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GENERALIZED GINZBURG-LANDAU AND CAHN-HILLIARD

EQUATIONS BASED ON A MICROFORCE BALANCE

Morton E. Gurtin
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

A unified framework for equations of Ginzburg-Landau and Cahn-Hilliard type
is developed using, as a basis, a balance law for microforces in conjunction with
constitutive equations consistent with a mechanical version of the second law.

1. INTRODUCTION

The Ginzburg-Landau equation1

^p- = ocAp - f'(p) (A=Laplacian) (1.1)

and the Cahn-Hilliard equation2

p# = *A [ f (p) - otAp] (1.2)

(oc>0, p>0, tf>0) are central to materials science, as they characterize important
qualitative features of two-phase systems. Each of these equations governs the
evolution of an order-parameter3 p-p(x,t): the Ginzburg-Landau equation de-
scribes the ordering of atoms within unit cells in a lattice, while the Cahn-
Hilliard equation, a conservation law, describes the transport of atoms between
unit cells.

Both the Ginzburg-Landau and Cahn-Hilliard equations are based on a free
energy

f(p) • £

equation, which is attributed by Chan {lj to Landau and Khalatnikov [2], is also
referred to as the Allen-Cahn equation (33.
2Cahn [41.
3The term order-parameter is used to denote a field whose values describe the phase of
the system under consideration.



with f(p), the "coarse-grain" free energy, a double-well potential whose wells de-
fine the phases, and both equations lead to a diffuse phase-interface within
which p undergoes large variations.

The standard derivation of the Ginzburg-Landau equation begins with the
constitutive equation (1.3) for the free energy and is based on considering the
total free energy

$(p) = J$(p,Vp)dv (1.4)
B

of the region of space B occupied by the material. The formal variation 63Kp)
with respect to fields p that vanish on dB is given by

65(p) « J[f(p)5p + ocVp-6Vp]dv = J[f'(p) - ocAp]6pdv (1.5)

B B

and yields the expression

6$/6p = f'(p) - ocAp (1.6)

for the variational derivative (the coefficient of 6p). Equilibrium is characterized
by the vanishing of 6$/6p; the hypothesis underlying the standard derivation is
that relaxation toward equilibrium be governed by a parameter p > 0 through a
relation

^p' - -8$/6p; (1.7)

a consequence of (1.6) and (1.7) is the Ginzburg-Landau equation.
The Cahn-Hilliard equation is derived analogously. The starting point is the

mass balance

p* = -d ivh (1.8)

with the mass flux h related to the chemical potential u through the constitu-
tive equation

(1.9)

Again the free energy is presumed to have the form (1.3), which, because of the



presence of density gradients, is incompatible with the standard definition of [i
as the partial derivative i|> with respect to p; instead u is defined as the
variational derivative

U = 6$/6p; (1.10)

this yields

p# = *A[6£/6p], (1.11)

v/hich is the Cahn-Hilliard equation.
Although these derivations of the Ginzburg-Landau and Cahn-Hilliard equa-

tions are simple, elegant, and physically sound, I have three objections:
• the derivations limit the manner in which rate terms enter the equations;
• the derivations require a-priori specification of the constitutive equations;
• it is not clear how these derivations are to be generalized in the presence of

processes such as deformation and heat transfer.4

The major advances in nonlinear continuum mechanics over the past thirty
years are based on the separation of basic balance laws (such as those for mass
and force), which are general and hold for large classes of materials, from con-
stitutive equations (such as those for elastic solids and viscous fluids), which
delineate specific classes of material behavior. In the derivations presented above
there is no such separation, and it is not clear whether or not there is an un-
derlying balance law that can form a basis for more general theories.

My view is that while derivations of the form (1.3)-(1.11) are useful and im-
portant, they should not be regarded as basic, but rather as precursors of more
complete theories. While variational derivations often point the way toward a
correct statement of basic laws, to me such derivations obscure the fundamen-
tal nature of balance laws in any general framework that includes dissipation.

What distinguishes the development presented here from other macroscopic
theories of order-parameters is: (i) the separation of balance laws from constitu-
tive equations; and (ii) the introduction of a new balance law for microforces.
Here I continue an approach, begun in collaboration with Fried [8,9], which is
based on the belief that fundamental physical laws involving energy should
account for the v/orking associated with each operative kinematical process. In
the Ginzburg-Landau and Cahn-Hilliard theories the kinematics is that associ-
4 In their discussions of the phase-Held theory of solidification, Penrose and Fife [5] and
Schofield and Oxtoby [6] replace balance of energy, a physical law that has been a basis for
continuum physics for over a century, with a mixed variational relation of the form
(1.11) involving internal energy and entropy. See also Hohenberg and Halperin [7].



