NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.






NAMT
M- 019

Generalized Phase Field Theories

Morton E. Gurtin
Carnegie Mellon University

Research Report No. 94-NA-019

June 1994

Sponsors

U.S. Army Research Office
Research Triangle Park
NC 27709

National Science Foundation
1800 G Street, N.W.
Washington, DC 20550
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Using balance laws for microforce and energy in conjunction with constitutive
equations consistent with the second law, a general phase-field theory of sohdi-
fication is developed in which gradients of the order parameter enter the consti-
tutive equations for the internal energy and the entropy. The final results consist
of anisotropic and isotropic phase-field equations at wvarious levels of generality.

1. INTRODUCTION
Solidification is often described by a modified Stefan problem—for the devia-
tion u of the temperature from its transition value—in which the free-boundary

conditions

u (constant)K + (constant)V,

(latent heat)V Jjump in normal heat-flux across the interface, (1-0)

n

involve the mean curvature K and normal velocity V of the interface, and conse-
quently lead to problems of great difficulty. For that reason Langer [1),! Fix [3],
Collins and Levine [4], and Caginalp [5] introduce and study a model in which the
phase of the material is characterized by an order parameter @, called the phase
field; ¢ has nearly constant values in each bulk phase and makes a smooth but
rapid transition between phases within a thin transition layer that represents the
sharp interface of the Stefan model.
The phase-field model consists of a modified heat equation

cu’ + py’ = kAu (1.2)
supplemented by a Ginzburg-Landau equation
By = fAp - F'(9) + pu, (1.3)

where ¢, k, B, f, and p are constants, with all but p strictly positive, and F(g) is a

1Based in a Model C of Halperin, Hohenberg, and Ma [2].
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double-well potential whose "wells" define the phases. The Ginzburg-Landau equa-
tion is based on the assumption that the variational derivative 8%/8y9 of the
"free-energy functional"

F(u,9) = [{F(p) + LfIVel2 - pu}dv (Q = underlying region of space)  (1.4)
Q

be consistent with the relaxation law: pg* =-8%/8¢.

There are now analytical and computational support for the use of phase-field
models to regularize Stefan-type problems. Soner [6] proves that, modulo a sui-
table scaling, a slightly modified version of the phase-field equations approach the
Stefan system based on (1.1) as the '"interface thickness' tends to zero;?2 and
computational studies of Caginalp and Socolovsky [15], Koboyashi [16], and
Wheeler et al. [17], among others, demonstrate that phase-field models capture
the qualitative features of solidification, including dendritic growth.

These studies present little information regarding the theoretical status of
phase-field models within the framework of continuum thermodynamics. In fact,
Penrose and Fife [18] and (later) Wang et al. [19], arguing that the derivations
given in [1,3-5] are based on a free-energy functional and therefore applicable
only under isothermal conditions, develop theories based on an entropy functio-
nal. The Ginzburg-Landau equation is derived variationally by Penrose and Fife as
a relaxation law and by Wang et al. using a local formulation of the second law
(the Clausius-Duhem inequality), and it is unclear from either of these deriva-
tions whether the Ginzburg-Landau equation should be viewed as a balance law,
a constitutive equation, or a combination of the two. Concurrently with [19],
Fried and Gurtin [20] develop a framework for theories of phase-field type based
on arguments now common in continuum mechanics in which balance laws are
carefully distinguished from constitutive equations. What is new in [20] is the
introduction of a balance law for microforces® (defined operationally as forces
that perform work over changes in the order parameter); this force balance leads
to the Ginzburg-Landau equation.

Here, continuing in the spirit of [20], I develop a fairly general class of phase-

2Farlier, Stoth [7,8] established convergence under radial symmetry for u-= (constant)K.
Formal asymptotic analyses for the general problem were given in [1,3-5]; see also [9-14]
for formal results relating the phase-field equations to other problems of physical interest.
30ur belief is that kinematic variables introduced to model material microstructure
require additional force and/or moment balances. Such microbalances can be motivated
from statical considerations as Euler-Lagrange equations corresponding to 1ndependent
variations of the microstructural kinetic-variables. In [20] we referred to such forces as

accretive; but I now prefer the term microforces.



field models. What made me continue this program is the belief that, although
the models developed in [18] and [19] are internally consistent and result in PDE's
of the correct formal structure, the derivations seem flawed, as they neglect the
internal energy of the interface (gradient energy).?

