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Abstract

The term "disarrangement" is proposed here to describe geometrical

changes either at the macroscale or at the microscale that are not accounted

for by the classical deformations employed in continuum mechanics. Collec-

tions of non-classical deformations studied by Del Piero and Owen (1993)

are then described in order to give a more precise context for the term

"disarrangement". Examples of disarrangements both at the microscale

and at the macroscale are presented, including disarrangements in liquid

crystals, metallic crystals, and mixtures of continua. It is shown that

volume-preserving deformations that are limits of discrete translations in

crystallographically preferred directions necessarily are "piecewise-shearing

deformations".



1. Introduction

The purpose of this paper is to propose some alternative terminology and to pro-

vide expanded interpretation for geometrical concepts and results obtained in a

recent study of continuum deformations that describe changes in microstructure

(Del Piero and Owen (1993)). In that study, the authors introduced and ana-

lyzed collections of non-classical deformations, and then applied their results to

describe the geometry of elastic and plastic deformations in metals, the changes

of molecular orientation fields in liquid crystals, the changes of lattice bases fields

describing the lattice structure of crystals with defects, and some aspects of .

mixing continua. These geometrical changes were described using such terms as

"macrofracture", "microfracture", and "fracture zone" that conveyed accurately

the geometrical nature of many macro- and microstructural changes. However,

the term "fracture" is widely used by engineers working in the field of fracture

mechanics to describe permanent, usually irreversible geometrical changes; there-

fore, the term "fracture" carries a special connotation that is not appropriate to

many of the applications envisaged in Del Piero and Owen (1993). For example,

the movement of an edge dislocation through through a crystal causes a relocation

of paxt of the atomic lattice, without introducing a weakening or damage as would

be suggested by use of the term "fracture". Similarly, plastic deformation in a

metal involves geometrical changes that are supported on many, widely dispersed,

thin zones in the metal and that need not entail damage or mechanical fracture,

even at the microscopic level.



The fact that the term "fracture" has a specific and already accepted connota-

tion in mechanics led O. Richmond and K. Rajagopal (independently) to suggest

that a different, more neutral term be chosen to describe the wide range of geo-

metrical changes embodied in the deformations studied by Del Piero and Owen

(1993). Ideally, in this broader context, any candidate for such a term should

cover not only non-smooth changes at the macroscopic level, such as separation of

a body into pieces, but also diverse aspects of microstructural changes, including

dislocation, discrete and continuous slip, creation of voids, dispersion, diffusion,

evaporation, and condensation. Here, I propose the term "disarrangement" (liter-

ally, the upsetting of an arrangement) to describe such geometrical changes that

can accompany continuum deformations. Specifically, I propose that the term

"fracture" as used by Del Piero and Owen be replaced by the term disarrange-

ment, and that the terms "fractured zone", "macrofracture", and "microfracture"

be replaced, respectively, by the terms "disarrangement zone", "macrodisarrange-

ment", and "microdisarrangement". (Alternatives for other terms related to "frac-

ture" used by Del Piero and Owen (1993) will be given in subsequent sections of

this paper.)

With these proposed alternatives set forth, it remains here to give specific

mathematical descriptions of disarrangements, to interpret some of the mathemat-

ical results available for them in the context of general continua, and to indicate a

variety of application to specific continua. The mathematical content of this pa-

per will be described with a minimum of formal definitions, theorems, and proofs,

because an extensive mathematical treatment is available in Del Piero and Owen



(1993). It is hoped that the present, more informal treatment will permit emphasis

to be laid on the broad scope of these mathematical concepts as tools for describ-

ing disarrangements in continua. The applications treated in Sections 3, 4,1, and 5

are translations of the treatments by Del Piero and Owen into the alternative ter-

minology of disarrangements, while the application to structured slip discussed in

Section 4,Z is new. In particular, I show in Section 4,2 that volume-preserving de-

formations that are limits of discrete translations in crystallographically preferred

directions necessarily are "piecewise-shearing deformations".