ated with the order-parameter p, and it seems plausible that there should be
"microforces" whose working accompanies changes in p. Fried and I characterize
this working by terms of the form (force) (pO, so that (in this context) micro-
forces are scalar rather than vector quantities. Precisely, we assume that these
forces are described by a (vector) stress £, which characterizes forces trans-
mitted across surfaces, and a (scalar) body force TT that represents internal
forces distributed over the volume of the material. The basic hypothesis is the
microforce balance

Jt-nda + Jrcdv - 0 (1.12)
dR R

for each control volume R (subregion of B) in conjunction with the expression

U(R) * Jp'fnda (1.13)

for the working of the stress. Here n is the outward unit normal to SR.
To fix ideas I first review the Ginzburg-Landau system as derived in [8]. The

treatment is based on the microforce balance, suitable constitutive equations,
and a version of the second law (appropriate to a purely mechanical system) in
the form of a dissipation inequality which asserts that the free energy increase
at a rate not greater than the working:5

{ J + dv}' < Jp^-nda. (1.14)
R SR

We consider constitutive equations in which the free energy *J>, the stress £, and
the internal force Tt depend on the order parameter p and—to model capillarity
and transition kinetics—also on Vp and p\

4> • 4>(p.Vp,pO, S = £(p,Vp,pO, n = Tr(p,Vp,p-). (1.15)

Here one might argue that p* should not appear in the constitutive equation for
the free energy, and we agree, but rather than omit it by fiat, we choose in-
stead to show that a dependence on p* is incompatible with the second law.6

^Section 2 gives a thcrmodynamic justification of (1.14). An advantage of basing the

theory on such an inequality is that Lyapunov relations for the resulting PDE's follow

automatically.
^Truesdell, in discussing the formulation of general constitutive theories, adopts the
view that "a quantity present as an independent variable in one constitutive equation



Precisely, we use the dissipation inequality, via the Coleman-Noll procedure [12],
to show that \\t and 5 are independent of p \ and that

TT « - (1.16)

where 3p4> and 9p $ denote the partial derivatives of $ with respect to p=Vp
and p, and where p = 3(p,Vp,p#) > 0 is a constitutive modulus. The microforce ba-
lance div£ + TT = 0 and the reduced constitutive equations (1.16) yield a general
nonlinear PDE, which for an energy of the form (1.3) and constant £ reduces to
the Ginzburg-Landau equation. I show here that, more generally, the inclusion
of Vp' in the list of constitutive variables leads, under analogous assumptions, to
an equation

3p# * ocAp + *Ap' - f'(p) (1.17)

containing an additional kinetic term ICAp* (y > 0).
The Cahn-Hilliard theory is developed in Section 4 beginning with balance

laws for mass and microforce in conjunction with a dissipation inequality of the
form (1.14) augmented by a term representing energy-transport by
diffusion.7 Within this framework I discuss the Cahn-Hilliard equation as well
as various generalizations, including the equation8

p' = *A[f(p) - ocAp + ^p•] (1.18)

(p > 0). In Section 5 the Cahn-Hilliard theory is further generalized to allow for
deformation.9

should be so present m all, unless its presence contradicts some law of physics or rule
of invanance" (Truesdell and Noll [10], §96). Truesdell and Noll assert: "This reflects
on the scale of gross phenomena the fact that all observed effects result from a common
structure such as the motions of molecules." See also Weinberg [11], who, in a discussion
of general relativity, comments that it is "not enough to to say that is an unnecessary
complication. Simplicity, like everything else, must be explained."
7 In [13] I gave a derivation of the Cahn-Hilliard equation based on this form of the
second Jaw, but I did not introduce a con/igurational force balance and, consequently, the
argument is far more complicated.
**Cf. the linear models of Aifantes [14], Stephenson [15], Durning [16], Jlckle and Frisch
[17,18], Binder, Frisch, and Jlckle [19]. Equation (1.18) with cx«0 is analyzed by Novick-
Cohen and Pego [20].
9Onuki [21,22] and Nishimori and Onuki [23,24] introduce and discuss a small-strain
theory of elasticity with Cahn-Hilliard diffusion. See also Cahn [4,25], Larch* and Cahn
[ 2 6 ] .



Notation. Vectors (elements of IR3 viewed as 3*1 matrices) are denoted by

lower-case boldface letters. Tensors (linear transformations of IR3 into IR3 viewed

as 3*3 matrices) are denoted by upper-case boldface letters. 1 denotes the unit

tensor; a$b, the tensor product of a and b, is defined by (a$b)u = (b«u)a for all

u; AT and tr A denote the transpose and trace of A; the inner product of A and

B is defined by A-B = tr(ATB).

The gradient, divergence, Laplacian, and time derivative of a field cp=cp(x,t)

are denoted, respectively, by Vcp, divcp, A(p, and cp\ The derivative of a function f

of a scalar variable (not time) is denoted by a prime: f \ For a vector field u(x),

Vu(x) is the tensor with components 9UJ/3XJ (i = row index, j -column index).

The divergence of a tensor field A(x) is the vector field with components

Zj SAJJ/SXJ (i-row index).