To explain my reasons for making this assertion consider the first two laws
expressed schematically as

(d/dt) { EPuIk 4 BXs) = L. , (d/dt) { 8Pwk + 8%} > ..., (1.5)

For a sharp interface gbulk ang gbulk represent the internal energy and entropy
in bulk, while E** and 8*° are the energy and entropy of the interface. For a
generalized phase-field theory, the entropy per unit volume is given, constitu-
tively, as a coarse-grain entropy ncs(u,¢) plus a gradient entropy né"(u,,V¢), and

8P4k 45 the integral of nes(u,@), while 8*° is the integral of n& (u,,Vy); similar

EPUK and E*®. The usual argument supporting the neg-

interpretations apply to
lect of interfacial energy seems based on the observation that (1.1),, which ex-
presses balance of energy across the interface, neglects interfacial energy. But
(1.1) are the result of approximating a set of general interface conditions that
include both interfacial energy and entropy, and while interfacial energy is
neglected in (1.1),, it is generally present in (1.1);, as T typically represents the
free energy at the transition temperature.5

Further, | would generally expect the internal energy and entropy of the
interface to be roughly the same order (at least when the temperature is not too
high), and similarly for the bulk energy and bulk entropy; and it would therefore
seem unsound in a general theory to neglect interfacial energy in the energy
balance (1.5);, but to retain interfacial entropy in the entropy inequality (1.5),. ]
believe that a more rational procedure® is to first derive general equations
based on laws of the type (1.5), and then to apply whatever approximations one

4 After completing this study | saw notes of Wang, Sekerka, Wheeler, Murray, Coriell,
Braun, and McFadden establishing an isotropic theory which includes gradient energy.
These notes, which are based on [19], derive the PDE's (1.8).

5cf., e.g., Mullins and Sekerka [21), Gurtin [22,23).

6 An alternative procedure, developed in [23] and used by Fried and Gurtin [20], begins
with an approximation of the general laws (1.6). The chief obstacle is that in (1.6) bulk
terms dominate interfacial terms, so that neglecting lower-order terms results in the omi-
ssion of interfacial effects. What is needed is an inequality with interfacial terms of the
same order as bulk terms. The combination (internal energy) - (8¢) (entropy) vanishes in
bulk at the transition temperature ®g. Thus if the entropy inequality is multiplied by &g and
subtracted from the energy equation, the resulting inequality has both bulk and interfacial
terms small near 6g. This 1nequality is then used (as an approximate second law) in
conjunction with balance of energy assuming g**-0.



wants to the resulting equations.
Using this procedure I derive a hierarchy of phase-field equations at various
levels of generality and approximation. For a material with constant specific heat

¢ and constant conductivity tensor K, with internal-energy ¢ and entropy n given
by constitutive equations

€ =co +E(@ +}e(m)lVgl2, n=clne +S(yp) + {s(m)Vel?, (1.6)
8 = temperature, m = Vo/IVeol,

and with f(e,m) = e(m) - 8s(m), the resulting PDE's are

co' + [E(@)] - gp'div[e(m)Ve] + 122[e(m)]" = div{KVe + 1 2¢' dmf(o,m)]}, (17)

B(e,m)e’ = div[e(m)Ve] - adiv[s(m)Vy] + {div[2dmf(e,m)] - E'(¢) + 8S'(y).
For an isotropic material these PDE's have the simple form’

co' + [E(@)] - ep'Ap = kAs,

p(e)y* = f(8)Ap - E'(9) + 8S'(9), (1.8)

and reduce to equations derived by Penrose and Fife [18] and Wang et. al. [19] if
e=0, s<0, and B(8) = 8By, and to equations given by Fried and Gurtin [20] if s=0
and B = constant. Further, granted suitable approximations, (1.8) reduce to the
original phase-field equations (1.2), (1.3) (cf. the discussion following (4.28)).

2. GENERAL THEORY?®
a. Basic equations

The primitive quantities of the theory are the fields

internal energy

absolute temperature
entropy

heat flux

order parameter (scalar)

m e Q3 o O

microstress (vector)

s internal microforce (scalar)

7Cf. Footnote 4.
8This section is taken from [20], where arguments in support of (2.1) and (2.3) can be
found.



defined for all time on the region of space Q occupied by the material; the basic
laws are balance of energy

