0, 1) and

N
£, € 8n
E [u](t)—»;t):lr[m (50)
foreveryte [0,7).

Proof: Since for every continuity point ¢t of E in A, we have that E¢[ u®](t) - E(t) on the
N
8n
whole sequence, E(t) = = 2 r,(t) by the previous lemma. By Remark 6, the set of points for
=1
which Lemma 5 holds, is dense in [ O, ). Then, since the positions of the interfaces are contin-
uous in time (see Theorem 3) and since E is monotone, we conclude that E is continuous on

[0,7)and thus E=E%[v]on]0,1).
|

Remark 7. As E is continuous on [ 0, T ) using Theorem 12 we obtain that z® — d locally
uniformly on [0, R]x[0,1).

Theorem 14. If E is continuous on (0,1) then E fFd s E uniformly on compact subsets
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of (0,7) ase—0.

Proof: More generally, suppose that there is a family { Jn) ne y of uniformly bounded
monotone continuous functions on an interval (a, b), converging to a monotone continuous

function f in L ((a,b)).Forall >0 and ne N denote Ag ={t | S —fn(t)l >3} . Then

meas (Ag’) — 0 as n— = for any >0, where meas (A) is a Lebesgue measure of the set A. -

Choose [t;, t,] © (@, b) and suppose that J,, does not converge to f uniformly on (t;, ;). Then

there exists § >0 and a subsequence { n, }ke N such that [t, 6] nAg“;e @ for all ke N . For

n
every ke N select snke [t 6] nAsk then passing yet to another subsequence we have that
snk—> s€ [t,t;] as k— e,

In what follows we will omit index k for notational simplicity. Suppose that { fn Yhe yand
f are monotone decreasing. Since f is continuous on (a, b), there exists h> 0 such that
f(s+h) ~f(s-h)|<d/4. As meas(As/z) — 0, we can find le N such that

S;€ (s- h, s+ h) and there exist Py € (s- h, sp ~nAl _ and Py € (sp s+ h) r\A8 Assume at

8/2 /2°

first that f(sl) _fl(sl) >0 then f(sl) —Szfl(sl) . At the same time:

f(sl) = f(p2) + (f(sl) "f(pQ)) Sf(pz) +8/4 Sfl(pz) +38/4,
then
fy(py) ~8/4 2 f(sp.

- a contradiction since fl is monotone decreasing. If f( sp - fl(sl) <0 then the same procedure
works with p, substituted by p,. The case when { f }, . yand f are monotone increasing can
be handled in a similar manner.

n
Theorem 15. E is locally Lipschitz continuous on (0, 1) .

Proof: As in the proof of (20) (See [6]) we have by Holder's inequality that for any

ty. t2 € [0, T]:
ty ty 1/2 1/2
2 (W(u )
[ ] nExplaxdts| [ [eqy o n) dxat ” )
t. Q Q

1 4

dxdt

1/2
scag—tl)”?(E*:[uel(tl)—EE[ul(tQ)) .

where h° (xt = h(uE (x, t)) and Cis independent of .
At the same time:

t
1l he(x,t)ldxdt>j | R (xty) - R (e tp)|dx.
t, 2
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Then, by Dominated Convergence Theorem, we have for any ¢, t2 € (0,7) thatase—0
1/2 1/2
[ 1 hxtp) - hixtp|axsCip-tp V2 (E (1) -E () .
Q
Here h(x, t) = h(v(x, t)). Since v takes values +1 or -1 a.e.,

2
| hixty) - hix t))| = §| v(x ty) -v(x t))| ae.
Choose compact A€ (0,1). Then as v(x,t) is known explicitly on (O, 1),

N
[ 2] vty —veetplax=2 3 Z ) -2ty
Q (=1
N

4 ,
25 min fl<t>l=21|n<f2)-n<t1)lzcl< E(t;) - E(ty))

for any t;, t2 € A, where C; depends only on A. Therefore for any t,, t2 € A:

1/2
E(t)) - E(t,) <C(ty-t) /2 (E (t) ~E (t)) "/

1/2
Dividing both sides by (E () - E (&)) / , we conclude that E is locally Lipschitz continuous

on (O, 1) with Lipschitz constant depending on the energy bound M and the set A.
n

This result is expected, since each of the interfaces move by its mean curvature and the
limiting energy depends linearly on a position of every interface. Then, if at least one of them

shrinks to zero at a time t, the limiting energy, while remaining continuous, cannot be differen-
tiable at t.