The partial derivative of a function $(a,b,c,... ,d) (of n scalar, vector, or

tensor variables) with respect to b, say, is written Sb$(a,b,c,...,d).

2. ORDER PARAMETER. MICROFORCES

a. Order parameter. Surfaces of uniform state

I consider a body B that occupies a fixed region in three-dimensional eucli-

dean space IR3, with B comprised of material whose state at each xcB and time

t is characterized by a scalar order-parameter p(x,t). The level sets of p at time

t are sets of the form p(x,t)-constant and represent sets of uniform state.

Assume, for the moment, that each level set >8(t) describes a smoothly evolving

surface; the fields

m = -Vp/IVpl, V = pVIVpl (2.1)

then define a unit normal and corresponding normal velocity on each level
surface, while the tensor l -m®m projects vector fields onto their components
tangent to the level surfaces.

A velocity field v(x,t) for each level surface >S(t) can be determined using
local parametrizations x = r(u,t) for Mt) by defining v(x,t) * O/c)t)r(u,t). Fields
v(x,t) determined in this manner satisfy

V = v m , (2.2)

but their tangential components are arbitrary; in fact, such fields v have the



form

v * Vm + ( l - m $ m ) w , (2.3)

with w an arbitrary vector field, and conversely (at least locally in time
granted sufficient regularity). Fields v of the form (2.3) will be referred to as
admissible velocity fields.

b. The microforce balance. Rate of working
I assume that the evolution of p is accompanied by a system of forces

characterized by a stress tensor C and an internal force g. Given any control
volume R with outward unit normal n, Cn represents the force, per unit area,
exerted on R across 3R, while g represents internal forces, per unit volume,
distributed over the interior of R. These forces are assumed consistent with the
microforce balance

JCnda + Jgdv = 0 (2.4)

SR R

for all R, or equivalently,

divC + g = 0. (2.5)

Essential to the theory is an expression for the rate at which the
microforces perform work. The only kinematics available for such an expression
is that associated with the evolution of the order parameter, and a basic suppo-
sition of the theory is that the microstress works to change the state of points of
the body through an expenditure of power computed using the velocity v of
surfaces of uniform state. Precisely, the rate of working 10(R) on a control
volume R is taken to be

Tff(R) « JCn-vda, (2.6)
SR

with the stipulation that 1tf(R) be independent of the choice of admissible
velocity field v, so that liJ(R) is independent of how the state surfaces are para-
metrized. The force g is not included in this working, as it acts internally.

By (2.3), invariance under changes in the admissible velocity field is equiva-
lent to the requirement that



JCn-(l -m®m)wda = J[(l - m®m)Cn]-wda = 0 (2.7)
SR dR

for all vector fields w and all control volumes R; hence (l-mS>m)C = 0, so that
C«m®CTm. Thus and by (2.1),

(2.8)

with £ «- IVp|~2CTVp, and this leads to an intrinsic expression for the working:

lff(R) = Jp-ft-nda. (2.9)
3R

The field 5 will be referred to as the reduced stress; (2.9) shows that £ works

directly over changes in the order parameter p.

Next, substituting (2.8) into (2.5) yields

Vpdiv^ + (VVp)$ - g = 0, (2.10)

and taking the inner product of this relation with m and simplifying yields an

expression for the force balance normal to surfaces of uniform state:

divft + TT = 0, (2.11)

where

Tt = -IVpl"2Vp.lg -(VVp)tl (2.12)

is the reduced internal force. The intrinsic velocity of an evolving surface is

normal; tangential motion is irrelevant. For that reason the component of g

tangent to surfaces of uniform state is taken to be indeterminate (not specified

by a constitutive equation but rather as defined by the tangential balance), so

that only the normal balance (211), or equivalently,

Jfe-nda + jTidv = 0, (2.13)
dR R

is relevant to the discussion.
The discussion given above was meant only to motivate the expressions (2.9)

and (2.11) for the working and normal force balance. All further considerations



will be based on (2.9) and (2.11), which are more generally applicable than the
original expressions in terms of C and g, since they are valid even when the
level sets of p are not surfaces.

c. The second law for mechanical theories. Dissipation inequality
The theories I discuss are based on a version of the second law of thermo-

dynamics appropriate to a purely mechanical theory. To motivate this version
of the second law, consider, for an arbitrary control volume R, the first two
laws in the form of an energy balance

{Jedv}* = -Jq-nda + Jrdv • Tff(R) + m(R) (2.14)
R 3R R

and an entropy-growth inequality10

{ jT)dv)# > - J(q/e)-nda + J (r / e )dv (2.15)
R 3R R

in which e is the internal energy, T\ is the entropy, e is the (absolute)
temperature, q is the heat flux, r is the heat supply, 1iJ(R) is the rate of working
on R of all forces exterior to R, and !TFl(R) is the rate at which energy is added
to R by diffusion across 3R.