2- Non-classical deformations that support disarrangements

The description of "structured deformations", the main class of deformations cov-

ered in the present approach to the geometry of microstructure, requires first a

description of "classical deformations" and "piecewise-classical deformations". A

classical deformation from a region A in physical space £ is an injective, orienta-

tion preserving mapping / from A into S such that / has an extension to all of

S that is smooth and has a smooth inverse. For each point x in A, f(x) is the

location of x in the classical deformation / . A classical deformation / is intended

to describe smooth, macroscopic, geometrical changes in a continuous body; its

gradient V / is a tensor field whose value V/(x) at a point x in A describes the

local, macroscopic, geometrical changes near x.

A piecewise-classical deformation, or, more briefly, a simple deformation from

a region A is specified by giving a subset K of A, called the activation site (instead

of "crack site", used by Del Piero and Owen (1993)) and a mapping / from A\K



into £, called the transplacement. The set K is required to have volume zero,

/ is required to be injective, and the region A\K is required to be a finite (not

necessarily disjoint) union of regions Aj, j = 1,—,«A s u ch that the restriction fj

of / to each region Aj is a classical deformation. We may view K as a collection

of cuts in the body A and each restriction fj as a smooth deformation of a piece

of the body. Thus, a simple deformation (/c,/) can separate a body, partially or

entirely, into pieces and can deform each piece separately; the pieces can come

into contact after deformation, but, because / is injective, cannot interpenetrate.

Moreover, the restrictions fj and their gradients Vfj need not extend continuously

from one piece Aj to another. Each simple deformation is intended to describe

macroscopic, geometrical changes in a body that arise when all or a portion of

the body is disconnected through slip or separation. Such drastic geometrical

changes occur at the activation site and will be referred to as disarrangements at

the macroscopic level or, more briefly, as macrodisarrangements.

A structured deformation from A is defined to be a triple («,^,G) in which

(«;,#) is a simple deformation from A, and G is a tensor field on .4\AC having

the same smoothness as V</ and satisfying the conditions: there exists a positive

number m such that

m < det G(x) < det Vg(x) (2.1)

at each x in A\K. Before giving interpretations and terminology for the ingredients

in structured deformations, we mention some mathematical results for structured

and simple deformations obtained by Del Piero and Owen (1993). The collection



of all simple deformations Sid and the collection of all structured deformations

Std each has a rather natural notion of composition, each collection has a neutral

element, i.e., an element that produces no effect when composed with another

deformation, and each collection has a readily identifiable collection of invertible

elements (denoted by Inv Sid and Inv Std, respectively). The invertible simple

deformations turn out to be those for which the activation site K is the empty set

0, and the invertible structured deformations turn out to be those for which not

only is the activation site empty, K = 0, but also det G = det Vg.

The most striking mathematical result concerning Sid and Std, the Approxi-

mation Theorem, Del Piero and Owen (1993), asserts that every structured de-

formation («,#,£?) is a "limit of simple deformations" in the following sense: for

each (K, #, G)in Std, there exists a sequence m 1—• (f^m^fm) of simple deformations

such that

lim fm = g, lim V/m = G, and lim inf nm = /c. (2.2)
m—•oo m—>-oo m—>>oo v '

(Here, convergence of fm and V/m is in the sense of L°°(A), and lim inf/cm :=
00 00