Remark 8. By slightly changing the proof of the previous theorem, one can show that r;
are locally Lipschitz continuous on (0,1) forall i=1, ..., N.

Remark 9. Multiplying (46) by € and choosing y, appropriately we have that for any
[t), ) € (0, 7)
, € 2 g2
(q@(z /)" ((z) -1) >0
uniformly on [0, R] x (), t5].

Remark 10. Choose a sequence { h;, } . y<SR. such that h, » 0 as n— «. Integrating

)
n
equation (46) in t for the appropriate y and y, . using the previous remark and passing if neces-
sary to a subsequence, we obtain that the averages:

t+hn
2
A =2 AE(s)ds (51
0t

converge uniformly to a limit ;‘h for each ne N. Moreover, by Theorem 15, the sequence
n
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{ Ahn } e N I8 locally uniformly bounded on (0, 7).

c. Asymptotic behavior of phase - field equations.

Our next goal is to determine the dynamics of the moving interfaces on an interval [ O, 1 ).
We will use the following strategy. First, as in [3], we are going to show that the distance func-
tion d satisfies certain differential inequalities in a viscosity sense. Then using these inequalities
we will determine that the interface position functions solve a system of the ODE'’s (again in a
viscosity sense). Finally, we will prove that given the initial positions of interfaces the unique-
ness of viscosity solution to latter system of ODE'’s implies that r;, i = 1,..., N is also a classical
solution of the same system. :

We can prove the following refinement of Remark 10:

Lemma 6. Let li be as in (51) . Then there exist A\pe C([0,1-v]) and
Ae C([O, t- ) such that:

a. )‘)Eh_’)‘h uniformlyon|[0,1-y]lase - 0;

b. lh—ﬁ» uniformlyon[0,1-y]las h— 0.

Moreover,

Y
(=1
Here N is the number of interfaces and o N Sa function depending on the geometry of the prob-

lem:

V(R t)-v(0, )
2

ay(t) = (52)

Proof: Multiply the equation (27) by erl uﬂ and integrate over [ O, R] by parts. Then for
€ > 0 small we obtain:

R R R R
Jluf,l u::rdr— -;Iluf,l uf_dr+ %jW ! (ue)luﬂ rdr—lej r (U luﬁl rdr = O. (53)
0 0 0 0

Since z¢ — d uniformly on [ 0, R]x [ 0, T - v] and by our condition on the number of zeroes of zi,
we immediately obtain that zeroes of z;: are uniformly on a distance of order 1 away from the
interfaces if € >0 is small enough. It is also easy to observe that the coefficient of At
R N
€. _ s, E | E _ 1 € 4
B: = - Jh (u )|qudr— 2“!2|Dh(u )ldx—> stzlrt
0 =

uniformly as € >0 since z® — d uniformly on [ 0, R]x[ 0,1 - y]. As r;are uniformly away from
zeroon [0,7-y]fori=1, ..., N, then for sufficiently small e >0 and h >0 we can divide (53) by
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B¢ and integrate the result over ( t, t+h) to obtain

t+h R t+h rg+8 9
- ¢ j B;l(s)ﬂuﬂuirdrds + j Bgl(s) Z { J (%(uf,) +%W(u£))dr}
t 0 t te A, Lr-3 (54)
ri+ 8 0 t+h
+ Y { j (%(uﬁ) +1W(ug))dr} ds+o(1) = [ A%(s)ds
te A r-8 ‘ t

for any small § > 0, where o( 1 ) denotes the terms uniformly convergent to zeroon [ O, t- Y] as
€ — O while A, is a set of indices of the interfaces with d, >0 and A _ is a set of indices of the

interfaces with d, < 0. Note that:

t+h R
1 € 2 gl. 2
5= | [@E e a-|2]) rdrds»0 ase—0
t 0
uniformly on [ O, t - y). From (8) and since g’ = 1 - g2 = g(g) we have:
R R 1R 0
-d € - e, e _1r & 3
0= di jh(u yrdr J'g(u ) u rdr e.[(q (z'/¢)) z/rdr, (55)
0 o 0

then by (55) and Hoélder’s inequality:

t+h R t+h R
€ j Bgl(s)'”uﬂuirdrds = % j B;l(S)J(q'(zsle))2|zf_|z§rdrds
t t+h ° R t °

t | B @@ o’ a-|ehzrards
t )