It is convenient to define the free energy ty by

4> « e - en. (2.16)

Assume isothermal conditions:

e « constant. (2.17)

Then multiplying the entropy inequality by e and subtracting the resulting
equation from the energy balance yields the global dissipation inequality

} ' < Tff(R) + m(R). (2.18)

All subsequent considerations will be based on this inequality, which asserts that
the rate at which the energy increases cannot exceed the sum of the working
and the energy inflow due to diffusion. For the Ginzburg-Landau system there
i 0 T h e Clausius-Duhem inequality (cf. Truesdell and Toupin (26], §§256-258).
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is no diffusion and the working is due entirely to microforces; in that case
is given by (2.9) and 3TKR) vanishes. For the Cahn-Hilliard system !JTl(R)*O, and
if B is allowed to deform, then U(R) includes the working of the standard forces
that accompany deformation.

d. Why the internal force TT appears in the microforce balance but not in the
working

The following discussion, which is naive, is meant only to present a
conceptual interpretation of the action of microforces. Consider the cartoon
shown in Figure 1 in which there are two basic elements: a lattice and a system
of atomic configurations within the lattice. There is a stress £ between adjacent
atomic configurations, internal forces TT exerted by the lattice on each
configuration, and a stress 8 exerted across adjacent portions of the lattice. A
control volume R may be viewed in two ways: (i) as a control volume containing
both atoms and lattice; and (ii) as a control volume containing only atoms. In
writing the dissipation inequality (2.18) the viewpoint is (i) with the free energy
interpreted as the free energy of the entire structure; hence TT is not present in
the working. But in the statement of the microforce balance the interpretation
is (ii), as (ii) captures the action of the internal forces, while (i) does not, and (ii)
does not require knowledge of the forces t, which are indeterminate since the
lattice is rigid.

3. GENERALIZED GINZBURG-LANDAU EQUATIONS
a. Basic laws: balance of forces and the dissipation inequality

I begin with a theory based on the force balance (2.13) and a version of the
second law—appropriate to a purely mechanical system—which asserts that the
rate at which the energy increases cannot exceed the working. I consider, as
primitive physical quantitites, the fields

p order parameter,

v|/ free energy,
5 reduced microstress,
TT reduced internal force,

defined on the body B for all time, and write the second law in the form of a

dissipation inequality
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Atomic
Configuration

Lattice

£, Microstress
7 Lattice Stress

Control volume used for the dissipation
inequality. The Lattice force I performs no
work as the lattice does not move.

Internal force of
ft lattice on atoms

Control volume used for the microforce balance.

Figure 1. Cartoon showing why the internal forces are present in the
microforce balance but not in the working
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{J>dv}" < Jp-ft-nda (3.1)
R dR

to be satisfied for all time and all control volumes R.
Since R is arbitrary, i|T < div (p'$), and this and the force balance (2.11)

combine to form the local dissipation inequality

V + rrp- - $-Vp- < 0. (3.2)

The field

D * -ijr - TTp# + fVp- > 0 (3.3)

represents dissipation, as its integral over R is the right side of (3.1) minus the
left; a trivial but important consequence of this observation is the Lyapunov
relation

{J>dv}' = - jDdv < 0 (3.4)
B B

for the body B whenever p#£#n = 0 on SB.

b. Constitutive equations. Restrictions imposed by the second law
As constitutive equations I allow the free energy i\>, the stress 5, and the

internal force TT to depend on the order parameter p and—to model capillarity
and transition kinetics—also on Vp and p':11

4> = 4>(p,Vp.pO. S « £(p,Vp,p-), TT = rr(p,Vp,pO. (3.5)

To avoid notation such as dyp 4>(p,Vp,p#) for the partial derivative with respect to
Vp, it is convenient to write

P s Vp, q * p\ (3.6)

Not all constitutive relations of the form (3.5) are admissible, as without
further restrictions (3.5) will violate the dissipation inequality (3.2). To deter-

and throughout only homogeneous constitutive behavior is considered; thus , e.g.,

the first of (2.7) signifies ^(x , t )« $>(ip(x ,t),V<p(x,t),<p*(x ,t)), so that !p represents a consti-

t u t i v e response function for the free energy, while <J/«iJ;(x,t) represents the actual free

energy as a field over the body.
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mine these restrictions choose an arbitrary order-parameter field p, and use
(3.5) to compute a constitutive process consisting of p and the fields »̂ 5» and TT;
this constitutive process will satisfy (3.2) if and only if

p,pO + Tr(p,Vp,p-)]p* •lap$(p iVp ip0 - $(p,Vp,p')]-Vp' +
£)q4)((p,Vp,p-))p" < 0. (3.7)

It is possible to find a field p such that p, p \ p*\ Vp, and Vp' have arbitrarily
prescribed values at some chosen point and time. Thus, since p " and Vp' appear
linearly in (3.7), it follows that dq 4>(p,Vp,p#) « 0, dp $(p,Vp,pO = £(p,Vp,p#), for
otherwise p*' and Vp' could be chosen to violate (3.7).