U fl Ki*) Thus, in a structured deformation, the mapping g can be obtained as

a limit of the transplacements of simple deformations, and the tensor field G can

be obtained as a limit of the gradients of those transplacements. Moreover, be-

cause the activation sites can split the region A into pieces, it is not generally true

that Vgr and G are equal. The discrepancy between G and V# reveals a difference

between the local deformation due to smooth changes away from activation sites,

measured by G, and the local deformation at the macroscopic level, measured by



Vg. Therefore, I will call G the deformation without disarrangements; moreover,

results proved in Del Piero and Owen (1993) and Del Piero and Owen (1994)

show that V<7 — G is a density for transplacements due to microdisarrangements,

i.e., disarrangements at the microlevel. (In these articles, the term "microfrac-

ture" was employed in place of microdisarrangement.) These results also show

that, for a simple deformation (/c,/) and for a structured deformation (K,<7,<7),

transplacements due to macrodisarrangements are given in terms of the jumps in

the transplacements / and #, respectively. Thus, the concepts and results in Del

Piero and Owen (1993) show that the collection Std of structured deformations

is rich enough to describe disarrangements at both the macroscopic and micro-

scopic levels and to provide specific measures of deformation with and without

disarrangements at both levels. (For a discussion of concepts of stress with and

without disarrangements, see the article by Owen (1992) in which the special case

of disarrangements due to slip is studied.)

3. Disarrangements in liquid crystals

The anisotropic optical and electrical properties of certain liquids can be ascribed

to geometrical aspects of the microstructure of these substances: the molecules

axe nearly rigid, rod-like structures whose axes tend to align in groups. The

changes in this geometry as the liquid deforms or is placed in an electric field are

instances of microdisarrangements. A simple method of describing these disar-

rangements in terms of structured deformations rests on the following idea: the

collection of all the molecules in a sample of the liquid crystal is depicted first



in a special reference configuration A with the property that all the molecules

have the same alignment, described mathematically as a single unit vector k. A

sequence of macrodisarrangements of this continuum is effected by choosing a se-

quence of simple deformations in which the m th term (/cm, fm) is a piecewise-rigid

deformation that imparts a rigid deformation to each molecule (which generally

varies from molecule to molecule). The finitely many values of the unit vector

field (V/m) k describe the orientations of the different molecules as a result of

the simple deformation (/cm,/m). One assumes now that the sequence of simple

deformations converges in the sense of relation (2.2) to a structured deformation

(AC, #, G). Because V / m is orthogonal-valued for each m, the limit G of these gradi-

ents is orthogonal-valued, so that the vector-field Gk is a unit vector field defined

on the region A\K. The unit vector G(x) k can be shown to be the limiting value

as m tends to infinity of the average of orientations (V/m(j/)) k of the molecules

within a sphere of radius 1/m centered at x (Del Piero and Owen (1993)). The

vector field Gk is called the director field for the liquid crystal (in the configura-

tion determined by (/c, #, G)). The macroscopic configuration of the liquid crystal

is determined by the transplacement g, and the local macroscopic deformation is

given by the tensor field Vp, which need not coincide with G. Thus, a principal

feature of microdisarrangements in a liquid crystal, the director field, is captured

precisely by a structured deformation (/c,</, G) in which the deformation without

disarrangements G is orthogonal-valued. The changes in microstructure are con-

veyed by the differences between the unit vector k giving the common alignment

of molecules in the reference configuration and the unit vectors G(x)k giving the

8



average alignment of molecules in the deformed configuration. The disarrange-

ment zone is the portion of the reference configuration where G and Vg differ: in

this zone, the changes in alignment of molecules caused by the deformation are

not accounted for by the macroscopic deformation g and the local macroscopic

deformation Vg.

4. Disarrangements in metals

4.1. Defects in crystals

The ability of a metallic single crystal to undergo large deformations at levels of

applied stress well below those predicted from the elastic properties of the material

can be ascribed to geometrical aspects of the microstructure of the crystals: the

lattice structure formed by the atoms of the metal is not perfect, and the presence

and evolution of defects in this structure provides the mechanism for unexpectedly

large continuum deformations. Changes in the position and nature of such defects

are instances of microdisarrangements. Such disarrangements can most easily be

described in terms of structured deformations by depicting the metal in a special

reference configuration A with the property that there are three (not necessarily

orthogonal or unit), linearly independent vectors a, 6, and c such that all of the