. 1 1

t+h R 2(1—'2::_')2 t+h R o 2
<sup B;l(s) J' I(q’(ze/e)) ———— rdrds € J I(u;:) rdrds| —0
se [t t+h] t o € t o

as € — O uniformly on [ O, t - y] by the remark above. It is easy to show that the remaining term
in (54) converges uniformly to:

t+h
j —-—————aN(S) ds
N

LY (s
=1
where a; defined in (52) is either +1, -1 or O depending on the relative number of the interfaces
of A, and A_ types. Thus for any h > 0 small:
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oy ()
uniformly on [ O, t-y] as e —» 0. Now as N is continuous on a compact set [ O, t- 7],

N
Z rl(')
=1

{

lh—->

N
PRAQ!
t=1
uniformlyon [0, t-y]las h— 0.

|
Theorem 16. Assume that¢e C* ([0, R]x[0,1)) is such that d - ¢ has a maximum at

(ro. %) e (O, R)x (0, t)and d(ry, ty) <O. Then:
¢t—A¢+AsO at (1o, ty). (56)

where A( t) is as in Lemma 6.

Remark 11. Without loss of generality we can assume that the maximum of d - ¢ is strict.

(r-r?  (t-ty)?
Indeed, this can be achieved by replacing ¢ with ¢ ap = o + B and choosing o and

B small enough.

Proof: Fix y> 0 and let y > h > 0. Suppose Q. = [0, R] x [0, T -y]. Denote:
t+h

1
z%:,—1 J zs(x,s)ds
t
lt+h
dh=-’-1 j d(x, s)ds
t
lt+h
op=7 | xs)ds
t

As z® — d uniformly on [ O, R] x [ O, t) we have that:
(@ zf1 — dj, uniformly as ¢ — O on Q.
a! al. 9 F) _
(b) d}, — d, S;fph —);_)7@ a—tq)h—a §—t¢ for i=1, 2, uniformly on as h— 0 onQ, since both d
and ¢ together with its derivatives are continuous on compact [0, R] x [0, t-y+h].
As dj, - ¢}, converges to d — ¢ uniformly for h > O small, dj, - ¢, achieves its local maximum
in a small neighborhood Ap:=[rg-ap rg+apl x|ty -bp to+by ] of (g, §p) such that

ap, by l 0ash-o. Similarly as zﬁl - d,, uniformly, for ¢ > 0 small zi— o has a maximum in a
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small neighborhood Ay =[7g-aep To + aep ] X [ tg - bep, to +bep ] of (g, to) and such that
a4 ap, b \ by, as € — 0. Observe also that if hand € are given, |Ag;| can be made arbitrarily

small by choosing o and B small enough, where a and B are as in Remark 11. This implies that
we can find h;, €, > 0 such that forany ¢; >¢ >0and h; >h >0,

2f(rt)<0 if (rt)elrg-agn o+ aenlXx[tg-ben tog+bep+ R 1.
By integrating equation (12) in t we obtain:

2t+h 9

3 € €

zht-Azh-q»’—1 _" A (s)ds+£—h
t

JEman®-nas-o 6

t+h €
J' e(z (r,s)
u
€
t

on Q,. Then by definition of u® and Theorem 7, the last integral is positive in A¢p. Fix any

(Teh ten) € Agpwhere zfl—th has a local maximum, then by (57) we have:

13
Op A0+ lhsO at (rgp LR

where li(t) is as in (51). By Lemma 6, l;—a }‘h uniformly as £ - O and, in turn, xh — A uni-
formly as h— 0. Let € - 0. Then passing to a subsequence, we obtain that
(Teh ten) = (1, ty) € Ap and that:
O~ A ¢h+)‘h50 at (rp, tp).
Letting now h — O and repeating the above procedure for h we obtain:

¢,~A0+A<0 at (ry ty). (58)
]

Suppose now that e C* ([0, R]x [0, 1)) is such that d - ¢ has a maximum at
(r:( %), to) and i ¥ interface is such that d, (5. r;(ty)) >0 . Since in the neighborhood of
(r; (&), to) the distance function d( r, t)=r-r;( t) and r;is continuous on [ 0, T - Y] we have that
for d > O small:

05:=¢(r+3,t)+8e C*([O0,R]x[0,7))

is such that d - ¢; has a maximum at (r; ( y) - 8, ty). Then by (56):
05— A05+ASO at (r(tg) -8y,

and thus:
¢t—A ¢+A<0 at (ri(ty), ty) .

Therefore, d is a viscosity subsolution of:

z,-Az+A =0 at (r/(ty),ty). 59)

Similarly, we can show that d is also a viscosity supersolution and thus a viscosity solution of
(59) at (ry(ty), t) for any tye [0,7-7]. Since d is known explicitly for any te [ 0, 1) and con-
structing a test function in a way , similar to that of Theorem 12, we find that r; is a viscosity
solution of:
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fi+ = - v— =0 (60)

The same procedure for the interfaces with d{ t, r; ( ty) ) < O shows that r; satisfies:
.01 @
Ht =+ = 0 61)

{
Z’t

=1

in a viscosity sense. Given the initial locations of the interfaces, the system of ODE's (60) and
(61) has a unique classical solution. Then due to the uniqueness of viscosity solution for the

same system, T = (ry, ...,y s a classical solution of (60-61) on [ 0,7 -y ] and, since v is arbi-

trary, on [ O, 7). The mass preservation property of the limiting flow follows directly from (60)
and (61) or by considering an asymptotic limit of (8).

Any subsequence of our original sequence in & contains a subsequence such that u® con-

verges in L ([O,R] x[0,1)) toalimit v (that may, in general, depend on the subsequence) sat-
isfying:

(a) v(xxt) e {-1,1} a.e.on [O,R] x[0,1),

(b) lim, , qu(xt) = ¢(x) a. e.on [O,R],

with interfaces moving according to (60-61). However, since a function with these properties is
unique in L1 ([0, R] x[0,7)), then v is the same for all subsequences. Therefore, v is an

asymptotic limit of u® on the whole sequence.

Observe that if Nis even, then A is zero and therefore interfaces simply move by their mean
curvature and our solution exists at least up to the time when the innermost interface shrinks
to zero. No interfaces can collide with each other in this case. However, latter may occur if N is
odd. We consider these situations in the next section.

7. Asymptotic behavior of reaction-diffusion equations.

Interactions.

Observe first, that if two interfaces of the opposite sign collide and so called “ghost” inter-
face is formed, then the assumptions (31) become useless. Therefore, in order to continue our
analysis, we have to generalize the results of Section 6 to a wider class of initial data.

Suppose that (31) is no longer valid. First, we have to prove the analog of Theorem 12 in a
new setting. This theorem was demonstrated using the facts that the interfaces, defined in Sec-

tion 4, move continuously in time and that ufis uniformly negative (correspondingly, positive)
between the interfaces. We want to extend this result to the “ghost” interfaces (See Definition 2.)
Let:

Ng = int cl{re (O,R): u (1, 1) »>-1},
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(62)
P; = int cl{re (O,R): u (rt) »+1},

where int A is an interior of the set A and cl A is its closure. N; and P; are clearly non-empty

for all t > O (except when v(r,0) = +1 a.eor v(r,0) =-1 a.e. re (O,R)). Foreachd>0
denote:

N?:=(re Nt:ﬁ_n ue(s,t)Z— 8},
€—>0
S—-T

5 _ (63)
P, :={re P, : lim us(s, ) £ +9%}).
eE—>0
ST
Remark 12. Fix t; >0and § >0. Since the energy is bounded, passing, if necessary, to a

subsequence, one can assume that there are finitely many points in N?o N[y, R] and in

)
Ptom [ro . R] foranyrg € (O,R).