The free energy and stress are therefore independent of p' and related
through

(3.8)

and the following inequality holds for all p, Vp, and p':

TrdiS(p,Vp,p')p- < 0, Tidls(p,Vp,p') = Tr(p,Vp,p') + Sp$(p,Vp). (3.9)

Granted smoothness, the most general form of TTdls consistent with (3.9) is

Tidls(p,Vp,p') = -p(p,Vp,p')p\ p(p,Vp,p') > 0 (3.10)

with p(p,Vp,p') a constitutive modulus. (A verification of (3.10) will be given in
Section 3e.) Thus TT = - dp ip + ndls and there are two contributions to the internal
force: a contribution -3p4> that represents the internal force that would be pre-
sent were p'= 0, and a dissipative contribution 7Td l s=^p\ In fact, the dissipation
is given by

^ s
 - T W P ^ P ' P ^ P ' S ^(p.Vp,p•)(p•)2. (3.11)

Note that the constitutive relations are completely specified by a prescrip-
tion of the response function ${p,Vp) for the free energy and a "kinetic modulus"
p(p,Vp,p') > 0, for then (3.8)-(3.10) generate constitutive relations that are com-
patible with the dissipation inequality (3.2) in all constitutive processes.
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c. The generalized Ginzburg-Landau equation
Using (3.8)-(3.10) in the force balance (2.11) yields

p(p,Vp,p*)p# * div[ap$(p,Vp)] - 9p$(p,Vp). (3.12)

This is the most general PDE based on the force balance (2.11) and constitutive
relations (3.5) that are consistent with the second law in the form (3.2).

Choosing a constant, strictly positive kinetic coefficient p in conjunction with
a free energy of the form

f(p) + £oclVp|2, (3.13)

with f(p) a "coarse-grain" free energy and oc a strictly positive constant, leads to
the standard Ginzburg-Landau equation:

pp' = ocAp - f (p) . (3.14)

d. Further generalization of the Ginzburg-Landau equation
A more general theory in which the stress £ is dissipative is obtained by

allowing for constitutive relations in which Vp' enters the list of independent
constitutive variables:

+ = +(p.Vp,p\Vp'), 5 = ft(p.Vp,p\Vp'), TT = Tr(p,Vp,p-,Vp-). (3.15)

Using the notation (3.6) augmented by r-Vp* and proceeding as before leads
to the inequality (3.7) with the arguments (p,Vp,pO replaced by (p,Vp,p\Vp#) and
with the additional term dr tj!(p,Vp,p\Vp')«Vp" added to the left side; this leads
to the conclusions dr $ = 0 and 3q $ = 0, so that

(3.16)

Further, and what is most important, Vp* no longer appears linearly in the
inequality, and so it no longer follows that 3p$ * £; instead, all that one may
conclude is that, for all p, Vp, p \ and Vp',

TTdls(p,Vp,p\VpO p- - edls(p,Vp,p\Vp-)-Vp' < 0, (3.17)

where



TTdls(p,Vp,p\Vp-) = Tr(pfVpfp-.Vp-)

As I will show in Section 3e, the most general solution of the inequality (3.17) is

+ MVp\

with

p * p(p,Vp,p#,Vp') (a scalar), b * b(p,Vp,p\VpO (a vector)
m = m(p,Vp,p#,Vp0 (a vector), M = M(p,Vp,p#,Vp#) (a tensor),

constitutive moduli that render the dissipation

D = p(p')2 + p'(b + m)'Vp# • Vp'-MVp* (3.20)

nonnegative for all values of (p,Vp,p\Vp#).
The resulting PDE, obtained upon combining the constitutive relations and

the force balance, is

(p- divm)p* + c-Vp' = div[3p4!(p,Vp) + MVp-] - Sp4!(p,Vp)t (3.21)

with c= b - m . If the free energy has the simple form (3.13), if p, b, m, and M
are constant, and if the material is isotropic so that c s 0 and M= Jfl, then (3.21)
reduces to

pp# = ocAp + JTAp# - f'(p). (3.22)

e. Solution of thermodynamical inequalities
The inequality (3.17) can be written succintly in the form

F(X,Y).Y < 0 (3.23)

with

X « (p,Vp), Y = (p\Vp-), F(X,Y) - (Tr^tp.Vp.p-.VpO.-^fp.Vp.p-.VpO).
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1 now give a general solution of (3.23) within a framework that yields (3.10) and
(3.19) as special cases, but is sufficiently general for subsequent applications.

The general problem can be stated as follows: given a smooth function F
from KpxlRq into !Rq, find a general solution of the inequality (3.23) for all XclRp

and YclRq. The variable X appears as a parameter and 1 may, without loss in
generality, suppress it when convenient.