line segments joining each atom to its nearest neighbors are parallel to one of

these three vectors. A sequence of macrodisarrangements of the body is effected

by choosing a sequence of simple deformations in which the mth term («m, fm) is

a piecewise-affine deformation that imparts an affine deformation to each of the



basic cells of the atomic lattice; the affine deformation may, of course, vary from

one cell to another. For each positive integer m, the triple of linearly independent

vectors (V/m(z))a, (V/m(x))6, (V/m(z))c then will take on only finitely many

values as x varies over A\Km. These values describe the change in geometry of

the basic cells and, hence, the changes in the lattice structure associated with

the simple deformation (« m , / m ) . One assumes now that the sequence of simple

deformations converges in the sense of relation (2.2) to a structured deformation

(/c, <7, (?). The relation (2.1) guarantees that, for each x in .4\AC, the triple of vec-

tors G(x)a, G(x)b, G(x)c is linearly independent. Each of these vectors can be

shown to be the limiting value as m tends to infinity of the average of the corre-

sponding vectors (V/m(j/))a, (V/m(y))6, (V/m(j/))c as y varies within a sphere

of radius 1/m centered at x (Del Piero and Owen (1993)). The corresponding

vector fields Ga, Gfe, Gc are called the lattice vector fields for the crystal in the

configuration determined by (/c,<7, G). The macroscopic configuration of the crys-

tal is determined by g, and the local macroscopic configuration of the crystal is

determined by V#, which differs generally from G. In other words, the images

(Vg) a, (V#) 6, (V#) c of the lattice directions a, 6, c in the reference configura-

tion need not be the same as the lattice vector fields Get, G6, Gc. The closure of

the region within A\K in which at least one of (Vg) a, (V#) 6, (V#) c differs from

the corresponding field Ga, G6, Gc, is the disarrangement zone for the structured

deformation (/c,^,G). Within this zone, the macroscopic deformation g and its

gradient V# do not suffice to describe all the change in microstructure occurring

in the crystal.
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The vector fields Ga, G6, and Gc correspond to the lattice vector fields used

by Davini and Parry (1989) and Fonseca and Parry (1992) to study the geometry

of defects in crystals. Further connections between these, other articles and the

present approach are made in Section 7c of Del Piero and Owen (1993).

4.2. Structured slip

The framework afforded by structured deformations in Section 4*1 will now be

specialized to the case where the simple deformations (/cm,/m), m = 1,2,...

that determine a structured deformation (*,<7,G) of the crystal all are locally

translations in preferred directions determined by the specific atomic structure of

the crystal. For example, in f.cx. crystals, these preferred directions form a set of

twelve directions, usually grouped according to which of four possible octahedral

planes is parallel to a given translation. Thus, we assume there are given a finite

set S = (iti,it2, ...,u/r) of unit vectors and a sequence of simple deformations

(Kmifm), Tn = 1,2,... such that each of the transplacements /m , when restricted

to a suitable subregion -Amj of A, is a translation fmj of the form

fmj(X) = X + amjnmj (4-1)

for j = 1,2, ...,Jm and x in Amj. Here, amj is a real number that determines

the magnitude of the translation, and each unit vector nmj is in the given set 5.

We assume, in addition, that the transplacement g for the structured deformation

(/c,^,G) is volume-preserving, so that

= l. (4.2)

11



We shall now discuss, without supplying many of the mathematical details, the

consequences for (/c,p,G) of (2.2) (which restricts all structured deformations),

(4.1) and (4.2). These results will justify use of the term "structured slip" for a

structured deformation («,#, G) that satisfies (4.1) and (4.2). Let x in A\K be

given such that g(x) ^ x. It follows from (4.1) and the first relation in (2.2) that

there is a unit vector u(x) in S and a non-zero real number a(x) such that

g(x) = x + a(x)u(x). (4.3)