{Jedv) = -fq'nda + J9'E-nda, (2.1)
R oR JoR

growth of entropy

{Jndv)} = - J(q/8)-nda, (2.2)
R dR

and a microforce balance

Je-nda + [ndv =0 (2.3)
oR R

for each control volume R (subregion of Q), where n is the outward unit normal
to OR. These global laws have local forms

e = -divg + div(g'E),
n' = -div(q/9) + ¥, ¥20, (2.4)
divg + T = 0,

with ¥ the entropy production; together they yield the dissipation inequality

g*+ e+ my' - E-Vo* t 971q-Ve = -8¥ < 0, (2.5)
with
¢ = €-8n (2.6)
the free energy.
An important feature of the thermodynamic structure is the existence of

natural Lyapunov functionals: a direct consequence of (2.1), (2.2), and the second
of (2.4) is that, granted ¢'E-n=0 on 9Q,

{Jedv} =0, {fndv)} = f¥dv =20 if gon =0 on 9Q; (2.7)
Q Q Q



{Je-eqn)dv)} = -8,f¥dv 2 0 if ® = 85 = constant on 9Q. (2.8)
Q Q

b. Constitutive equations. Consequences of the dissipation inequality
I consider constitutive equations of the form

¢ = P, n=nl..), q-=ql..),
= E(...)), w= m(..), (2.9)
with (....) shorthand for the list
(....) = (8,Ve,9,Vo,0"). (2.10)

A requirement of the theory is that the constitutive relations be compatible
with the dissipation inequality (2.5). Writing

g = Vs, r =9, p = Vo, s =@, (2.11)
it follows that, for any choice of the fields 8(x,t) and ¢(x,t),

(06 PC..) + (..))s + [9,00..) + AC..)Ir +
[op $C...0 - EC..0)-p +
[0g $C...0)-g" + 9, §(...)s" + o71q(....)-g = -9¥ < 0. (2.12)

It is possible to find fields ©(x,t) and ¢(x,t) such that &, g=Vo, g'=Ve’', r=9", o,
s=°, s'=¢"", p=Vy, and p°'=V¢’ have arbitrarily prescribed values at some chosen
point and time. Since (....) = (8,8,9,p,s), the quantities r, g*, s, and p' appear line-
arly in (2.12); therefore 9,§ = 0, 9g$ =0, d,¢ =1, and dp { = &, for otherwise r, g',
s*, and p° could be chosen to violate (2.12). The free energy, entropy, and
microstress are thus independent of g and ¢° and related through

n(e,9,Ve) = -9,¢(8,9,Vy), (2.13)

E(9,9.V9) = 9p (0,9,Vy),
and the entropy production is given by

02y = -—omds(...)¢" - q(....)-Ve 2 0 (2.14)



with

s (..) = 9 $(8,9,Ve) + T(....) (2.15)
the dissipative part of the internal force. The general solution of (2.14) is

q(....) = -al....)p* - K(....)Ve,
mds(....) = -g(...)¢* - b(....)-Ve,

(2.16)

in which g(....), a scalar kinetic modulus, a(....) and b(....), vector cross-coupling

coefficients, and K(....), the conductivity tensor, are consistent with
op(e,8,9,p,s)s2 + sg-[eb(e,8,9,p,s) + a(9,8,¢,p,s)] + g-K(9,8,¢,p,s)g > O. (2.17)
The relations (2.7), (2.13),, and (2.16), yield

e = £(8,9,V9) = $(8,9,V9) - 89, (9,9,V9),

(2.18)
T = -9p$(9,9,Vy) - B(....)9" - b(....)-Vs,
as well as a relation for the specific heat:
c(8,9,V9) = 94 £(8,9,Vy) = -0d5,0(8,9,Vy). (2.19)

c. Generalized phase-field equations

The PDE's of the theory follow upon substituting the thermodynamically re-
duced constitutive relations for €, q, €, and 7 into the local balances for energy
and microforce. Writing

(....) = (8,Ve,9,Vy,0°), (..) = (8,9,Vq), (2.20)
these PDE's become

c(.)8" + 9y €(.)p" + dp £(..) Ve = div{K(..0Ve + [a(....) +3p P(.)] ¢},
B(...0)¢" = div{dp¥(.)} - 98¢ $(..) - b(....)-Ve.

(2.21)

This is the most general system based on constitutive relations (2.9) that are
consistent with the second law in the form of the dissipation inequality (2.5).



d. Decomposition of the heat flux and internal force

The constitutive equations (2.16) show V& and ¢* to be the fields that, in some
sense, most influence q and m%s; in fact, for & and ¢ close to constant values 8,
and @g, so that [8- 841, IVel, l¢-@,l, IVel, and lp*| are small, say O(8),

-ao(P. = KOVS + 0(62),
'Bo(p' - bO-VB + 0(62),

ql....)

mdis(,..)