We are now in a position to prove the following technical lemma that is somewhat similar
to the clearing - out lemma ( See [13], [14], [15] or [16] ):

Lemma 7. Let T > 0 be given. Then there existad >0 and a setIlg c [ O, T] containing the
finitely many points such that the following holds:

Let to€ [O,TJ\Hsand AcNt \N? be an open set where
0 0

Nf is as in Remark 12. Then
0
there exists an a. (A , to) > 0 for which

NMAlry RInA=0 (64)

Jorany te [ to. tg+a(A,ty) ) andany rp € (O, R). ThesameresultholdsforPf.

Proof: Let T > O be given. Fix 6 > 0. Since the “limiting energy” E is a bounded, monotone
decreasing function of t, there are at most finitely many points te [0, T] such that

E(t ) - E(t+) 26/2. Denote the set of the such points as I1;. Then [0, T] \ I5 consists of the
finitely many intervals on which the variation of E does not exceed 6/2:

n

- ]
E(t,_,)-E(t; )2 5 for i=1...n,

+ - -
where E(tt") = lim+E(t) . Then, by choosing [t;_ 1, ] t_q > ty fori=1, ..., n, we have for
t->t,
{

¢ sufficiently small that the variation of E*[uf] on each of these intervals does not exceed 6.
Applying the procedure of Theorem 9, we find that for every point tye [0, T)\ I 5 one can
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choose Y(t,) >0 such that

1
leA® (0] < cme2 +o(e) (65)
uniformly on (to, t0+'y(to)) . Fix now o€ [0, TI\ Hs and gg > 0. Denote

) -
O . -cmeZ+oc,) . (66)

Let A be an open set such that Ac Nto\ Nfo and suppose for simplicity that A lies between two

consecutive points in Nfo (which is possible by Remark 12.) Suppose that for every
te (ty, to+7(ty)):

N AZ #0. ©67)
This implies that for every te (tg to+7(ty)) there exists an ry e A and a subsequence

{e

jk(t) e N SUch that

lim u(r,,t) 2 ~5. (68)
E—>0
Fix te (o, ty+7(ty)). We can choose an open set B such that Bc Nto\ Nfo and AcB. By
our assumption, u® (1, ty) <- & uniformly on B for ¢ >0 small. Let dB = {oB, aB+} (assuming

again that B lies entirely between two consecutive points in N?O). Fix ¢ > 0 small. Suppose that

ue(r, ty) <— & on dBx (0, t) . Then the remark above and (68) imply that for some 1€ (0, ?)

there exists an interior maximum on Bx (0, 1] at (r, t) with u® (1, T) £- O. At the point of the
maximum we must have (following the usual proof of the maximum principle):

O<- §+SSEXE(1) -ue(r ,T) <0
- contradiction. Thus for some 1. € (0, T) we have that, for example, uf (aB+, T, )= — 8 and

there must exist a continuous curve r¢ ( t) such that us(re(t), t)=— dfor te [1.,t] and

r e = aB+, () = r,. In other words, forany re (r,, aB+) there exists te"e [ty t] such

that u® (r,t,") =— 8. Consequently,

t
[|nt (r 9)|dsz | ) - R ()] = K (tg) - hi-B). (69)

%)
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Also, following the proof of Theorem 3, we obtain the following estimate:

t

2 1
[ [lnces)|dsax<can y-t2. (70)
Q ¢
1
Then:
aB* Bt ¢ 1
[ (Wt -neondss [ [|ngees)|dsdescam t-t4)2,
Ty n b
g3 ’
and as h® = (u3) -u® withu® > - 1a.e. onB:
2 83 + + 2 52 + E
(§—B+§)x(aB -0A )s(§—8+§—)x (0B —rt)sC(M)(t—t0)2. €2))

1
As g5 in (66) can be chosen arbitrarily small, § = 2C(M) 82 . Similarly, 6 can be chosen initially
so small, that § < 1. Then the L.H.S. in (71) is strictly positive while the R.H.S. can be made arbi-
trarily small by choosing t sufficiently close to t;. This is a contradiction. Thus there exists
(A , ty) >0 such that Nfr\/_& =@ forany te [ty ty+0(A,ty) ). The generalization to (64)
is obvious.