Moreover, because g is continuously difFerentiable on A\K and the set of points x

in *4\>c for which g(x) ^ x is open, we conclude that the mappings x i—• a(x)

and x i—> u(x) are continuously difFerentiable. Moreover, because u(x) lies in

the finite set 5, the mapping x i—• u(x) is locally constant. Therefore, we may

differentiate relation (4.3) to obtain the formula

Vg(x) = / + u(x) ® Va (x) (AA)

in which, as above, x i—> u(x) is locally constant and I denotes the identity

tensor. Relations (4.2) and (4.4) now tell us that the vectors u(x) and Va(x)

are othogonal. Consequently, on the set of points x for which g (x) ^ x, the

transplacement g is locally a shearing deformation. Each plane on which a(x)

is constant undergoes a rigid translation of amount a(x) in the direction u(x).

Finally, the second relation in (2.2) and relation (4.1) yield the simple relation

G(x) = 7, for all x in A\K.

In summary, a structured slip turns out to be a structured deformation of

the form (/c,<7,7) in which the transplacement g is a "piecewise-shearing defor-
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mation", where the displacements of each of the individual shears are parallel to

one of the unit vectors in S. In addition, there can be one region in the body on

which g is the identity mapping, i.e., on which the displacement of points is zero.

The investigation of the geometry of the individual regions on which a shearing

deformation occurs or on which no displacement occurs awaits further study. At

the moment, it seems reasonable to conjecture that these regions are bounded by

the slip planes associated with the given crystal and by the boundary of the body.

5. Disarrangements in mixing continua

The act of mixing two or more constituents often involves an intermingling of the

constituents at microscopic length scales. In order for the intermingling to occur,

at least one constituent must undergo perceptible changes such as dispersion in

space, and it is reasonable to conceive of such changes as disarrangements at the

microlevel. At macroscopic length scales, mixing generally entails the interpen-

etration of the constituents. The framework of simple deformations and limits

of simple deformations introduced in Section 2 permits us to capture both the

intermingling without interpenetration at the microscale and the interpenetration

at the macroscale that appear necessary to obtain a comprehensive geometrical

description of mixing. The distinction betwen intermingling and interpenetration

to be employed below rests on the mathematical distinction between an injective

mapping and a non-injective mapping.

We consider each of the N constituents of a mixture as occupying its own

reference configuration A^ j = 1,2, ...,7V. The process of intermingling the con-
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stituents without interpenetration is described by giving a sequence of simple

deformations (Acm, f m ) , m = 1,2,.... Each transplacement fm is an injective map-

ping whose domain is the region A\Km, where here A denotes the union of the

regions Ay The sequence of simple deformations will be said to determine a mixing

deformation from A if (i) the sequence of activation sites Km, of transplacements

fm and of their gradients V/m converge in the sense of (2.2) to K,g, and G, with

the mappings g and G both defined on A\K, and (ii) the restrictions gj and Gj of g

and G to each constituent region AJ\K, are such that the triple (K D AJ, gj, Gj) is a

structured deformation from Aj. Thus, each consituent undergoes a structured de-

formation (K fl Aj, gj, Gj) that permits microdisarrangements such as dispersion

in space to occur, each simple deformation (/cm,/m) intermingles the constituents

without interpenetration, and the limit of simple deformations (n,g,G), in which

the transpacement g need not be injective, permits the constituents to interpen-

etrate. The disarrangement zone for the structured deformation (K D AJ, gj, Gj)

may be described here as the zone of dispersion for the j t h constituent. For each

point y in the region gj (AJ\K) occupied in space by the j t h constituent of the

mixture, the point x = gjl(y) represents the material point of the jfth constituent

that is present at y. In this case, the ratio det Gj(x) / detV^(x) is the volume

fraction at y of the j t h constituent in the mixing deformation (tt,g, G). If a point

y in space is not in the region gj (AJ\K) , the volume fraction at y of the j t h con-

stituent is taken to be zero. (This definition of volume fraction takes into account

in the denominator any voids that are present in the mixture as a whole.)
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