(2.22)

with ag, Ky, By, and by constant. An expansion of the form (2.22) holds also for
IVel and ly*] of O(8), irrespective of (8,9,Vy), but then the coefficients depend on
(8,9,V@). Guided by this, | assume that

(A1) q(....) and m¥s(....) are linear functions of (Ve,p*):

q(....) = ~a(8,9,Vele* - K(9,9,V¢)Vs, (2.23)

ndis(,..) = -p(8,0,V@)9* - b(8,9,V@)-Ve.

Note that, by (2.17), the coefficient matrix
a’ K
ep 8b

is positive semi-definite.

The first of (2.23) yields the decomposition

q=qth+qgkn,  qh = -K(8,9,V@)Ve, gk = -ale,@,Vele’ (2.24)

for g as the sum of a (classical) thermal flux q'" down a temperature gradient
plus a kinetic flux qki? induced by temporal variations in the order parameter.

Similarly, md% may be decomposed
mdis = qth + gkin gth = - b(g,p,Vy).-Vo, =kin = -p(e,9,Ve)e°, (2.25)

into thermal and kinetic parts mt? and mkin,
Finally, (2.23) leads to the following relation for the entropy production (2.14):



82y = op(8,9,Vy)(p)2 +
¢'[eble,p,Vy)-Ve + ale,p,Ve)]-Ve + Va-K(8,90,Vp)Ve = O. (2.26)

3. COMPARISON WITH THE SHARP-INTERFACE THEORY. CONSTITUTIVE RELATION
FOR THE KINETIC HEAT-FLUX

In the theory developed here the phase interface is diffuse, with no sharp
distinction between phases; in a sense each value of the order parameter repre-
sents a particular phase of the material. For that reason sets 3(t) of the form
{9(x,t)=constant} play an important role, as they represent sets of uniform
phase. | will refer to such sets as uniformity surfaces. Phase transitions are also
described by theories in which the regions occupied by the individual phases are
separated by a phase interface of zero thickness. Such interfaces are sharp.

In applications of the diffuse-interface theory the interface is often thin: solu-
tions are close to particular order-parameter values ¢, and ¢, in regions Q, and
Q,, with the "interface" separating Q, and Q, resembling a "thin surface"; the
interface is then a collection of closely-packed uniformity surfaces.

Based on these observations, | now use the sharp-interface theory to moti-
vate additional constitutive assumptions that hopefully render the sharp and
diffuse theories asymptotic in the limit of small diffuse-interface thickness. The
essential idea in comparing these theories is a correspondence between unifor-
mity surfaces of the diffuse theory and the interface of the sharp theory.

a. Basic laws for a sharp interface

For comparison purposes | now write the first two laws? for a sharp inter-
face evolving with (scalar) normal velocity V. Let R be an arbitrary control
volume, let Q= Q(t) denote the portion of the interface in R, let ¥, a vector field
tangent to the interface, denote the outward unit normal to the boundary curve
9@, and let ’\76@ denote the (scalar) normal velocity of this boundary curve in the
direction ¥. Then balance of energy and growth of entropy for R have the form

{Jebdv + [exsda )}’ = - [qb-nda + [QV,ads + [(oV g + VE-D)ds,
R Q oR 0@ oQ

{Jnkdv + [nxda}’ 2 - [(qP/8)-nda + [(Q/8)V 4ds,
R € oR oG

(3.1)

v

with 8 the temperature; eb, nb, and gP the bulk energy, entropy, and heat flux;

SAs developed in [22,23,25].
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£¥% and n*® the energy and entropy of the interface; o the surface tension; ¢, a
vector field tangent to the interface, the surface shear; and Q an apparent heat
flow induced the motion of the interface.

Let

4’){5 = sXS - enXS (32)

denote the surface free energy. Thenl? o=¢* and Q=en*s, so that

afesxsvaeds = a_fGQ\—/aGds +a£oi_/aeds, afans'\—/aGds = féQ/e) Vaqds, (3.3)
o

a result that allows (3.1) to be written in a form

{Jebdv + [exsda )}’ = - [qP-nda + [exsV,5ds + [VE-Dds,
R G oR o@ 2@
(3.4)

W

{J’nbdv + jnxsda }' —j(qb/e)~nda + fﬂxs-\_/agds.
R €. dR oa

in which exs\_/ae and nxs\_/ae represent fluxes of internal energy and entropy into
R across 9Q.