From now on we will assume that 6 is as in the previous lemma.

Definition 2. Fix t> 0. Then every point ry € Nf v Pf will be called a “ghost” interface at the

time t. We will denote the set Nf U] Pf of the “ghost” interfaces as T t’.

The geometrical interpretation of this definition is shown on Fig. 1. In what follows we will refer
to the interfaces from I' ¢ (See Def. 1) as “regular” interfaces. Observe that our definitions of the

“ghost” and “regular” interfaces does not use any information about their inner structure. In
particular, each may have multiplicity higher than one.

Remark 13. Let [, ] c [O, T} \1'18 and choose an open set Ac [0, R] x [, 6] such

that for every se (Y, t2] , the set Agt = An {t= s} ch\Ni and alist(As , Ni) > a for some
a> 0 (Here dist (A, B) is a distance between two sets A , Bc [0, R].) Then following the proof of
Lemma 7, one can see that o (4,, 1) is uniformly bounded from below on [}, &) . The same

result holds for P?.
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A v(,t)

1
0

-1

(b)
v(-,t)
1
o

-1

(a)

Figure 1: The “ghost” interfaces: (a) rye Nf » (b) rye Pf
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The next three corollaries are immediate consequences of Lemma 7.

Corollary 1. The position functions of the “ghost” interfaces are continuous on their respective
intervals of existence, except maybe the points _from the set I1 5

Corollary 2. The “ghost” interfaces can nucleate only at exceptional times te I1 5

Corollary 3. For each te [0, T]\II 5 and each closed set Ac N,\ Nf there exists an h>0

such that for € >0 small ut is uniformly negative on Ax [t, t+ h] . The same result holds for Pf.

Then repeating the proof of Theorem 12 we obtain:

Theorem 17. Fix rye (O, R). Then zs(- s tg) = d(, ty) uniformly on [rq, R] if
toe [0, TINDI § is a continuity point of E. Here d (- , t;) is a signed distance function to the set
(I‘tul“t’) N [ro, R].

Suppose now that a time t; e [0, T] \II; there are finitely many interfaces of either kind -
“regular” or “ghost” - and that they are all located away from zero. In a view of Theorem 8 this
will hold, for example, if it is assumed that ¢$ have uniformly bounded in € number of zeroes in

[0, R] . Of course, the “ghost” interfaces depend, in general, on a subsequence chosen in
Lemma 7. We would like to show first, that the evolution of every “regular” interface depends in
a nonlocal fashion on its mean curvatures. By our assumption on ¢, there exists a number

a(ty) such that the positions of all interfaces are continuous functions ry(-) on

[ty tg+a(ty)] fori=1, ..., N+ K Here Nis a number of the “regular” interfaces and K is a

number of the “ghost” interfaces. Furthermore, since there are finitely many interfaces ( the set
Ftu I‘t' is finite ) for every te [ty » to+a(ty)] then ry can be set equal to zero in Theorem 17.

Then, with minor changes, the results of Section 6b still hold on (ty to+a(ty)) . In particular,

Remark 9 enables us to describe an inner structure of every interface on ( ty to+ @ (tg)) . Geo-

metrically, each of the interfaces consists of finitely many jumps between + 1 and - 1 clustered
at a given point. On a scale ~ ¢ these jumps are located infinitely far away from each other. The

number of jumps constitute a multiplicity of the interface. If the total variation of v across the
interface is + 1 or — 1 we have a “regular” interface while, if it is equal to zero, we obtain a
“ghost” interface.
Recall that for any h>0
t+h

1
dp =+ [ drs)as.
t

Then as d is known explicitly we have for h small enough, that near the “regular” interfaces
either
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t+h

dy(r,t) = r—%l I ri(s)yds, if d_(r (), t) >0 for te (ty , tg+o(ty) =7 (72)
t
or
t+h
dy(rt) = —rl-l I ri(s)yds-r, if d.(r (), <0 for te (ty Lo+ a(ty) -7, (73)

t
for some small ye (0,0(ty)) and i=1, ..., N. Denote
) t+h
Tr(D: = h j ri(s) ds.
t
Following the proof of Theorem 16 we obtain