For X > 0, F(XY)-XY < 0 and hence F(XY)-Y < 0. Thus, letting X-> 0, F(0)-Y < 0
for all Y, so that F(0)« 0. Thus

1
F(Y) * {JVF(sY)ds}Y (3.24)

o

for all Y; hence, writing -B(Y) for the quantity {. . .} , F(Y)«-B(Y)Y for all Y.
The general solution F of (3.23) is therefore

F(X,Y) = -B(X,Y)Y (3.25)

with B(X,Y), for each (X,Y), a linear transformation from IRq into !Rq consistent
with the inequality

Y-B(X,Y)Y > 0. (3.26)

Because of the dependence of B(X,Y) on Y, the inequality (3.26) is weaker
than positive definiteness for B(X,Y). However, when F is quasilinear, that is,
when F(X,Y) is linear in Y for each X, then

F(X,Y) - -B(X)Y (3.27)

for all (X,Y), with B(X) positive semi-definite.

More generally, the relation (3.27) holds to first order in Y:

F(X,Y) = -B(X)Y + o(IYI) as Y - 0 (3.28)

with B(X) positive semi-definite; and, for X and Y both small,

F(X,Y) « -BY + odXI + IYI) as X , Y - 0 (3.29)

with B constant and positive semi-definite.



4. DIFFUSION. GENERALIZED CAHN-HILLIARD EQUATIONS
a. Basic laws

I now consider a theory in which the order parameter is identified with the
density p of a diffusing, essentially independent12 species of atoms. I base the
theory on balance of mass, the force balance (2.13), and a generalization of the
dissipation inequality that accomodates diffusion. I therefore consider, as primi-
tive physical quantitites, the fields

p density = order parameter,
\i chemical potential,
h mass flux,
4> free energy,
5 reduced microstress,
TT reduced internal force.

Balance of mass is the requirement that

{ J p d v } ' < -Jh-nda (4.1)
R SR

for every control volume R.
Within the present context the second law is the assertion that the rate at

which the energy of R increases cannot exceed the working on R plus the rate
at which energy is transported to R by diffusion. Since the chemical potential
measures energy per unit mass,

- Juh-nda (4.2)
9R

represents the energy carried into R across 3R by diffusion, and, since the
density p is considered as an order parameter,

Jp-t-nda (4.3)

represents the rate of working. The appropriate form of the second law is there-
a*For example, if the diffusing atoms consist of a single interstitial species, or if the ma-
terial is a binary substitutional alloy with atoms constrained to lie on lattice points. In the
latter case p is the density of one of the species, say species o, the other species, p, being
eliminated via the constraint, and u is the chemical potential of a minus that of £.
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fore the dissipation inequality (cf. [13])

v } ' < - Juh-nda + Jp-fnda. (4.4)

R SR SR

Since R is arbitrary, balance of mass yields

p- = -d ivh , (4.5)

and combining (4.4), localized, with (2.11) and (4.5) yields the local dissipation
inequality

i|T + (TT - u)p- - S-Vp' • h-Vu < 0. (4.6)

As before, I define the dissipation D to be the negative of the left side of (4.6);

the integral of £ over R is then the right side of (4.4) minus the left, so that

{J + dv}' = - jDdv < 0 if p#£-n = h-n=0 on SB,
B B (4.7)

( / ( + - Uop)dv)# * • Ĵ Ddv < 0 if p'£-n=0, u«|io= const, on SB.
B B

b. Constitutive equations. Restrictions imposed by the second lav/

In standard theories of diffusion the chemical potential is given, constitu-

tively, as a function of the density, but here I wish to consider systems suffi-

ciently far from equilibrium that a relation of this type is no longer valid;

instead 1 allow the chemical potential and its gradient to join the density and

density gradient in the list of constitutive variables. Precisely, I consider

constitutive equations of the form:

h = h(p,Vp,u,Vu),
(4 8)

Let
p * Vp, s « Vu, Z = (p,Vp,|i,Vu). (4.9)

As before, I require consistency of the constitutive relations with the local

dissipation inequality. Thus, substituting (4.8) into (4.6),



18

TC(Z) - p p $ p

$ + h(Z).vu < o, (4.10)

so that du $ « 0, 9S $ * 0, 3 p $ * £, and 3p $ « u - IT. Thus $ and £ are independent
of u and V|i; TC is independent of V|i;

Tr(pfVp,u) « |i - Sp$(p,Vp), E(p,Vp) = 3p4;(p,Vp); (4.11)

and

h(Z)-V|i < 0 (4.12)

for all Z, so that, by (3.25), h has the form

h(Z) = -M(Z)Vu (4.13)

with M(Z), the mobility tensor, a constitutive quantity consistent with the ine-
quality s-M(Z)s > 0 for all Z. Further, diffusion is now the sole source of dissipa-
tion with

D = Vu-M(Z)Vu. (4.14)