b. Comparison of the sharp and diffuse theories
Bearing in mind (2.24), a comparison of the basic laws (3.1) of the sharp-
interface theory with (2.1) and (2.2) of the diffuse theory seems to indicate the

associations!?
sharp interface ~ order-parameter theory
J(oVyq + VE-D)ds J¢'E-nda (3.5)
oQ oR
[qb-nda JQVeds fqth.nda - [qkin.nda (3.6)
oR oQ oR oR

To further relate the sharp and diffuse theories it is convenient to write the
basic laws with respect to uniformity surfaces 8(t) = {¢(x,t)=constant}. To ensure
that such surfaces are well defined, | restrict attention to situations with

10These identities are consequences of the requirement that the interface be invariant
under reparametrization [25].
111t would be interesting to show that, granted suitable scalings, these associations, (3.12),

and (3.13) are formal asymptotic approximations (cf. [26]).
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b= IVl = 0; (3.7)
then

m = Vop/?, V=-¢/2 (3.8)

represent, at each (x,t), a unit normal field and corresponding normal velocity for
the uniformity surface through x at time t.

Let R be a control volume such that, at each t, dR is tangent to uniformity
surfaces at most on a set of zero surface-measure. Choose x€dR and t, let &(t)
denote the uniformity surface through x, let G(t) denote the portion of 3(t) in R,
and let v(x,t), a vector in the tangent space to &(t) at x, denote the outward unit
normal to the boundary curve 9GQ(t). Then the vectors m, n, and ¥ are coplanar,
and the (intrinsic) velocity of the curve 9Q(t) has two components: Vm, which is
normal to 3, and V45, which is tangent to 8(t), but normal to dG. Let « denote
the angle between m and n and assume that o«=0,m. Then

n = (cosa)m + (sino)wv, cosa = m-n, Vag = ~Veota. (3.9)
It 1s convenient to introduce the measure

dA = ¢sinxda (3.10)
on R. The measure sinada is the area on 9R projected onto the plane perpendicu-
lar to v; roughly speaking, the multiplier 2=|Vy| allows dA to be written as the
product of a measure d¢ and an arc-length measure on the boundary curves 9Q.

I now make the following geometric correspondences between the sharp and
diffuse theories:

sharp interface order-parameter theory
interface uniformity surface
V. ¥, Vg V. v, Ve

Using (3.8)-(3.10), the working can be written in the form

Jo'e'nda = [(E:mV,; - E-vV)dA. (3.11)
oR oR
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Comparing (3.11) with the last integral in (3.1),, which represents the working for
the sharp-interface theory, and using the identity o=y*s, it seems reasonable to
make the associations

sharp interface order-parameter theory
fVe-vds JVE-vda (3.12)
oQ oR
Jy*sV 5 ds JEemVpda (3.13)
o]¢] oR

Guided by (3.6) and (3.12), | now presume that that the first two laws (2.1)
and (2.2) can be written in a form that more closely resembles (3.4); namely,12

{Jedv)} = -fqth.nda - [eflx.nda - [VE-v dAa,
R oR JR oR
(3.14)
{fndv} 2 - [(gqh/8)-nda - [nfix.nda,
R oR oR

in which there are an energy flux €!* and an entropy flux nfl¥, given by consti-
tutive equations

gflx = ghlx( ), nix = e ), (...)=(8,V9,9,9¢,0") (3.15)

consistent with standard thermodynamics. Precisely, defining the free-energy

flux
pix = @ix(..) = 81x(...) - eRfx(...), (3.16)

1 assume that:

(A2) There are vector fields ef’* and nfl*, defined by constitutive equations (3.15),
such that the basic laws (2.1) and (2.2) can be rewritten as (3.14), and such
that $f%(....) generates Af%(....) through the thermodynamic relation:

Ax(...) = -9, $IX(...), (3.17)

12thhin a mechanical theory a free-energy flux of this form was introduced in [27] (Re-
mark 4). Wang et al [19] introduce an entropy flux of this type, but their gradient energy 1is
isotropic, so they do not need the working term VE-v.
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In (3.11) E-m acts as a surface tension within uniformity surfaces that works
against the tangential velocity of Q(t) and hence works to increase the area of
GQ(t); thus and by (3.13), it seems reasonable to expect that

JeemVy5dA = - [¢fix.nda. (3.18)
oR oR

On the other hand, &(..)=3p §(..), (..)=(8,9,V¢); thus (3.11) yields

JEemVyedA = [o'[m-9p§(..)Jm-nda. (3.19)
dR 9R

Based on (3.18) and (3.19), I assume that:

(A3) The free-energy flux is given by
V%X(0,0,Ve,0°) = -¢'[m-9p §(9,9,V¢) Im. (3.20)