Theorem 18. Choose { h, }, . i for which the conclusion of Remark 10 holds. For

ve (0,0 (t )) small, denoteQa = [0, R] x (to ,to+a(t0) -7v) . Assume that ¢ € c” (Qa) is
such that dhn—¢ has a maximum at (ro to) and dhn(ro, to) <O. Ther:

where Ah is as in Remark 10.
n

Finally, by repeating the arguments following Theorem 17, we conclude that for every h small
(omitting the index nin h_ ):

(a) If d.(r,(t),t) >0 for te (ty » to+ o (ty) — V), then ry, is a viscosity solution of

. 1
rth+—’—1—lh=0 on (t,,ty+a(ty -, 74)
r
{
(b) If d.(r(t,t <0 for te (ty » tg+a(ty) - V). then ry, is a viscosity solution of

1
4
where Ahe C(l[ty tg+a(ty)]). Recall that, by Remark 10, the set { Ah }ne n is bounded in
C( [ty +% to+a(ty) -v]) for ye (O, a(ty)) small enough.

Since the positions of all interfaces are known at the time t = ¢, then so are the initial
conditions on ry, for every i=1, ..., N. Then, given )‘h‘ the equations (74) and (75) have the
unique classical and, therefore, viscosity solutions on [ ¢, , ty+ & (ty) —v) . We assume for sim-
plicity that no “ghost” interface “opens up” on (t, , t;+a(t,) — ). creating one or more “regu-
lar” interfaces. If this had happened for some time tye (ty, to+a(ty —v), we would have two
different systems ( 74 - 75 ) on two consecutive time intervals, (¢, ,t;) and

(t s tog+a(ty) -v). Then both systems can be solved separately and their solutions “glued”

Fipt = +A, = 0 on (t . tg+a(ty) 1), (75)
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together at t = t,.
Now we can prove the following

Theorem 19. Fix e (0, a(ty)) . There exists e L™ ([ty +%, to+a(ty) —v]) suchthaton
[ty +% tg+a(ty) - Y] the function riisa weak ( in a sense of distributions ) solution of

r'i+—r1—-k =0 ifd.(r(t),t>0, | (76)

4

frZ+h =0 #d(r(D,0 >0, where (=1, ... N. (7)
i

Moreover, A satisfies

t, N
j(z ri(s))l(s)ds= ay(ty=t)). forany ty,tye [ty +Y, tg+a(ty) -7 (78)
t, i=1

where oy isas in(51).

Proof: Let A: = [ty +% ty+a(ty) —7]1. Since “ }‘h ” < C for every ne N, thenon a
LT (A)
subsequence h— O (omitting the index n in h):
Xhi\ A weakly - * in L™ (A) for some A e L (A).
We also know that when h— 0,
rin— ; uniformly on A,
by definition of r, fori=1,..,N. Then, as r, are uniformly bounded away from zero on A for

every i=1,..,N,

—1——)% uniformly on A fori=1, ..., N.

Tih Ty
Hence, by (77) and (78)

Fip— p; weakly - « in L™ (A) for some pe L™ (A).

At the same time, since riis locally Lipschitz on A, the function riew 1, (A) for every

i= 1, ..., N. Therefore, p (= riforevery i=1, ..., N, where 7, is the derivative of r; in the sense
of distributions. Passing to a limit in the equations (77) and (78), we find that r, is a weak solu-
tion of

.1
n+a_1=o if d_(r (1), >0,
and

.1
rl.+—r-i+l =0 ifdr(ri(t), t) >0,
wherei=1,...,N.
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Multiplying the equations (77) by - r; and the equations (78) by r, for their respective i’s
and adding the resulting equations together, we have for every h>0 that

N
- z Tinfiht Z "th':th"' (z rth)}‘h = Opn
d>o0 d. <0 =1
where o N is as in (51). Integrating this expression over [, 6] for any t.l,eA and using the

mass preservation property of the limiting flow:

J'v(t,x)dx: Iv(t,O)dxforall t>0,
0 o)

we conclude that for every h>0 and any t, HEeA:

LY t
J(Z r,h)xhclt = [apdt = ay(ty- 1),

t, t=1 t
since oy is constant on A. Thenas h—»0

b N
j (2 ri)ldt = oy (- t;) forany t;,t, € A.
t. (=1
1
|
Remark 14. For the “ghost” interfaces our procedure would only identify the bounds on

the positions of every “ghost” interface at any time te A (Assuming, of course, that their posi-
tion at the time ¢ is known.)

In order to identify A explicitly one has to use the procedure of Lemma 6. Unfortunately, in
general, this requires to identify an asymptotic limit of the quantity:

R R
! £ W ) [ufrar = £ a(#/0) (@ (o) °|rar 19)

This can be achieved if the rate of the uniform convergence of 2% toits asymptotic limit is of the
order . The task of proving this fact is rather difficult and is beyond the scope of this paper.
However, in some special cases the necessity of estimating (79) can be avoided. We return now
to the problem from the previous section.

Recall that 1 is the first time when two “regular” interfaces collide or one “regular” inter-

face shrinks to zero. Assume the former and suppose that 1€ [0, T]\I1 5 Suppose without loss
of generality that o N> 0 and that the “ghost” interface, appearing as a resuit of the collision,

does not disappear instantly. Then, by our assumption on 1, there exists a number 1 1 such that

every interface is continuous on [, 1,]. By Theorem 19 for any t. e [t ‘tl] :

2
lim
1—-0

) rJAdt: ay(tp=ty). (80)

N-
(=1

N-2 b
( igl rlh)lhdt= tj’ (

ty
t
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where N is a number of the “regular” interfaces at the time t = O.
On the other hand we can estimate }‘h using Lemma 6 and the fact that the “bad” term in (79)

is positive. Then

o h N-2 -1

t+
- (p(5)+ Y r,(s)) ds, 81)
t (=1

M

where r,(t) is a position of the ith “regular” interface for i=1, ..., Nand p(t) is a position of
the “ghost” interface. Substituting (81) to the L.H.S. of (80), using the fact that r,(t) and p(?)
are bounded away from zero on [1,1,] for i=1, ..., Nand letting h— O we find that

2 N-2 N-2 -1

aN(tQ— )< J ( 2 rl(s))(p(s) + 2 r‘(s)) dt< aN(tQ— )

t, t=1 t=1
- contradiction. Therefore, there is no “ghost” interface past the time t = 1. Moreover, as
te [0, TI\II s then by the maximum principle for zs. “extra” zeroes of zﬁ will disappear as well.
Hence the procedure and the conclusions of Section 6¢ apply. This analysis can be continued

until we reach the time ¢ when two “regular” interfaces collide and i e I1g or until one “regular”

interface shrinks to zero.

We can analyze the case when at t = ¢t the set T, " = @ and one of the “regular” inter-
0

faces shrinks to zero in a similar manner after we notice that the limiting energy remains con-
tinuous at t,.

We sumrmarize this discussion in the following
Theorem 20. Suppose that 120 is such that:

(@) ay (1) >0,
S
b) P, = O,
(©) te [0, TI\ 1,
(d) The set T Y T 1' is finite ( There are finitely many “ghost” and “regular” interfaces at the
time 1 ) and the multiplicity of every interface does not exceed one. Then there exists 1 >t such
that the set of the “ghost” interfaces I“t’ = @ for every te (1,%) except, maybe, finitely many

points. The “regular” interfaces move by (60) and (61) on(1,1) . The same conclusions hold if (a)
and (b) are substituted by:
(a;) oy (D) <0,

(b)) N= 2.

Finally we conjecture that, in general, on time intervals where the limiting energy is con-

tinuous:
(i) The “ghost” interfaces do not exist (except, maybe, the origin),
( ii ) The multiplicity of the “regular” interfaces does not exceed one.
However to prove that, at least in the framework of our method, one has to show that the limit

of (79) as £ = 0 is equal to zero.
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