Combining (4.11) and the force balance (2.11),

U - 9p$(p.Vp) - div[Sp$(p fVp)] f (4.15)

an expression for the chemical potential that reduces to the classical relation
U=c)pip if the free energy is independent of the density gradient. Interestingly,
the general relation (4.15) gives the chemical potential as the variational deri-
vative of the total free energy (1.4) with respect to density:

U - 65/6p. (4.16)

c. The generalized Cahn-Hilliard equation
Substituting (4.13) and (4.15) in the mass balance (4.5) yields the generalized

Cahn-Hilliard equation

p# = divMV{ap4)(p,Vp) - div[ap^(p,Vp)]} (4.17)
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with M«M(Z). The standard Cahn-Hilliard equation follows upon choosing a
constant mobility tensor of the form M * ITl in conjunction with the free energy
(3.13):

p' * *A[f(p) - ocAp]. (4.18)

d. Inclusion of kinetics
A more general theory may be based on constitutive relations in which p#

enters the list of independent constitutive variables:

h * h(p,Vp,p\u,Vu),

S(p,Vp,p\|j,Vu), TT =

In this case compatibility with the dissipation inequality yields the following
conclusions: the free energy and stress are independent of p \ u, and V|j;

E(p,Vp) = ap$(p,Vp); (4.20)

the inequality

Tidls(Z)p# • h(Z)-Vu < 0, Tidi$(Z) = TT(Z) + Sp^(p,Vp) - ix (4.21)

is satisfied for all

Z = (p,Vp,p-,u,Vu). (4.22)

The results of Section 3e applied to (4.21) yield the existence of constitutive
moduli p = p(Z) (a scalar), b « b(Z) and m = m ( Z ) (vectors), and M = M(Z) (a
tensor), such that

( 4 2 3 )

h(p,Vp,p-fn,V|i) « -mp- - MVu,

and such that (3.26) is satisfied.
Combining the first of (4.23) with the force balance (2.11) yields a compli-

cated expression for the chemical potential:

U - b-Vu = 3p$(p,Vp) - div[3pij;(p,Vp)] + pp\ (4.24)
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For an isotropic material b= 0 and (4.24) reduces to

- div[3p$(p,Vp)] + ^p• « 6$/6p • pp\ (4.25)

so that here the chemical potential is represented only in part as a variational
derivative.

The general PDE that follows from these constitutive equation is obtained
upon substituting (4.24) and the second of (4.23) into the mass balance (4.5).
Granted isotropy, constant values of the constitutive moduli in (4.23), and a free
energy in the form (3.13), this PDE reduces to

p# = *A[f(p) - ocAp + ^p•], (4.26)

with corresponding dissipation JD • p(p*)2

The Cahn-Hilliard theory can be further generalized to accomodate memory
effects, but this is beyond the scope of the present paper.

5. THE CAHN-HILLIARD EQUATION FOR DEFORMABLE CONTINUA
I now generalize the theory to allow for deformation, but I restrict attention

to situations in which diffusion occurs on a time scale large compared to that
associated with inertia, which I consequently neglect. As basic balances I con-
sider the standard force and moment balances associated with the gross defor-
mation of the body in conjunction with the balance laws for mass and
microforce discussed in previous sections.

a. Basic laws
I consider a body B identified with the region of space it occupies in a fixed

uniform reference configuration. Material points are then points xcB, while con-
trol volumes R are subsets of B.

Let y be a motion of B. Then y is a field that associates with each material
point x and time t a point

y(x,t) = x + u(x,t). (5.1)

The field u is the displacement, while

F - 1 • Vu, (5.2)
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subject to detF>0, is the deformation gradient. Here and in w h a t follows all de-
r ivat ives are mater ia l (Lagrangian): V and div are the gradient and divergence
with respect to the material point x, while u \ for example, is the derivative of
u(x,t) with respect to t holding x fixed.

Associated with each motion are the fields described in Section 3a as well as
a tensor field S tha t represents the (Piola-Kirchhoff) stress; these fields are pre-
sumed consistent with the mass balance (4.1), the microforce balance (2.13), and
the s tandard balance laws

JSnda = 0, Jy*Snda - 0, (5.3)

SR dR

or equivalently,

div S = 0, SFT = FST. (5.4)

There are now two distinct systems of forces: a microforce system consisting
of a stress t and an internal force n subject to the balance (2.11), and a macro-
force system defined by a stress S consistent with (5.4). The physical nature of
these systems manifests itself in the manner in which the stresses perform
work: t works against changes in the order parameter p through the expression
(4.3), while the working of the macrostress S is given by the standard relation

JSn-u 'da (5.5)
dR

in which the material velocity u ' represents the kinetics. I therefore base the
theory on the dissipation inequality

{J>dv} ' < - Juh-nda + Jp#*-nda + JSn-u#da. (5.6)

R dR dR dR

Combining (2.11), (4.5), (5.4), and (5.6) yields the local dissipation inequality

V - S-F' • (TT - u)p - - ft-Vp* + h-Vu < 0 (5.7)