Then by (2.6), (2.13),, (3.16), and (3.17),

A%(9,9,Ve,9") = -9 [m-9pn(e,9,Ve)Im,

(3.21)

£1%(8,0,Ve,0°) = -¢'[m-2p €(8,9,V9) Im.
b. Constitutive relation for the kinetic heat-flux

In view of (3.18) and the the required equivalency of (2.1) and (2.2) with
(3.14),

- [efl*.nda = -[qkin.nda - [¢f*.nda, - [nf*.nda = -[(gqk"/9).-nda, (3.22)
oR oR oR oR JR

while (3.16) and (3.22), imply that

- fenf*.nda = -[qk".nda. (3.23)
oR oR

The identities (3.22), and (3.23), when localized, yield the conclusion (enflx-
q*n).Ve = 0. By (2.24) and (3.21),, the constitutive relations for nf* and q*n do
not contain Ve as an independent constitutive variable. Thus g¥®" = gnf*, which
represents a counterpart of the identity Q=9n*® in the sharp-interface theory.
Thus, appealing again to (3.21),, the kinetic heat-flux is related to the entropy
through the explicit relation
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qkjn = -a(e,ﬂP,Vip) (P'. a(e»ﬂoxvq’) = e[m'apﬁ(e'w’vw)]m’ (324)

which is the main result of this section.

Note that q¥in(x,t) on dR vanishes when n(x,t) is perpendicular to m(x,t); in
this case 0Q(t)—the portion in R of the uniformity surface through x—does not
locally add area at x, so there is no apparent heat flow induced by the addition of
area (and hence entropy).

4. THEORY FOR A GRADIENT ENERGY THAT IS HOMOGENEOUS OF DEGREE 2
a. Further simplification of the constitutive equations

I now decompose the constitutive functions for the free energy into a coarse-
grain energy ¢°8(9,¢) and a gradient energy ¢&7(e,9,Vo):

P(0,0,Ve) = ye(e,p) + ¢&(8,9,Vo),
y°8(8,9) = §(8,9,0), (4.1)
Ver(e,9,Ve) = §(8,0,Ve) - §(8,9,0),

and similarly for the internal energy and entropy. Then

g = gC8 - 9nCE, € = g€ - gner,
v n v n (4.2)

nee = —aeq,CS, ner 'ae\Pgr-

Phase-field theories are generally based on free-energies that are quadratic
in V¢. Here, to model diverse types of anisotropy, | consider the dependence on
Vy=|Vyim in terms of dependences on [V¢| and m, with ¢&7(e,9,V¢) quadratic in
IVel, but an arbitrary function of m; precisely, | assume that:

(A4) Y& (8,p,V@) is homogeneousl3 of degree two in V.

Consequences of (A4), (3.24), (4.1), and (4.2) are that

ner(e,,Vy) is homogeneous of degree two in Vg, (4.3)

a(9,9,V¢) is homogeneous of degree one in Vg.

The next two hypotheses concern the moduli that govern the production of

133(2) is homogeneous of degree p if, given any x>0, &(z) - AP &(2) for all z.
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entropy. Phase-field theories generally have K independent of V¢, and p depen-
dent on Vg at most through m. Here I assume that

(A5) p(8,9,Vy) and K(8,9,Vy) are homogeneous of degree zero in Vg.

I have little intuition concerning the modulus b(8,9,Vy) and therefore assume
only that

(A6) b(9,9,Ve) is a homogeneous function of V.

By (A5), (A6), and (4.3), the entropy-production inequality (2.26) may be
written in the form

op(e,9.m)(@)2 + ¢ [IVgl*eb(s,p,m) + [Vplale,p,m)]-Ve +
Ve-K(8,p,m)Ve > O, (4.4)

with k the degree of homogeniety of b. This inequality must hold for all 8, Vg, ¢,
V¢, and ¢'. Therefore [Vol¥eb(e,p,m)+IVela(e,¢,m) =0 for |Vel| sufficiently large,
for otherwise ¢°V8 of appropriate direction would violate (4.4). Thus k=1 and
a(9,9,Vy) = -9b(9,9,Vy), (4.5)
so that, by (2.25) and (3.24),
nth = -b(e,9,Ve)-Ve, b(e,¢,Vy) = -[m-dpner(e,¢,V¢)Im, (4.6)
and both the kinetic heat-flux gqk¥'® and the thermal internal-force nth are rela-

ted to the gradient entropy. Further, and what is surprising, q*¥” and nth do
not contribute to the production of entropy:

02y = 9p(8,p,m)(9")2 + Vo:-K(e,9,m)Ve > 0. (4.7)
b. Phase-field equations

Substituting the expressions in (3.24) and (4.6) for a and b into (2.21) and
using the notation

(..) = (8,9,Vy) (4.8)

results in the PDE's
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c..)e* + 9y E(.)g" + dpesr(..)-Vy" =

div{K(..)Ve + [9p y&r(..) + 8(m-3pne"(..))m] "}, (4.9)

B = div{dpys(.)} - ¢ §(..) + m-dpne(..)m-Ve.
In view of (A4), the gradient free-energy ¢& may be written in the form
yer(e,p,Vp) = 1 02f(e,9,m) (4.10)

(the { being for convenience), so that

e87(9,9,Ve) = $02e(0,9,m), ne'(e,p,Vy) = 102s(e,9,m),

f(e,p,m) = e(8,9,m) - &s(8,9,m), s(e,9,m) = -9,f(8,9,m), (4.11)

c(8,9,V¢) = dge°8(0,9) + 1 0205e(0,9,m),

and, by (3.24) and (4.6),

qkin = -a(e,p,Ve) -, a(e,9,Vy) = es(e,9,m)Ve,

nth = -b(e,9,Ve)-Ve, b(e,p,Vy) = -s(9,p,m)Ve. (4.12)
Further,

E = opy&r(e,9,Vy) = f(8,0,m)Ve + c(o,9,m), (4.13)
with

c(e,p,m) = {29mf(8,9,m) (4.14)

orthogonal to m. In (3.11), E-v = ¢c-¥ works against the normal velocity V; hence
c(8,9,m) represents microshearing stresses within uniformity surfaces (cf. (3.12)).
Let

(..) = (8,9,Vy), (%) = (8,9,m). (4.15)
By (4.14) and its counterpart for €8,

Ope(..)Ve* = e(x)Ve:Vy* + 1 029me(x).m",
div[g-e(x)Ve] = e(x)V@-Vy* + @ div[e(=)Ve], (4.16)

Op Y& (..) + 8s(%)Vyp = e(x)Vp + c(x);
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hence, appealing to the analog of (4.13) for n8*, (4.9) may also be written as

c(.)e + 9y E(.)p" - @ div[e(x)Ve] + 1020me(x)-m"* =
div{K(=)Ve + g c(x)}, (4.17)
p(x)p* = div[e(%)Ve] - 8div[s(=)Vy] + dive(x) - dq ).

If (4.17), is multiplied by ¢* and then subtracted from (4.17),, using (2.6) and
(4.14), the result is an alternative form for (4.17),; (in which, roughly speaking,
entropy rather than energy is balanced):

cl.)e" + 83, n(.)¢" - 0@ div[s(x)Vp] + L 8220ms(x)-m" =
div{K(x)Ve)} + p(=)(¢")2. (4.18)

The general equations derived above are complicated. The next section
develops two simpler theories: one anisotropic with specific heat and conductivity

constant; the other isotropic with specific heat and conductivity allowed to
depend on the order parameter.

5. SIMPLIFIED THEORIES
a. Anisotropic theory with constant specific heat and conductivity
If the specific heat c is constant, then, by (2.13), (2.19), (4.1), and (4.2),

£°€(9,¢)

= ce + E(y),
nce(o,9) = clno + S(y), (5.1)
pee(o,9) = c(8 - olne) + E(¢p) - 8S(¢p),

while €8 and n&" are independent of ®. If, in addition, ¢&8 and (hence) €8 and ns"
are independent of ¢, then

8 (8,Vy) = e8"(Vy) - ene’(Vy). (5.2)

Assuming that (5.1) and (5.2) hold, and that the conductivity tensor K is constant
and the kinetic modulus g depends only on m, the PDE's (4.9) become
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ce' + [E(g) + e87(Vyp)] = div{KVe + [dp y87(8,Vp) + 8(m-9p &' (Ve))m] @'},

p(m)e* = div{dpye7(8,Vy)} - E'(¢) + 8S'(¢9) + m-dpn¥'(Vyp)m-Ve. =
Further, since (5.2) has the alternative form
f(6,m) = e(m) - es(m), | (5.)
(4.17) reduces to
co' + [E(@)] - ¢ div[e(m)Vp] + {22[e(m)] = div{KVe + 1 2¢ dmf(e.m)]}, (5.5)

B(m)e" = div[e(m)Veg] - ediv[s(m)Vy] + 1div[2dmf(e,m)] - E'(p) + 8S'(9).
while (4.18) becomes
co' + o[S(p)] - ep'div[sim)Ve] + 1822[s(m)]" = div{KVe} + p(m)(¢*)2. (5.6)

b. Isotropic theory
Returning to the general theory of Section 4b, if the material is isotropic,

K(x) = k(8,9)1, p(x) = ple,9), e(x) = el(9,9),

S(x) = s(0,0),  f(x) = f(6,9),  c(x) =0, (57
and if p(8), e(9), and s(8) are independent of the order parameter, then, since
div[e(8)Vy] - ediv[s(e)Ve] = f(8)Ay (5.8)
(cf. (4.11)), (4.17) reduce to
c(8,9,V9)o" + dye8(0,9) 9" - pdiv[e(e)Ve] = div[k(e,p)Ve], -
5.9

B(8)p = f(8)Ag - dpyci(e,9),
while (4.18) becomes
c(8,9,Vp)e + 89,n8(0,9)¢" - e¢div[s(8)Vy] = div[k(e,p)Ve] + p(e)(p)2. (5.10)

The PDE's (5.9), although restricted to isotropic materials, are quite general. Note
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that, by the last of (4.11), the specific heat c(8,9,Vyp) is the sum of a coarse-grain
specific-heat dy¢¢(9,¢) and a gradient specific-heat 1029ge(8,m).

A standard assumption is that the specific heat c(¢) depends only on the
order parameter. Granted this, (2.13), (2.19), (4.1), and (4.2) yield

£°8(9,9) = cly)o + E(yp),
ncé(e,9) = c(p)lne + S(y),
(5.11)
yee(o,p) = clyp)e(l -1ne) + E() - 8S(y),
f(e) = e - ®s, e, s = constant,
and (5.9) become
clp)e® + elc(p)] + [E(9)]" - e Ap = div[k(s,9)Ve],
(5.12)

B(8)y' = f(8)Ap + c'(gp)(elne-8) - E'(¢) + 8S'(y),
with (5.12); equivalent to (cf. (5.10))
clp)e® + olnofc(@)]" + e[S()]" - s Ay = div[k(e,)Ve] + g(e)(p)2.  (5.13)
Finally, for ¢ and k constant,

co' + [E(@)] - e Ap = kAsS,

14
g(8)y* = f(8)Ap - E'(9) + 8S'(y), (5.14)
with (5.14); equivalent to
co' + 8[S(p)] - esp Ap = kA9 + p(8)(¢")2. (5.15)

Generally, ¢°8(9,¢), as a function of ¢, is a double-well potential in which each
well has a strict minimum and for which one well furnishes a global minimum
for 8<8, and the other for 8>8,, with 8, the transition temperature. Granted this
I may, without loss in generality, assume that the minima at 8= 8 occur at =0
and ¢ = 1. Then °8(8,,0) = y°8(8,,1) and, granted the assumptions leading to (5.14),

E(1) - E(0) = 8,(S(1) - S(0)). (5.16)

14After completing this workl saw notes notes of Wang, Sekerka, Wheeler, Murray,
Coriell, Braun, and McFadden in which these equations are derived.
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Consider (5.14), and (5.15) with the terms involving ¢'V¢ and (¢*)2 neglected,
with g(e), f(8), and ©[S(¢)]" approximated by g(8,), f(8,), and 8,[S(¢)]’, and with

E(9)-98,S(9) = Al - @)1 =: oF(y), S(g) = poy, (X, p>0). (5.17)

Define u=1(8-8,)/8y, B=p(8,)/8,, and f=f(8,)/8, Then, dropping the overbars,
the resulting PDE's are the original phase-field equations (1.2) and (1.3). Here
there seems to be an ambiguity, since the equivalent approximations in (5.14),
yield (1.2) with py* (= [S(9)]") replaced by [E(¢)]'/8,; because of (5.16), for a
sufficiently thin interface this difference should have negligible effect.

If gradient energy is neglected, if s<0, and if p(®) = 88, then (5.14) reduce to

co' + [E(@)] = kaAs, Bo®' = IslAp - @ 1E'(p) + S'(¢), (5.18)

which are the equations derived by Penrose and Fife [18] (egs. (6.1), (6.2)) and
Wang et. al. [19] (eqts. (32), (33)). On the other hand, neglecting, instead, gradient
entropy, and assuming that g is constant, leads to

co' + 8[S(p)] = kAe + p(8)(¢)2, BY" = eAy - E'(¢) + 8S'(9), (5.19)

which is given by Fried and Gurtin [20].
Finally, for a discussion of specific models the reader is referred to references
[15-20].
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