Defining the dissipation D to be the negative of the left side of (5.7) leads to
the Lyapunov relations (4.7), provided the restriction Sn«u" s 0 on 8B is added. If
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instead Sn = Son on 3B with So constant, then (4.7) remains valid, but with ty

replaced by \\> -S0*Vu.

b. Constitutive equations. Restrictions imposed by the second law
I consider constitutive equations of the form

ip = 4>(F,p,Vp,u,Vu), S * S(F,p,Vp,UL,Vu), h * h(F,p,Vp,u,Vu),
(5.8)

S - $(F,p,Vp,|j,VtJL), TT * Tr(F,p,Vp,u,Vu),

which accounts for deformation, but not for kinetics, as p* is not included in the
list of constitutive variables.13

I assume that S is consistent with the second of (5.4). In addition, I require
that constitutive response be invariant under changes in observer; precisely, I
assume that (5.8) is invariant under the transformations

v|> -> I|J, S - QS, h - h, * - $. TT -> n,

(F,p,Vp,u,Vu) -> (QF,p,Vp,u,Vu)

for all orthogonal tensors Q. This leads to the following restrictions in which the
variables p,Vp,u, and V|i are suppressed:

S(F) = FS(C), h(F) = h(C),

TC(F) =

with C - FTF the right Cauchy-Green strain tensor (cf., e.g., [28]). I will make no
further use of the restricted relations (5.10), as the general development is sim-
pler using the variable F.

Let

p = Vp, s * Via, Z * (F,p,Vp,u,Vu). (5.11)

Compatibility of the constitutive relations (5.8) with the dissipation inequality
(57) leads to the following generalizations of the results established in Section 4b:
$, S, and % are independent of u and Vu; TT is independent of V|j;

n(F,p,Vp,u) « u - 9p$(F,pfVp)f R(F.p.Vp) p $ ( , p , p ) ,
(5.12)

S(F,p,Vp) =
1 The inclusion of p* as well as F* presents no essential difficulty.
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h has the form

h(Z) = -M(Z)V|i (5.13)

with M(Z) consistent with the inequality s*M(Z)s>0 for all Z; diffusion is the
sole source of dissipation with D • Vu-M(Z) V|i.

Combining (5.12) and the force balance (2.11) shows that the chemical
potential is, once again, the variational derivative of the total energy with
respect to density:

U * c)p$(F,p,Vp) - div[ap$(F,p,Vp)] « 6$/6p. (5.14)

c. Partial differential equations
Combining the reduced constitutive relations with the mass and force

balance leads to the general system

p' * div(MVu), u = 3p$(Ffp,Vp) - div[Sp$(F,pfVp)], ( g ^

divS = 0 , S = ap4)(F,p,Vp),

with M = M(Z). This system, supplemented by (5.10), is the most general proper-
ly invariant system consistent with the constitutive relations (5.8) and the
second law in the form (5.6).

d. Linear elastic phases
To model situations in which the displacement gradient is small, I now

reconsider the theory assuming, from the outset, that the deformation is
infinitesimal. To set the theory within that framework I redefine F to be Vu and
replace the second of (5.4) by the requirement that S be symmetric:

S = ST; (5.16)

the steps leading to (5.12) and (5.13) then remain unchanged. Further, invari-
ance of the constitutive equations under infinitesimal rotations (replacement of
Vu by Vu + Q with Q skew) implies that the constitutive functions can depend
on Vu only through the infinitesimal strain

+ VuT), (5.17)



and this leads to the conclusion that F in (5.12) can be replaced by E.
Consistent with the assumption of infinitesimal deformations, I require that

the free energy be at most quadratic in E; in fact, I now consider free energies
of the form

• (E.p.Vp) = W(E.p) + JoclVpP, ( 5 l g )

W(E,p) « jE-C(p)E + E-S(p) + f(p),

where C(p), a symmetric linear transformation of symmetric tensors into sym-
metric tensors, is the elasticity tensor; S(p), a symmetric tensor, is a "composi-
tional stress"; and f(p) is a double-well potential that defines the two phases. This
form of the free energy yields the relations

s = aEw(E,P) = C(P)E + s(P), ( 5 1 9 )

U = 3pW(E,p) - aAp - f(p) • jE-C'(p)E + E-S'(p) - aAp,

for the stress and chemical potential. These constitutive relations augment the
balances divS = 0, p -=-div (MVu), and, if the mobility tensor M and the elasti-
city tensor C are constant, then the basic equations take the form

p- = M-W[f(p) - aAp + E-S'(p)], div[CE * S(p)] = 0 (5.20)

with E given by (5.17). For an isotropic material with S(p) linear in p - p0

(p0 * const.)

CE - 2aE + b(trE)l, S(p) « k(p-p o ) l , M= ifl, (5.21)

and (5.20) reduce to

p# = JfA[f(p) - aAp + kdivu], aAu + (a+b)Vdivu • kVp = 0. (5.22)
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